/root/doris/contrib/openblas/lapack-netlib/SRC/slasda.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static integer c__0 = 0; |
516 | | static real c_b11 = 0.f; |
517 | | static real c_b12 = 1.f; |
518 | | static integer c__1 = 1; |
519 | | static integer c__2 = 2; |
520 | | |
521 | | /* > \brief \b SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with d |
522 | | iagonal d and off-diagonal e. Used by sbdsdc. */ |
523 | | |
524 | | /* =========== DOCUMENTATION =========== */ |
525 | | |
526 | | /* Online html documentation available at */ |
527 | | /* http://www.netlib.org/lapack/explore-html/ */ |
528 | | |
529 | | /* > \htmlonly */ |
530 | | /* > Download SLASDA + dependencies */ |
531 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasda. |
532 | | f"> */ |
533 | | /* > [TGZ]</a> */ |
534 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasda. |
535 | | f"> */ |
536 | | /* > [ZIP]</a> */ |
537 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasda. |
538 | | f"> */ |
539 | | /* > [TXT]</a> */ |
540 | | /* > \endhtmlonly */ |
541 | | |
542 | | /* Definition: */ |
543 | | /* =========== */ |
544 | | |
545 | | /* SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, */ |
546 | | /* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, */ |
547 | | /* PERM, GIVNUM, C, S, WORK, IWORK, INFO ) */ |
548 | | |
549 | | /* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE */ |
550 | | /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */ |
551 | | /* $ K( * ), PERM( LDGCOL, * ) */ |
552 | | /* REAL C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), */ |
553 | | /* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), */ |
554 | | /* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), */ |
555 | | /* $ Z( LDU, * ) */ |
556 | | |
557 | | |
558 | | /* > \par Purpose: */ |
559 | | /* ============= */ |
560 | | /* > */ |
561 | | /* > \verbatim */ |
562 | | /* > */ |
563 | | /* > Using a divide and conquer approach, SLASDA computes the singular */ |
564 | | /* > value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */ |
565 | | /* > B with diagonal D and offdiagonal E, where M = N + SQRE. The */ |
566 | | /* > algorithm computes the singular values in the SVD B = U * S * VT. */ |
567 | | /* > The orthogonal matrices U and VT are optionally computed in */ |
568 | | /* > compact form. */ |
569 | | /* > */ |
570 | | /* > A related subroutine, SLASD0, computes the singular values and */ |
571 | | /* > the singular vectors in explicit form. */ |
572 | | /* > \endverbatim */ |
573 | | |
574 | | /* Arguments: */ |
575 | | /* ========== */ |
576 | | |
577 | | /* > \param[in] ICOMPQ */ |
578 | | /* > \verbatim */ |
579 | | /* > ICOMPQ is INTEGER */ |
580 | | /* > Specifies whether singular vectors are to be computed */ |
581 | | /* > in compact form, as follows */ |
582 | | /* > = 0: Compute singular values only. */ |
583 | | /* > = 1: Compute singular vectors of upper bidiagonal */ |
584 | | /* > matrix in compact form. */ |
585 | | /* > \endverbatim */ |
586 | | /* > */ |
587 | | /* > \param[in] SMLSIZ */ |
588 | | /* > \verbatim */ |
589 | | /* > SMLSIZ is INTEGER */ |
590 | | /* > The maximum size of the subproblems at the bottom of the */ |
591 | | /* > computation tree. */ |
592 | | /* > \endverbatim */ |
593 | | /* > */ |
594 | | /* > \param[in] N */ |
595 | | /* > \verbatim */ |
596 | | /* > N is INTEGER */ |
597 | | /* > The row dimension of the upper bidiagonal matrix. This is */ |
598 | | /* > also the dimension of the main diagonal array D. */ |
599 | | /* > \endverbatim */ |
600 | | /* > */ |
601 | | /* > \param[in] SQRE */ |
602 | | /* > \verbatim */ |
603 | | /* > SQRE is INTEGER */ |
604 | | /* > Specifies the column dimension of the bidiagonal matrix. */ |
605 | | /* > = 0: The bidiagonal matrix has column dimension M = N; */ |
