Coverage Report

Created: 2025-09-15 22:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasda.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__0 = 0;
516
static real c_b11 = 0.f;
517
static real c_b12 = 1.f;
518
static integer c__1 = 1;
519
static integer c__2 = 2;
520
521
/* > \brief \b SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with d
522
iagonal d and off-diagonal e. Used by sbdsdc. */
523
524
/*  =========== DOCUMENTATION =========== */
525
526
/* Online html documentation available at */
527
/*            http://www.netlib.org/lapack/explore-html/ */
528
529
/* > \htmlonly */
530
/* > Download SLASDA + dependencies */
531
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasda.
532
f"> */
533
/* > [TGZ]</a> */
534
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasda.
535
f"> */
536
/* > [ZIP]</a> */
537
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasda.
538
f"> */
539
/* > [TXT]</a> */
540
/* > \endhtmlonly */
541
542
/*  Definition: */
543
/*  =========== */
544
545
/*       SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, */
546
/*                          DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, */
547
/*                          PERM, GIVNUM, C, S, WORK, IWORK, INFO ) */
548
549
/*       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE */
550
/*       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
551
/*      $                   K( * ), PERM( LDGCOL, * ) */
552
/*       REAL               C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
553
/*      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), */
554
/*      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), */
555
/*      $                   Z( LDU, * ) */
556
557
558
/* > \par Purpose: */
559
/*  ============= */
560
/* > */
561
/* > \verbatim */
562
/* > */
563
/* > Using a divide and conquer approach, SLASDA computes the singular */
564
/* > value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
565
/* > B with diagonal D and offdiagonal E, where M = N + SQRE. The */
566
/* > algorithm computes the singular values in the SVD B = U * S * VT. */
567
/* > The orthogonal matrices U and VT are optionally computed in */
568
/* > compact form. */
569
/* > */
570
/* > A related subroutine, SLASD0, computes the singular values and */
571
/* > the singular vectors in explicit form. */
572
/* > \endverbatim */
573
574
/*  Arguments: */
575
/*  ========== */
576
577
/* > \param[in] ICOMPQ */
578
/* > \verbatim */
579
/* >          ICOMPQ is INTEGER */
580
/* >         Specifies whether singular vectors are to be computed */
581
/* >         in compact form, as follows */
582
/* >         = 0: Compute singular values only. */
583
/* >         = 1: Compute singular vectors of upper bidiagonal */
584
/* >              matrix in compact form. */
585
/* > \endverbatim */
586
/* > */
587
/* > \param[in] SMLSIZ */
588
/* > \verbatim */
589
/* >          SMLSIZ is INTEGER */
590
/* >         The maximum size of the subproblems at the bottom of the */
591
/* >         computation tree. */
592
/* > \endverbatim */
593
/* > */
594
/* > \param[in] N */
595
/* > \verbatim */
596
/* >          N is INTEGER */
597
/* >         The row dimension of the upper bidiagonal matrix. This is */
598
/* >         also the dimension of the main diagonal array D. */
599
/* > \endverbatim */
600
/* > */
601
/* > \param[in] SQRE */
602
/* > \verbatim */
603
/* >          SQRE is INTEGER */
604
/* >         Specifies the column dimension of the bidiagonal matrix. */
605
/* >         = 0: The bidiagonal matrix has column dimension M = N; */
606
/* >         = 1: The bidiagonal matrix has column dimension M = N + 1. */
607
/* > \endverbatim */
608
/* > */
609
/* > \param[in,out] D */
610
/* > \verbatim */
611
/* >          D is REAL array, dimension ( N ) */
612
/* >         On entry D contains the main diagonal of the bidiagonal */
613
/* >         matrix. On exit D, if INFO = 0, contains its singular values. */
614
/* > \endverbatim */
615
/* > */
616
/* > \param[in] E */
617
/* > \verbatim */
618
/* >          E is REAL array, dimension ( M-1 ) */
619
/* >         Contains the subdiagonal entries of the bidiagonal matrix. */
620
/* >         On exit, E has been destroyed. */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[out] U */
624
/* > \verbatim */
625
/* >          U is REAL array, */
