Coverage Report

Created: 2025-09-15 22:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasq4.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b SLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous
514
 transform. Used by sbdsqr. */
515
516
/*  =========== DOCUMENTATION =========== */
517
518
/* Online html documentation available at */
519
/*            http://www.netlib.org/lapack/explore-html/ */
520
521
/* > \htmlonly */
522
/* > Download SLASQ4 + dependencies */
523
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq4.
524
f"> */
525
/* > [TGZ]</a> */
526
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq4.
527
f"> */
528
/* > [ZIP]</a> */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq4.
530
f"> */
531
/* > [TXT]</a> */
532
/* > \endhtmlonly */
533
534
/*  Definition: */
535
/*  =========== */
536
537
/*       SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, */
538
/*                          DN1, DN2, TAU, TTYPE, G ) */
539
540
/*       INTEGER            I0, N0, N0IN, PP, TTYPE */
541
/*       REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU */
542
/*       REAL               Z( * ) */
543
544
545
/* > \par Purpose: */
546
/*  ============= */
547
/* > */
548
/* > \verbatim */
549
/* > */
550
/* > SLASQ4 computes an approximation TAU to the smallest eigenvalue */
551
/* > using values of d from the previous transform. */
552
/* > \endverbatim */
553
554
/*  Arguments: */
555
/*  ========== */
556
557
/* > \param[in] I0 */
558
/* > \verbatim */
559
/* >          I0 is INTEGER */
560
/* >        First index. */
561
/* > \endverbatim */
562
/* > */
563
/* > \param[in] N0 */
564
/* > \verbatim */
565
/* >          N0 is INTEGER */
566
/* >        Last index. */
567
/* > \endverbatim */
568
/* > */
569
/* > \param[in] Z */
570
/* > \verbatim */
571
/* >          Z is REAL array, dimension ( 4*N0 ) */
572
/* >        Z holds the qd array. */
573
/* > \endverbatim */
574
/* > */
575
/* > \param[in] PP */
576
/* > \verbatim */
577
/* >          PP is INTEGER */
578
/* >        PP=0 for ping, PP=1 for pong. */
579
/* > \endverbatim */
580
/* > */
581
/* > \param[in] N0IN */
582
/* > \verbatim */
583
/* >          N0IN is INTEGER */
584
/* >        The value of N0 at start of EIGTEST. */
585
/* > \endverbatim */
586
/* > */
587
/* > \param[in] DMIN */
588
/* > \verbatim */
589
/* >          DMIN is REAL */
590
/* >        Minimum value of d. */
591
/* > \endverbatim */
592
/* > */
593
/* > \param[in] DMIN1 */
594
/* > \verbatim */
595
/* >          DMIN1 is REAL */
596
/* >        Minimum value of d, excluding D( N0 ). */
597
/* > \endverbatim */
598
/* > */
599
/* > \param[in] DMIN2 */
600
/* > \verbatim */
601
/* >          DMIN2 is REAL */
602
/* >        Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
603
/* > \endverbatim */
604
/* > */
605
/* > \param[in] DN */
606
/* > \verbatim */
607
/* >          DN is REAL */
608
/* >        d(N) */
609
/* > \endverbatim */
610
/* > */
611
/* > \param[in] DN1 */
612
/* > \verbatim */
613
/* >          DN1 is REAL */
614
/* >        d(N-1) */
615
/* > \endverbatim */
616
/* > */
617
/* > \param[in] DN2 */
618
/* > \verbatim */
619
/* >          DN2 is REAL */
620
/* >        d(N-2) */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[out] TAU */