606 | | /* > = 1: The bidiagonal matrix has column dimension M = N + 1. */ |
607 | | /* > \endverbatim */ |
608 | | /* > */ |
609 | | /* > \param[in,out] D */ |
610 | | /* > \verbatim */ |
611 | | /* > D is REAL array, dimension ( N ) */ |
612 | | /* > On entry D contains the main diagonal of the bidiagonal */ |
613 | | /* > matrix. On exit D, if INFO = 0, contains its singular values. */ |
614 | | /* > \endverbatim */ |
615 | | /* > */ |
616 | | /* > \param[in] E */ |
617 | | /* > \verbatim */ |
618 | | /* > E is REAL array, dimension ( M-1 ) */ |
619 | | /* > Contains the subdiagonal entries of the bidiagonal matrix. */ |
620 | | /* > On exit, E has been destroyed. */ |
621 | | /* > \endverbatim */ |
622 | | /* > */ |
623 | | /* > \param[out] U */ |
624 | | /* > \verbatim */ |
625 | | /* > U is REAL array, */ |
626 | | /* > dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */ |
627 | | /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */ |
628 | | /* > singular vector matrices of all subproblems at the bottom */ |
629 | | /* > level. */ |
630 | | /* > \endverbatim */ |
631 | | /* > */ |
632 | | /* > \param[in] LDU */ |
633 | | /* > \verbatim */ |
634 | | /* > LDU is INTEGER, LDU = > N. */ |
635 | | /* > The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */ |
636 | | /* > GIVNUM, and Z. */ |
637 | | /* > \endverbatim */ |
638 | | /* > */ |
639 | | /* > \param[out] VT */ |
640 | | /* > \verbatim */ |
641 | | /* > VT is REAL array, */ |
642 | | /* > dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */ |
643 | | /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right */ |
644 | | /* > singular vector matrices of all subproblems at the bottom */ |
645 | | /* > level. */ |
646 | | /* > \endverbatim */ |
647 | | /* > */ |
648 | | /* > \param[out] K */ |
649 | | /* > \verbatim */ |
650 | | /* > K is INTEGER array, dimension ( N ) */ |
651 | | /* > if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */ |
652 | | /* > If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */ |
653 | | /* > secular equation on the computation tree. */ |
654 | | /* > \endverbatim */ |
655 | | /* > */ |
656 | | /* > \param[out] DIFL */ |
657 | | /* > \verbatim */ |
658 | | /* > DIFL is REAL array, dimension ( LDU, NLVL ), */ |
659 | | /* > where NLVL = floor(log_2 (N/SMLSIZ))). */ |
660 | | /* > \endverbatim */ |
661 | | /* > */ |
662 | | /* > \param[out] DIFR */ |
663 | | /* > \verbatim */ |
664 | | /* > DIFR is REAL array, */ |
665 | | /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */ |
666 | | /* > dimension ( N ) if ICOMPQ = 0. */ |
667 | | /* > If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */ |
668 | | /* > record distances between singular values on the I-th */ |
669 | | /* > level and singular values on the (I -1)-th level, and */ |
670 | | /* > DIFR(1:N, 2 * I ) contains the normalizing factors for */ |
671 | | /* > the right singular vector matrix. See SLASD8 for details. */ |
672 | | /* > \endverbatim */ |
673 | | /* > */ |
674 | | /* > \param[out] Z */ |
675 | | /* > \verbatim */ |
676 | | /* > Z is REAL array, */ |
677 | | /* > dimension ( LDU, NLVL ) if ICOMPQ = 1 and */ |
678 | | /* > dimension ( N ) if ICOMPQ = 0. */ |
679 | | /* > The first K elements of Z(1, I) contain the components of */ |
680 | | /* > the deflation-adjusted updating row vector for subproblems */ |
681 | | /* > on the I-th level. */ |
682 | | /* > \endverbatim */ |
683 | | /* > */ |
684 | | /* > \param[out] POLES */ |
685 | | /* > \verbatim */ |
686 | | /* > POLES is REAL array, */ |
687 | | /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */ |
688 | | /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */ |
689 | | /* > POLES(1, 2*I) contain the new and old singular values */ |
690 | | /* > involved in the secular equations on the I-th level. */ |
691 | | /* > \endverbatim */ |
692 | | /* > */ |
693 | | /* > \param[out] GIVPTR */ |