626
/* >         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
627
/* >         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
628
/* >         singular vector matrices of all subproblems at the bottom */
629
/* >         level. */
630
/* > \endverbatim */
631
/* > */
632
/* > \param[in] LDU */
633
/* > \verbatim */
634
/* >          LDU is INTEGER, LDU = > N. */
635
/* >         The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
636
/* >         GIVNUM, and Z. */
637
/* > \endverbatim */
638
/* > */
639
/* > \param[out] VT */
640
/* > \verbatim */
641
/* >          VT is REAL array, */
642
/* >         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
643
/* >         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right */
644
/* >         singular vector matrices of all subproblems at the bottom */
645
/* >         level. */
646
/* > \endverbatim */
647
/* > */
648
/* > \param[out] K */
649
/* > \verbatim */
650
/* >          K is INTEGER array, dimension ( N ) */
651
/* >         if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
652
/* >         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
653
/* >         secular equation on the computation tree. */
654
/* > \endverbatim */
655
/* > */
656
/* > \param[out] DIFL */
657
/* > \verbatim */
658
/* >          DIFL is REAL array, dimension ( LDU, NLVL ), */
659
/* >         where NLVL = floor(log_2 (N/SMLSIZ))). */
660
/* > \endverbatim */
661
/* > */
662
/* > \param[out] DIFR */
663
/* > \verbatim */
664
/* >          DIFR is REAL array, */
665
/* >                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
666
/* >                  dimension ( N ) if ICOMPQ = 0. */
667
/* >         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
668
/* >         record distances between singular values on the I-th */
669
/* >         level and singular values on the (I -1)-th level, and */
670
/* >         DIFR(1:N, 2 * I ) contains the normalizing factors for */
671
/* >         the right singular vector matrix. See SLASD8 for details. */
672
/* > \endverbatim */
673
/* > */
674
/* > \param[out] Z */
675
/* > \verbatim */
676
/* >          Z is REAL array, */
677
/* >                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
678
/* >                  dimension ( N ) if ICOMPQ = 0. */
679
/* >         The first K elements of Z(1, I) contain the components of */
680
/* >         the deflation-adjusted updating row vector for subproblems */
681
/* >         on the I-th level. */
682
/* > \endverbatim */
683
/* > */
684
/* > \param[out] POLES */
685
/* > \verbatim */
686
/* >          POLES is REAL array, */
687
/* >         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
688
/* >         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
689
/* >         POLES(1, 2*I) contain  the new and old singular values */
690
/* >         involved in the secular equations on the I-th level. */
691
/* > \endverbatim */
692
/* > */
693
/* > \param[out] GIVPTR */
694
/* > \verbatim */
695
/* >          GIVPTR is INTEGER array, */
696
/* >         dimension ( N ) if ICOMPQ = 1, and not referenced if */
697
/* >         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
698
/* >         the number of Givens rotations performed on the I-th */
699
/* >         problem on the computation tree. */
700
/* > \endverbatim */
701
/* > */
702
/* > \param[out] GIVCOL */
703
/* > \verbatim */
704
/* >          GIVCOL is INTEGER array, */
705
/* >         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
706
/* >         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
707
/* >         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
708
/* >         of Givens rotations performed on the I-th level on the */
709
/* >         computation tree. */
710
/* > \endverbatim */
711
/* > */
712
/* > \param[in] LDGCOL */
713
/* > \verbatim */
714
/* >          LDGCOL is INTEGER, LDGCOL = > N. */
715
/* >         The leading dimension of arrays GIVCOL and PERM. */
716
/* > \endverbatim */
717
/* > */
718
/* > \param[out] PERM */
719
/* > \verbatim */
720
/* >          PERM is INTEGER array, dimension ( LDGCOL, NLVL ) */
721
/* >         if ICOMPQ = 1, and not referenced */
722
/* >         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
723
/* >         permutations done on the I-th level of the computation tree. */