624
/* > \verbatim */
625
/* >          TAU is REAL */
626
/* >        This is the shift. */
627
/* > \endverbatim */
628
/* > */
629
/* > \param[out] TTYPE */
630
/* > \verbatim */
631
/* >          TTYPE is INTEGER */
632
/* >        Shift type. */
633
/* > \endverbatim */
634
/* > */
635
/* > \param[in,out] G */
636
/* > \verbatim */
637
/* >          G is REAL */
638
/* >        G is passed as an argument in order to save its value between */
639
/* >        calls to SLASQ4. */
640
/* > \endverbatim */
641
642
/*  Authors: */
643
/*  ======== */
644
645
/* > \author Univ. of Tennessee */
646
/* > \author Univ. of California Berkeley */
647
/* > \author Univ. of Colorado Denver */
648
/* > \author NAG Ltd. */
649
650
/* > \date June 2016 */
651
652
/* > \ingroup auxOTHERcomputational */
653
654
/* > \par Further Details: */
655
/*  ===================== */
656
/* > */
657
/* > \verbatim */
658
/* > */
659
/* >  CNST1 = 9/16 */
660
/* > \endverbatim */
661
/* > */
662
/*  ===================================================================== */
663
/* Subroutine */ void slasq4_(integer *i0, integer *n0, real *z__, integer *pp,
664
   integer *n0in, real *dmin__, real *dmin1, real *dmin2, real *dn, 
665
  real *dn1, real *dn2, real *tau, integer *ttype, real *g)
666
0
{
667
    /* System generated locals */
668
0
    integer i__1;
669
0
    real r__1, r__2;
670
671
    /* Local variables */
672
0
    real s, a2, b1, b2;
673
0
    integer i4, nn, np;
674
0
    real gam, gap1, gap2;
675
676
677
/*  -- LAPACK computational routine (version 3.7.1) -- */
678
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
679
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
680
/*     June 2016 */
681
682
683
/*  ===================================================================== */
684
685
686
/*     A negative DMIN forces the shift to take that absolute value */
687
/*     TTYPE records the type of shift. */
688
689
    /* Parameter adjustments */
690
0
    --z__;
691
692
    /* Function Body */
693
0
    if (*dmin__ <= 0.f) {
694
0
  *tau = -(*dmin__);
695
0
  *ttype = -1;
696
0
  return;
697
0
    }
698
699
0
    nn = (*n0 << 2) + *pp;
700
0
    if (*n0in == *n0) {
701
702
/*        No eigenvalues deflated. */
703
704
0
  if (*dmin__ == *dn || *dmin__ == *dn1) {
705
706
0
      b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
707
0
      b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
708
0
      a2 = z__[nn - 7] + z__[nn - 5];
709
710
/*           Cases 2 and 3. */
711
712
0
      if (*dmin__ == *dn && *dmin1 == *dn1) {
713
0
    gap2 = *dmin2 - a2 - *dmin2 * .25f;
714
0
    if (gap2 > 0.f && gap2 > b2) {
715
0
        gap1 = a2 - *dn - b2 / gap2 * b2;
716
0
    } else {
717
0
        gap1 = a2 - *dn - (b1 + b2);
718
0
    }
719
0
    if (gap1 > 0.f && gap1 > b1) {
720
/* Computing MAX */
721
0
        r__1 = *dn - b1 / gap1 * b1, r__2 = *dmin__ * .5f;
722
0
        s = f2cmax(r__1,r__2);
723
0
        *ttype = -2;
724
0
    } else {
725
0
        s = 0.f;
726
0
        if (*dn > b1) {
727
0
      s = *dn - b1;
728
0
        }
729
0
        if (a2 > b1 + b2) {
730
/* Computing MIN */
731
0
      r__1 = s, r__2 = a2 - (b1 + b2);
732
0
      s = f2cmin(r__1,r__2);
733
0
        }
734
/* Computing MAX */
735
0