694 | | /* > \verbatim */ |
695 | | /* > GIVPTR is INTEGER array, */ |
696 | | /* > dimension ( N ) if ICOMPQ = 1, and not referenced if */ |
697 | | /* > ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */ |
698 | | /* > the number of Givens rotations performed on the I-th */ |
699 | | /* > problem on the computation tree. */ |
700 | | /* > \endverbatim */ |
701 | | /* > */ |
702 | | /* > \param[out] GIVCOL */ |
703 | | /* > \verbatim */ |
704 | | /* > GIVCOL is INTEGER array, */ |
705 | | /* > dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */ |
706 | | /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */ |
707 | | /* > GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */ |
708 | | /* > of Givens rotations performed on the I-th level on the */ |
709 | | /* > computation tree. */ |
710 | | /* > \endverbatim */ |
711 | | /* > */ |
712 | | /* > \param[in] LDGCOL */ |
713 | | /* > \verbatim */ |
714 | | /* > LDGCOL is INTEGER, LDGCOL = > N. */ |
715 | | /* > The leading dimension of arrays GIVCOL and PERM. */ |
716 | | /* > \endverbatim */ |
717 | | /* > */ |
718 | | /* > \param[out] PERM */ |
719 | | /* > \verbatim */ |
720 | | /* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ) */ |
721 | | /* > if ICOMPQ = 1, and not referenced */ |
722 | | /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */ |
723 | | /* > permutations done on the I-th level of the computation tree. */ |
724 | | /* > \endverbatim */ |
725 | | /* > */ |
726 | | /* > \param[out] GIVNUM */ |
727 | | /* > \verbatim */ |
728 | | /* > GIVNUM is REAL array, */ |
729 | | /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */ |
730 | | /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */ |
731 | | /* > GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */ |
732 | | /* > values of Givens rotations performed on the I-th level on */ |
733 | | /* > the computation tree. */ |
734 | | /* > \endverbatim */ |
735 | | /* > */ |
736 | | /* > \param[out] C */ |
737 | | /* > \verbatim */ |
738 | | /* > C is REAL array, */ |
739 | | /* > dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */ |
740 | | /* > If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */ |
741 | | /* > C( I ) contains the C-value of a Givens rotation related to */ |
742 | | /* > the right null space of the I-th subproblem. */ |
743 | | /* > \endverbatim */ |
744 | | /* > */ |
745 | | /* > \param[out] S */ |
746 | | /* > \verbatim */ |
747 | | /* > S is REAL array, dimension ( N ) if */ |
748 | | /* > ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */ |
749 | | /* > and the I-th subproblem is not square, on exit, S( I ) */ |
750 | | /* > contains the S-value of a Givens rotation related to */ |
751 | | /* > the right null space of the I-th subproblem. */ |
752 | | /* > \endverbatim */ |
753 | | /* > */ |
754 | | /* > \param[out] WORK */ |
755 | | /* > \verbatim */ |
756 | | /* > WORK is REAL array, dimension */ |
757 | | /* > (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */ |
758 | | /* > \endverbatim */ |
759 | | /* > */ |
760 | | /* > \param[out] IWORK */ |
761 | | /* > \verbatim */ |
762 | | /* > IWORK is INTEGER array, dimension (7*N). */ |
763 | | /* > \endverbatim */ |
764 | | /* > */ |
765 | | /* > \param[out] INFO */ |
766 | | /* > \verbatim */ |
767 | | /* > INFO is INTEGER */ |
768 | | /* > = 0: successful exit. */ |
769 | | /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ |
770 | | /* > > 0: if INFO = 1, a singular value did not converge */ |
771 | | /* > \endverbatim */ |
772 | | |
773 | | /* Authors: */ |
774 | | /* ======== */ |
775 | | |
776 | | /* > \author Univ. of Tennessee */ |
777 | | /* > \author Univ. of California Berkeley */ |
778 | | /* > \author Univ. of Colorado Denver */ |
779 | | /* > \author NAG Ltd. */ |
780 | | |
781 | | /* > \date December 2016 */ |
782 | | |