724
/* > \endverbatim */
725
/* > */
726
/* > \param[out] GIVNUM */
727
/* > \verbatim */
728
/* >          GIVNUM is REAL array, */
729
/* >         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not */
730
/* >         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
731
/* >         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
732
/* >         values of Givens rotations performed on the I-th level on */
733
/* >         the computation tree. */
734
/* > \endverbatim */
735
/* > */
736
/* > \param[out] C */
737
/* > \verbatim */
738
/* >          C is REAL array, */
739
/* >         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
740
/* >         If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
741
/* >         C( I ) contains the C-value of a Givens rotation related to */
742
/* >         the right null space of the I-th subproblem. */
743
/* > \endverbatim */
744
/* > */
745
/* > \param[out] S */
746
/* > \verbatim */
747
/* >          S is REAL array, dimension ( N ) if */
748
/* >         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
749
/* >         and the I-th subproblem is not square, on exit, S( I ) */
750
/* >         contains the S-value of a Givens rotation related to */
751
/* >         the right null space of the I-th subproblem. */
752
/* > \endverbatim */
753
/* > */
754
/* > \param[out] WORK */
755
/* > \verbatim */
756
/* >          WORK is REAL array, dimension */
757
/* >         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
758
/* > \endverbatim */
759
/* > */
760
/* > \param[out] IWORK */
761
/* > \verbatim */
762
/* >          IWORK is INTEGER array, dimension (7*N). */
763
/* > \endverbatim */
764
/* > */
765
/* > \param[out] INFO */
766
/* > \verbatim */
767
/* >          INFO is INTEGER */
768
/* >          = 0:  successful exit. */
769
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
770
/* >          > 0:  if INFO = 1, a singular value did not converge */
771
/* > \endverbatim */
772
773
/*  Authors: */
774
/*  ======== */
775
776
/* > \author Univ. of Tennessee */
777
/* > \author Univ. of California Berkeley */
778
/* > \author Univ. of Colorado Denver */
779
/* > \author NAG Ltd. */
780
781
/* > \date December 2016 */
782
783
/* > \ingroup OTHERauxiliary */
784
785
/* > \par Contributors: */
786
/*  ================== */
787
/* > */
788
/* >     Ming Gu and Huan Ren, Computer Science Division, University of */
789
/* >     California at Berkeley, USA */
790
/* > */
791
/*  ===================================================================== */
792
/* Subroutine */ void slasda_(integer *icompq, integer *smlsiz, integer *n, 
793
  integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt, 
794
  integer *k, real *difl, real *difr, real *z__, real *poles, integer *
795
  givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum,
796
   real *c__, real *s, real *work, integer *iwork, integer *info)
797
0
{
798
    /* System generated locals */
799
0
    integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, 
800
0
      difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, 
801
0
      poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, 
802
0
      z_dim1, z_offset, i__1, i__2;
803
804
    /* Local variables */
805
0
    real beta;
806
0
    integer idxq, nlvl, i__, j, m;
807
0
    real alpha;
808
0
    integer inode, ndiml, ndimr, idxqi, itemp, sqrei, i1;
809
0
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
810
0
      integer *), slasd6_(integer *, integer *, integer *, integer *, 
811
0
      real *, real *, real *, real *, real *, integer *, integer *, 
812
0
      integer *, integer *, integer *, real *, integer *, real *, real *
813
0
      , real *, real *, integer *, real *, real *, real *, integer *, 
814
0
      integer *);
815
0
    integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl;
816
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
817
0
    extern void slasdq_(
818
0
      char *, integer *, integer *, integer *, integer *, integer *, 
819
0
      real *, real *, real *, integer *, real *, integer *, real *, 
820
0
      integer *, real *, integer *), slasdt_(integer *, integer 
821
0
      *, integer *, integer *, integer *, integer *, integer *), 
822
0
      slaset_(char *, integer *, integer *, real *, real *, real *, 
823
0
      integer *);
824
0
    integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, 
825
0
      lvl2, nrp1;
826
827
828
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
829
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
830
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
831
/*     December 2016 */
832
833
834
/*  ===================================================================== */
835
836
837
/*     Test the input parameters. */
838
839
    /* Parameter adjustments */
840
0
    --d__;
841
0
    --e;
842
0
    givnum_dim1 = *ldu;
843
0
    givnum_offset = 1 + givnum_dim1 * 1;
844
0
    givnum -= givnum_offset;
845
0
    poles_dim1 = *ldu;
846
0
    poles_offset = 1 + poles_dim1 * 1;
847
0
    poles -= poles_offset;
848
0
    z_dim1 = *ldu;
849
0
    z_offset = 1 + z_dim1 * 1;
850
0
    z__ -= z_offset;
851
0
    difr_dim1 = *ldu;
852
0
    difr_offset = 1 + difr_dim1 * 1;
853
0
    difr -= difr_offset;
854
0
    difl_dim1 = *ldu;
855
0
    difl_offset = 1 + difl_dim1 * 1;
856
0
    difl -= difl_offset;
857
0
    vt_dim1 = *ldu;
858
0
    vt_offset = 1 + vt_dim1 * 1;
859
0
    vt -= vt_offset;
860
0
    u_dim1 = *ldu;
861
0
    u_offset = 1 + u_dim1 * 1;
862
0
    u -= u_offset;
863
0
    --k;
864
0
    --givptr;
865
0
    perm_dim1 = *ldgcol;
866
0
    perm_offset = 1 + perm_dim1 * 1;
867
0
    perm -= perm_offset;
868
0
    givcol_dim1 = *ldgcol;
869
0
    givcol_offset = 1 + givcol_dim1 * 1;
870
0
    givcol -= givcol_offset;
871
0
    --c__;
872
0
    --s;
873
0
    --work;
874
0
    --iwork;
875
876
    /* Function Body */
877
0
    *info = 0;
878
879
0
    if (*icompq < 0 || *icompq > 1) {
880
0
  *info = -1;
881
0
    } else if (*smlsiz < 3) {
882
0
  *info = -2;
883
0
    } else if (*n < 0) {
884
0
  *info = -3;
885
0
    } else if (*sqre < 0 || *sqre > 1) {
886
0
  *info = -4;
887
0
    } else if (*ldu < *n + *sqre) {
888
0
  *info = -8;
889
0
    } else if (*ldgcol < *n) {
890
0
  *info = -17;
891
0
    }
892
0
    if (*info != 0) {
893
0
  i__1 = -(*info);
894
0
  xerbla_("SLASDA", &i__1, (ftnlen)6);
895
0
  return;
896
0
    }
897
898
0
    m = *n + *sqre;
899
900
/*     If the input matrix is too small, call SLASDQ to find the SVD. */
901
902
0
    if (*n <= *smlsiz) {
903
0
  if (*icompq == 0) {
904
0
      slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
905
0
        vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
906
0
        work[1], info);
907
0
  } else {
908
0
      slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
909
0
        , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], 
910
0
        info);
911
0
  }
912
0
  return;
913
0
    }
914
915
/*     Book-keeping and  set up the computation tree. */
916
917
0
    inode = 1;
918
0
    ndiml = inode + *n;
919
0
    ndimr = ndiml + *n;
920
0
    idxq = ndimr + *n;
921
0
    iwk = idxq + *n;
922
923
0
    ncc = 0;
924
0
    nru = 0;
925
926
0
    smlszp = *smlsiz + 1;
927
0
    vf = 1;
928
0
    vl = vf + m;
929
0
    nwork1 = vl + m;
930
0
    nwork2 = nwork1 + smlszp * smlszp;
931
932
0
    slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
933
0
      smlsiz);
934
935
/*     for the nodes on bottom level of the tree, solve */
936
/*     their subproblems by SLASDQ. */
937
938
0
    ndb1 = (nd + 1) / 2;
939
0
    i__1 = nd;
940
0
    for (i__ = ndb1; i__ <= i__1; ++i__) {
941
942
/*        IC : center row of each node */
943
/*        NL : number of rows of left  subproblem */
944
/*        NR : number of rows of right subproblem */
945
/*        NLF: starting row of the left   subproblem */
946
/*        NRF: starting row of the right  subproblem */
947
948
0
  i1 = i__ - 1;
949
0
  ic = iwork[inode + i1];
950
0
  nl = iwork[ndiml + i1];
951
0
  nlp1 = nl + 1;
952
0
  nr = iwork[ndimr + i1];
953
0
  nlf = ic - nl;
954
0
  nrf = ic + 1;
955
0
  idxqi = idxq + nlf - 2;
956
0
  vfi = vf + nlf - 1;
957
0
  vli = vl + nlf - 1;
958
0
  sqrei = 1;
959
0
  if (*icompq == 0) {
960
0
      slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
961
0
      slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
962
0
        work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], 
963
0
        &nl, &work[nwork2], info);
964
0
      itemp = nwork1 + nl * smlszp;
965
0
      scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
966
0
      scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
967
0
  } else {