        r__1 = s, r__2 = *dmin__ * .333f;
736
0
        s = f2cmax(r__1,r__2);
737
0
        *ttype = -3;
738
0
    }
739
0
      } else {
740
741
/*              Case 4. */
742
743
0
    *ttype = -4;
744
0
    s = *dmin__ * .25f;
745
0
    if (*dmin__ == *dn) {
746
0
        gam = *dn;
747
0
        a2 = 0.f;
748
0
        if (z__[nn - 5] > z__[nn - 7]) {
749
0
      return;
750
0
        }
751
0
        b2 = z__[nn - 5] / z__[nn - 7];
752
0
        np = nn - 9;
753
0
    } else {
754
0
        np = nn - (*pp << 1);
755
0
        gam = *dn1;
756
0
        if (z__[np - 4] > z__[np - 2]) {
757
0
      return;
758
0
        }
759
0
        a2 = z__[np - 4] / z__[np - 2];
760
0
        if (z__[nn - 9] > z__[nn - 11]) {
761
0
      return;
762
0
        }
763
0
        b2 = z__[nn - 9] / z__[nn - 11];
764
0
        np = nn - 13;
765
0
    }
766
767
/*              Approximate contribution to norm squared from I < NN-1. */
768
769
0
    a2 += b2;
770
0
    i__1 = (*i0 << 2) - 1 + *pp;
771
0
    for (i4 = np; i4 >= i__1; i4 += -4) {
772
0
        if (b2 == 0.f) {
773
0
      goto L20;
774
0
        }
775
0
        b1 = b2;
776
0
        if (z__[i4] > z__[i4 - 2]) {
777
0
      return;
778
0
        }
779
0
        b2 *= z__[i4] / z__[i4 - 2];
780
0
        a2 += b2;
781
0
        if (f2cmax(b2,b1) * 100.f < a2 || .563f < a2) {
782
0
      goto L20;
783
0
        }
784
/* L10: */
785
0
    }
786
0
L20:
787
0
    a2 *= 1.05f;
788
789
/*              Rayleigh quotient residual bound. */
790
791
0
    if (a2 < .563f) {
792
0
        s = gam * (1.f - sqrt(a2)) / (a2 + 1.f);
793
0
    }
794
0
      }
795
0
  } else if (*dmin__ == *dn2) {
796
797
/*           Case 5. */
798
799
0
      *ttype = -5;
800
0
      s = *dmin__ * .25f;
801
802
/*           Compute contribution to norm squared from I > NN-2. */
803
804
0
      np = nn - (*pp << 1);
805
0
      b1 = z__[np - 2];
806
0
      b2 = z__[np - 6];
807
0
      gam = *dn2;
808
0
      if (z__[np - 8] > b2 || z__[np - 4] > b1) {
809
0
    return;
810
0
      }
811
0
      a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.f);
812
813
/*           Approximate contribution to norm squared from I < NN-2. */
814
815
0
      if (*n0 - *i0 > 2) {
816
0
    b2 = z__[nn - 13] / z__[nn - 15];
817
0
    a2 += b2;
818
0
    i__1 = (*i0 << 2) - 1 + *pp;
819
0
    for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
820
0
        if (b2 == 0.f) {
821
0
      goto L40;
822
0
        }
823
0
        b1 = b2;
824
0
        if (z__[i4] > z__[i4 - 2]) {
825
0
      return;
826
0
        }
827
0
        b2 *= z__[i4] / z__[i4 - 2];
828
0
        a2 += b2;
829
0
        if (f2cmax(b2,b1) * 100.f < a2 || .563f < a2) {
830
0
      goto L40;
831
0
        }
832
/* L30: */
833
0
    }
834
0
L40:
835
0
    a2 *= 1.05f;
836
0
      }
837
838
0
      if (a2 < .563f) {
839
0
    s = gam * (1.f - sqrt(a2)) / (a2 + 1.f);
840
0
      }
841
0
  } else {
842
843
/*           Case 6, no information to guide us. */
844
845
0
      if (*ttype == -6) {
846
0
    *g += (1.f - *g) * .333f;
847
0
      } else if (*ttype == -18) {
848
0
    *g = .083250000000000005f;
849
0
      } else {
850
0
    *g = .25f;
851
0
      }
852
0
      s = *g * *dmin__;
853
0
      *ttype = -6;
854
0
  }
855
856
0
    } else if (*n0in == *n0 + 1) {