783 | | /* > \ingroup OTHERauxiliary */ |
784 | | |
785 | | /* > \par Contributors: */ |
786 | | /* ================== */ |
787 | | /* > */ |
788 | | /* > Ming Gu and Huan Ren, Computer Science Division, University of */ |
789 | | /* > California at Berkeley, USA */ |
790 | | /* > */ |
791 | | /* ===================================================================== */ |
792 | | /* Subroutine */ void slasda_(integer *icompq, integer *smlsiz, integer *n, |
793 | | integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt, |
794 | | integer *k, real *difl, real *difr, real *z__, real *poles, integer * |
795 | | givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum, |
796 | | real *c__, real *s, real *work, integer *iwork, integer *info) |
797 | 0 | { |
798 | | /* System generated locals */ |
799 | 0 | integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, |
800 | 0 | difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, |
801 | 0 | poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, |
802 | 0 | z_dim1, z_offset, i__1, i__2; |
803 | | |
804 | | /* Local variables */ |
805 | 0 | real beta; |
806 | 0 | integer idxq, nlvl, i__, j, m; |
807 | 0 | real alpha; |
808 | 0 | integer inode, ndiml, ndimr, idxqi, itemp, sqrei, i1; |
809 | 0 | extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, |
810 | 0 | integer *), slasd6_(integer *, integer *, integer *, integer *, |
811 | 0 | real *, real *, real *, real *, real *, integer *, integer *, |
812 | 0 | integer *, integer *, integer *, real *, integer *, real *, real * |
813 | 0 | , real *, real *, integer *, real *, real *, real *, integer *, |
814 | 0 | integer *); |
815 | 0 | integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl; |
816 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
817 | 0 | extern void slasdq_( |
818 | 0 | char *, integer *, integer *, integer *, integer *, integer *, |
819 | 0 | real *, real *, real *, integer *, real *, integer *, real *, |
820 | 0 | integer *, real *, integer *), slasdt_(integer *, integer |
821 | 0 | *, integer *, integer *, integer *, integer *, integer *), |
822 | 0 | slaset_(char *, integer *, integer *, real *, real *, real *, |
823 | 0 | integer *); |
824 | 0 | integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, |
825 | 0 | lvl2, nrp1; |
826 | | |
827 | | |
828 | | /* -- LAPACK auxiliary routine (version 3.7.0) -- */ |
829 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
830 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
831 | | /* December 2016 */ |
832 | | |
833 | | |
834 | | /* ===================================================================== */ |
835 | | |
836 | | |
837 | | /* Test the input parameters. */ |
838 | | |
839 | | /* Parameter adjustments */ |
840 | 0 | --d__; |
841 | 0 | --e; |
842 | 0 | givnum_dim1 = *ldu; |
843 | 0 | givnum_offset = 1 + givnum_dim1 * 1; |
844 | 0 | givnum -= givnum_offset; |
845 | 0 | poles_dim1 = *ldu; |
846 | 0 | poles_offset = 1 + poles_dim1 * 1; |
847 | 0 | poles -= poles_offset; |
848 | 0 | z_dim1 = *ldu; |
849 | 0 | z_offset = 1 + z_dim1 * 1; |
850 | 0 | z__ -= z_offset; |
851 | 0 | difr_dim1 = *ldu; |
852 | 0 | difr_offset = 1 + difr_dim1 * 1; |
853 | 0 | difr -= difr_offset; |
854 | 0 | difl_dim1 = *ldu; |
855 | 0 | difl_offset = 1 + difl_dim1 * 1; |
856 | 0 | difl -= difl_offset; |
857 | 0 | vt_dim1 = *ldu; |
858 | 0 | vt_offset = 1 + vt_dim1 * 1; |
859 | 0 | vt -= vt_offset; |
860 | 0 | u_dim1 = *ldu; |
861 | 0 | u_offset = 1 + u_dim1 * 1; |
862 | 0 | u -= u_offset; |
863 | 0 | --k; |
864 | 0 | --givptr; |
865 | 0 | perm_dim1 = *ldgcol; |
866 | 0 | perm_offset = 1 + perm_dim1 * 1; |
867 | 0 | perm -= perm_offset; |
868 | 0 | givcol_dim1 = *ldgcol; |
869 | 0 | givcol_offset = 1 + givcol_dim1 * 1; |
870 | 0 | givcol -= givcol_offset; |
871 | 0 | --c__; |
872 | 0 | --s; |
873 | 0 | --work; |
874 | 0 | --iwork; |
875 | | |