968
0
      slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
969
0
      slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], 
970
0
        ldu);
971
0
      slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
972
0
        vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + 
973
0
        u_dim1], ldu, &work[nwork1], info);
974
0
      scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
975
0
      scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
976
0
        ;
977
0
  }
978
0
  if (*info != 0) {
979
0
      return;
980
0
  }
981
0
  i__2 = nl;
982
0
  for (j = 1; j <= i__2; ++j) {
983
0
      iwork[idxqi + j] = j;
984
/* L10: */
985
0
  }
986
0
  if (i__ == nd && *sqre == 0) {
987
0
      sqrei = 0;
988
0
  } else {
989
0
      sqrei = 1;
990
0
  }
991
0
  idxqi += nlp1;
992
0
  vfi += nlp1;
993
0
  vli += nlp1;
994
0
  nrp1 = nr + sqrei;
995
0
  if (*icompq == 0) {
996
0
      slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
997
0
      slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
998
0
        work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], 
999
0
        &nr, &work[nwork2], info);
1000
0
      itemp = nwork1 + (nrp1 - 1) * smlszp;
1001
0
      scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
1002
0
      scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
1003
0
  } else {
1004
0
      slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
1005
0
      slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], 
1006
0
        ldu);
1007
0
      slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
1008
0
        vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + 
1009
0
        u_dim1], ldu, &work[nwork1], info);
1010
0
      scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
1011
0
      scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
1012
0
        ;
1013
0
  }
1014
0
  if (*info != 0) {
1015
0
      return;
1016
0
  }
1017
0
  i__2 = nr;
1018
0
  for (j = 1; j <= i__2; ++j) {
1019
0
      iwork[idxqi + j] = j;
1020
/* L20: */
1021
0
  }
1022
/* L30: */
1023
0
    }
1024
1025
/*     Now conquer each subproblem bottom-up. */
1026
1027
0
    j = pow_ii(c__2, nlvl);
1028
0
    for (lvl = nlvl; lvl >= 1; --lvl) {
1029
0
  lvl2 = (lvl << 1) - 1;
1030
1031
/*        Find the first node LF and last node LL on */
1032
/*        the current level LVL. */
1033
1034
0
  if (lvl == 1) {
1035
0
      lf = 1;
1036
0
      ll = 1;
1037
0
  } else {
1038
0
      i__1 = lvl - 1;
1039
0
      lf = pow_ii(c__2, i__1);
1040
0
      ll = (lf << 1) - 1;
1041
0
  }
1042
0
  i__1 = ll;
1043
0
  for (i__ = lf; i__ <= i__1; ++i__) {
1044
0
      im1 = i__ - 1;
1045
0
      ic = iwork[inode + im1];
1046
0
      nl = iwork[ndiml + im1];
1047
0
      nr = iwork[ndimr + im1];
1048
0
      nlf = ic - nl;
1049
0
      nrf = ic + 1;
1050
0
      if (i__ == ll) {
1051
0
    sqrei = *sqre;
1052
0
      } else {
1053
0
    sqrei = 1;
1054
0
      }
1055
0
      vfi = vf + nlf - 1;
1056
0
      vli = vl + nlf - 1;
1057
0
      idxqi = idxq + nlf - 1;
1058
0
      alpha = d__[ic];
1059
0
      beta = e[ic];
1060
0
      if (*icompq == 0) {
1061
0
    slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
1062
0
      work[vli], &alpha, &beta, &iwork[idxqi], &perm[
1063
0
      perm_offset], &givptr[1], &givcol[givcol_offset], 
1064
0
      ldgcol, &givnum[givnum_offset], ldu, &poles[
1065
0
      poles_offset], &difl[difl_offset], &difr[difr_offset],
1066
0
       &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
1067
0
       &iwork[iwk], info);
1068
0
      } else {
1069
0
    --j;
1070
0
    slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
1071
0
      work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + 
1072
0
      lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * 
1073
0
      givcol_dim1], ldgcol, &givnum[nlf + lvl2 * 
1074
0
      givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
1075
0
      difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * 
1076
0
      difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], 
1077
0
      &s[j], &work[nwork1], &iwork[iwk], info);
1078
0
      }
1079
0
      if (*info != 0) {
1080
0
    return;
1081
0
      }
1082
/* L40: */
1083
0
  }
1084
/* L50: */
1085
0
    }
1086
1087
0
    return;
1088
1089
/*     End of SLASDA */
1090
1091
0
} /* slasda_ */
1092