857
858
/*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
859
860
0
  if (*dmin1 == *dn1 && *dmin2 == *dn2) {
861
862
/*           Cases 7 and 8. */
863
864
0
      *ttype = -7;
865
0
      s = *dmin1 * .333f;
866
0
      if (z__[nn - 5] > z__[nn - 7]) {
867
0
    return;
868
0
      }
869
0
      b1 = z__[nn - 5] / z__[nn - 7];
870
0
      b2 = b1;
871
0
      if (b2 == 0.f) {
872
0
    goto L60;
873
0
      }
874
0
      i__1 = (*i0 << 2) - 1 + *pp;
875
0
      for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
876
0
    a2 = b1;
877
0
    if (z__[i4] > z__[i4 - 2]) {
878
0
        return;
879
0
    }
880
0
    b1 *= z__[i4] / z__[i4 - 2];
881
0
    b2 += b1;
882
0
    if (f2cmax(b1,a2) * 100.f < b2) {
883
0
        goto L60;
884
0
    }
885
/* L50: */
886
0
      }
887
0
L60:
888
0
      b2 = sqrt(b2 * 1.05f);
889
/* Computing 2nd power */
890
0
      r__1 = b2;
891
0
      a2 = *dmin1 / (r__1 * r__1 + 1.f);
892
0
      gap2 = *dmin2 * .5f - a2;
893
0
      if (gap2 > 0.f && gap2 > b2 * a2) {
894
/* Computing MAX */
895
0
    r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2);
896
0
    s = f2cmax(r__1,r__2);
897
0
      } else {
898
/* Computing MAX */
899
0
    r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f);
900
0
    s = f2cmax(r__1,r__2);
901
0
    *ttype = -8;
902
0
      }
903
0
  } else {
904
905
/*           Case 9. */
906
907
0
      s = *dmin1 * .25f;
908
0
      if (*dmin1 == *dn1) {
909
0
    s = *dmin1 * .5f;
910
0
      }
911
0
      *ttype = -9;
912
0
  }
913
914
0
    } else if (*n0in == *n0 + 2) {
915
916
/*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
917
918
/*        Cases 10 and 11. */
919
920
0
  if (*dmin2 == *dn2 && z__[nn - 5] * 2.f < z__[nn - 7]) {
921
0
      *ttype = -10;
922
0
      s = *dmin2 * .333f;
923
0
      if (z__[nn - 5] > z__[nn - 7]) {
924
0
    return;
925
0
      }
926
0
      b1 = z__[nn - 5] / z__[nn - 7];
927
0
      b2 = b1;
928
0
      if (b2 == 0.f) {
929
0
    goto L80;
930
0
      }
931
0
      i__1 = (*i0 << 2) - 1 + *pp;
932
0
      for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
933
0
    if (z__[i4] > z__[i4 - 2]) {
934
0
        return;
935
0
    }
936
0
    b1 *= z__[i4] / z__[i4 - 2];
937
0
    b2 += b1;
938
0
    if (b1 * 100.f < b2) {
939
0
        goto L80;
940
0
    }
941
/* L70: */
942
0
      }
943
0
L80:
944
0
      b2 = sqrt(b2 * 1.05f);
945
/* Computing 2nd power */
946
0
      r__1 = b2;
947
0
      a2 = *dmin2 / (r__1 * r__1 + 1.f);
948
0
      gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
949
0
        nn - 9]) - a2;
950
0
      if (gap2 > 0.f && gap2 > b2 * a2) {
951
/* Computing MAX */
952
0
    r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2);
953
0
    s = f2cmax(r__1,r__2);
954
0
      } else {
955
/* Computing MAX */
956
0
    r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f);
957
0
    s = f2cmax(r__1,r__2);
958
0
      }
959
0
  } else {
960
0
      s = *dmin2 * .25f;
961
0
      *ttype = -11;
962
0
  }
963
0
    } else if (*n0in > *n0 + 2) {
964
965
/*        Case 12, more than two eigenvalues deflated. No information. */
966
967
0
  s = 0.f;
968
0
  *ttype = -12;
969
0
    }
970
971
0
    *tau = s;
972
0
    return;
973
974
/*     End of SLASQ4 */
975
976
0
} /* slasq4_ */
977