876 | | /* Function Body */ |
877 | 0 | *info = 0; |
878 | |
|
879 | 0 | if (*icompq < 0 || *icompq > 1) { |
880 | 0 | *info = -1; |
881 | 0 | } else if (*smlsiz < 3) { |
882 | 0 | *info = -2; |
883 | 0 | } else if (*n < 0) { |
884 | 0 | *info = -3; |
885 | 0 | } else if (*sqre < 0 || *sqre > 1) { |
886 | 0 | *info = -4; |
887 | 0 | } else if (*ldu < *n + *sqre) { |
888 | 0 | *info = -8; |
889 | 0 | } else if (*ldgcol < *n) { |
890 | 0 | *info = -17; |
891 | 0 | } |
892 | 0 | if (*info != 0) { |
893 | 0 | i__1 = -(*info); |
894 | 0 | xerbla_("SLASDA", &i__1, (ftnlen)6); |
895 | 0 | return; |
896 | 0 | } |
897 | | |
898 | 0 | m = *n + *sqre; |
899 | | |
900 | | /* If the input matrix is too small, call SLASDQ to find the SVD. */ |
901 | |
|
902 | 0 | if (*n <= *smlsiz) { |
903 | 0 | if (*icompq == 0) { |
904 | 0 | slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[ |
905 | 0 | vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, & |
906 | 0 | work[1], info); |
907 | 0 | } else { |
908 | 0 | slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset] |
909 | 0 | , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], |
910 | 0 | info); |
911 | 0 | } |
912 | 0 | return; |
913 | 0 | } |
914 | | |
915 | | /* Book-keeping and set up the computation tree. */ |
916 | | |
917 | 0 | inode = 1; |
918 | 0 | ndiml = inode + *n; |
919 | 0 | ndimr = ndiml + *n; |
920 | 0 | idxq = ndimr + *n; |
921 | 0 | iwk = idxq + *n; |
922 | |
|
923 | 0 | ncc = 0; |
924 | 0 | nru = 0; |
925 | |
|
926 | 0 | smlszp = *smlsiz + 1; |
927 | 0 | vf = 1; |
928 | 0 | vl = vf + m; |
929 | 0 | nwork1 = vl + m; |
930 | 0 | nwork2 = nwork1 + smlszp * smlszp; |
931 | |
|
932 | 0 | slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], |
933 | 0 | smlsiz); |
934 | | |
935 | | /* for the nodes on bottom level of the tree, solve */ |
936 | | /* their subproblems by SLASDQ. */ |
937 | |
|
938 | 0 | ndb1 = (nd + 1) / 2; |
939 | 0 | i__1 = nd; |
940 | 0 | for (i__ = ndb1; i__ <= i__1; ++i__) { |
941 | | |
942 | | /* IC : center row of each node */ |
943 | | /* NL : number of rows of left subproblem */ |
944 | | /* NR : number of rows of right subproblem */ |
945 | | /* NLF: starting row of the left subproblem */ |
946 | | /* NRF: starting row of the right subproblem */ |
947 | |
|
948 | 0 | i1 = i__ - 1; |
949 | 0 | ic = iwork[inode + i1]; |
950 | 0 | nl = iwork[ndiml + i1]; |
951 | 0 | nlp1 = nl + 1; |
952 | 0 | nr = iwork[ndimr + i1]; |
953 | 0 | nlf = ic - nl; |
954 | 0 | nrf = ic + 1; |
955 | 0 | idxqi = idxq + nlf - 2; |
956 | 0 | vfi = vf + nlf - 1; |
957 | 0 | vli = vl + nlf - 1; |
958 | 0 | sqrei = 1; |
959 | 0 | if (*icompq == 0) { |
960 | 0 | slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp); |
961 | 0 | slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], & |
962 | 0 | work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], |
963 | 0 | &nl, &work[nwork2], info); |
964 | 0 | itemp = nwork1 + nl * smlszp; |
965 | 0 | scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1); |
966 | 0 | scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1); |
967 | 0 | } else { |
968 | 0 | slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu); |
969 | 0 | slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], |
970 | 0 | ldu); |
971 | 0 | slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], & |
972 | 0 | vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + |
973 | 0 | u_dim1], ldu, &work[nwork1], info); |
974 | 0 | scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1); |
975 | 0 | scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1) |
976 | 0 | ; |
977 | 0 | } |
978 | 0 | if (*info != 0) { |
979 | 0 | return; |
980 | 0 | } |
981 | 0 | i__2 = nl; |
982 | 0 | for (j = 1; j <= i__2; ++j) { |
983 | 0 | iwork[idxqi + j] = j; |
984 | | /* L10: */ |
985 | 0 | } |
986 | 0 | if (i__ == nd && *sqre == 0) { |
987 | 0 | sqrei = 0; |
988 | 0 | } else { |
989 | 0 | sqrei = 1; |
990 | 0 | } |
991 | 0 | idxqi += nlp1; |
992 | 0 | vfi += nlp1; |
993 | 0 | vli += nlp1; |
994 | 0 | nrp1 = nr + sqrei; |
995 | 0 | if (*icompq == 0) { |
996 | 0 | slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp); |
997 | 0 | slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], & |
998 | 0 | work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], |
999 | 0 | &nr, &work[nwork2], info); |
1000 | 0 | itemp = nwork1 + (nrp1 - 1) * smlszp; |
1001 | 0 | scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1); |
1002 | 0 | scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1); |
1003 | 0 | } else { |
1004 | 0 | slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu); |
1005 | 0 | slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], |
1006 | 0 | ldu); |
1007 | 0 | slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], & |
1008 | 0 | vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + |
1009 | 0 | u_dim1], ldu, &work[nwork1], info); |
1010 | 0 | scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1); |
1011 | 0 | scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1) |
1012 | 0 | ; |
1013 | 0 | } |
1014 | 0 | if (*info != 0) { |
1015 | 0 | return; |
1016 | 0 | } |
1017 | 0 | i__2 = nr; |
1018 | 0 | for (j = 1; j <= i__2; ++j) { |
1019 | 0 | iwork[idxqi + j] = j; |
1020 | | /* L20: */ |
1021 | 0 | } |
1022 | | /* L30: */ |
1023 | 0 | } |
1024 | | |
1025 | | /* Now conquer each subproblem bottom-up. */ |
1026 | | |
1027 | 0 | j = pow_ii(c__2, nlvl); |
1028 | 0 | for (lvl = nlvl; lvl >= 1; --lvl) { |
1029 | 0 | lvl2 = (lvl << 1) - 1; |
1030 | | |
1031 | | /* Find the first node LF and last node LL on */ |
1032 | | /* the current level LVL. */ |
1033 | |
|
1034 | 0 | if (lvl == 1) { |
1035 | 0 | lf = 1; |
1036 | 0 | ll = 1; |
1037 | 0 | } else { |
1038 | 0 | i__1 = lvl - 1; |
1039 | 0 | lf = pow_ii(c__2, i__1); |
1040 | 0 | ll = (lf << 1) - 1; |
1041 | 0 | } |
1042 | 0 | i__1 = ll; |
1043 | 0 | for (i__ = lf; i__ <= i__1; ++i__) { |
1044 | 0 | im1 = i__ - 1; |
1045 | 0 | ic = iwork[inode + im1]; |
1046 | 0 | nl = iwork[ndiml + im1]; |
1047 | 0 | nr = iwork[ndimr + im1]; |
1048 | 0 | nlf = ic - nl; |
1049 | 0 | nrf = ic + 1; |
1050 | 0 | if (i__ == ll) { |
1051 | 0 | sqrei = *sqre; |
1052 | 0 | } else { |
1053 | 0 | sqrei = 1; |
1054 | 0 | } |
1055 | 0 | vfi = vf + nlf - 1; |
1056 | 0 | vli = vl + nlf - 1; |
1057 | 0 | idxqi = idxq + nlf - 1; |
1058 | 0 | alpha = d__[ic]; |
1059 | 0 | beta = e[ic]; |
1060 | 0 | if (*icompq == 0) { |
1061 | 0 | slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & |
1062 | 0 | work[vli], &alpha, &beta, &iwork[idxqi], &perm[ |
1063 | 0 | perm_offset], &givptr[1], &givcol[givcol_offset], |
1064 | 0 | ldgcol, &givnum[givnum_offset], ldu, &poles[ |
1065 | 0 | poles_offset], &difl[difl_offset], &difr[difr_offset], |
1066 | 0 | &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], |
1067 | 0 | &iwork[iwk], info); |
1068 | 0 | } else { |
1069 | 0 | --j; |
1070 | 0 | slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & |
1071 | 0 | work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + |
1072 | 0 | lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * |
1073 | 0 | givcol_dim1], ldgcol, &givnum[nlf + lvl2 * |
1074 | 0 | givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], & |
1075 | 0 | difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * |
1076 | 0 | difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], |
1077 | 0 | &s[j], &work[nwork1], &iwork[iwk], info); |
1078 | 0 | } |
1079 | 0 | if (*info != 0) { |
1080 | 0 | return; |
1081 | 0 | } |
1082 | | /* L40: */ |
1083 | 0 | } |
1084 | | /* L50: */ |
1085 | 0 | } |
1086 | | |
1087 | 0 | return; |
1088 | | |
1089 | | /* End of SLASDA */ |
1090 | |
|
1091 | 0 | } /* slasda_ */ |
1092 | | |