Coverage Report

Created: 2025-09-21 19:28

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/iparmq.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
0
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
0
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
0
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
0
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
514
/* > \brief \b IPARMQ */
515
516
/*  =========== DOCUMENTATION =========== */
517
518
/* Online html documentation available at */
519
/*            http://www.netlib.org/lapack/explore-html/ */
520
521
/* > \htmlonly */
522
/* > Download IPARMQ + dependencies */
523
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.
524
f"> */
525
/* > [TGZ]</a> */
526
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.
527
f"> */
528
/* > [ZIP]</a> */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.
530
f"> */
531
/* > [TXT]</a> */
532
/* > \endhtmlonly */
533
534
/*  Definition: */
535
/*  =========== */
536
537
/*       INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) */
538
539
/*       INTEGER            IHI, ILO, ISPEC, LWORK, N */
540
/*       CHARACTER          NAME*( * ), OPTS*( * ) */
541
542
543
/* > \par Purpose: */
544
/*  ============= */
545
/* > */
546
/* > \verbatim */
547
/* > */
548
/* >      This program sets problem and machine dependent parameters */
549
/* >      useful for xHSEQR and related subroutines for eigenvalue */
550
/* >      problems. It is called whenever */
551
/* >      IPARMQ is called with 12 <= ISPEC <= 16 */
552
/* > \endverbatim */
553
554
/*  Arguments: */
555
/*  ========== */
556
557
/* > \param[in] ISPEC */
558
/* > \verbatim */
559
/* >          ISPEC is INTEGER */
560
/* >              ISPEC specifies which tunable parameter IPARMQ should */
561
/* >              return. */
562
/* > */
563
/* >              ISPEC=12: (INMIN)  Matrices of order nmin or less */
564
/* >                        are sent directly to xLAHQR, the implicit */
565
/* >                        double shift QR algorithm.  NMIN must be */
566
/* >                        at least 11. */
567
/* > */
568
/* >              ISPEC=13: (INWIN)  Size of the deflation window. */
569
/* >                        This is best set greater than or equal to */
570
/* >                        the number of simultaneous shifts NS. */
571
/* >                        Larger matrices benefit from larger deflation */
572
/* >                        windows. */
573
/* > */
574
/* >              ISPEC=14: (INIBL) Determines when to stop nibbling and */
575
/* >                        invest in an (expensive) multi-shift QR sweep. */
576
/* >                        If the aggressive early deflation subroutine */
577
/* >                        finds LD converged eigenvalues from an order */
578
/* >                        NW deflation window and LD > (NW*NIBBLE)/100, */
579
/* >                        then the next QR sweep is skipped and early */
580
/* >                        deflation is applied immediately to the */
581
/* >                        remaining active diagonal block.  Setting */
582
/* >                        IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a */
583
/* >                        multi-shift QR sweep whenever early deflation */
584
/* >                        finds a converged eigenvalue.  Setting */
585
/* >                        IPARMQ(ISPEC=14) greater than or equal to 100 */
586
/* >                        prevents TTQRE from skipping a multi-shift */
587
/* >                        QR sweep. */
588
/* > */
589
/* >              ISPEC=15: (NSHFTS) The number of simultaneous shifts in */
590
/* >                        a multi-shift QR iteration. */
591
/* > */
592
/* >              ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the */
593
/* >                        following meanings. */
594
/* >                        0:  During the multi-shift QR/QZ sweep, */
595
/* >                            blocked eigenvalue reordering, blocked */
596
/* >                            Hessenberg-triangular reduction, */
597
/* >                            reflections and/or rotations are not */
598
/* >                            accumulated when updating the */
599
/* >                            far-from-diagonal matrix entries. */
600
/* >                        1:  During the multi-shift QR/QZ sweep, */
601
/* >                            blocked eigenvalue reordering, blocked */
602
/* >                            Hessenberg-triangular reduction, */
603
/* >                            reflections and/or rotations are */
604
/* >                            accumulated, and matrix-matrix */
605
/* >                            multiplication is used to update the */
606
/* >                            far-from-diagonal matrix entries. */
607
/* >                        2:  During the multi-shift QR/QZ sweep, */
608
/* >                            blocked eigenvalue reordering, blocked */
609
/* >                            Hessenberg-triangular reduction, */
610
/* >                            reflections and/or rotations are */
611
/* >                            accumulated, and 2-by-2 block structure */
612
/* >                            is exploited during matrix-matrix */
613
/* >                            multiplies. */
614
/* >                        (If xTRMM is slower than xGEMM, then */
615
/* >                        IPARMQ(ISPEC=16)=1 may be more efficient than */
616
/* >                        IPARMQ(ISPEC=16)=2 despite the greater level of */
617
/* >                        arithmetic work implied by the latter choice.) */
618
/* > \endverbatim */
619
/* > */
620
/* > \param[in] NAME */
621
/* > \verbatim */
622
/* >          NAME is CHARACTER string */
623
/* >               Name of the calling subroutine */
624
/* > \endverbatim */
625
/* > */
626
/* > \param[in] OPTS */
627
/* > \verbatim */
628
/* >          OPTS is CHARACTER string */
629
/* >               This is a concatenation of the string arguments to */
630
/* >               TTQRE. */
631
/* > \endverbatim */
632
/* > */
633
/* > \param[in] N */
634
/* > \verbatim */
635
/* >          N is INTEGER */
636
/* >               N is the order of the Hessenberg matrix H. */
637
/* > \endverbatim */
638
/* > */
639
/* > \param[in] ILO */
640
/* > \verbatim */
641
/* >          ILO is INTEGER */
642
/* > \endverbatim */
643
/* > */
644
/* > \param[in] IHI */
645
/* > \verbatim */
646
/* >          IHI is INTEGER */
647
/* >               It is assumed that H is already upper triangular */
648
/* >               in rows and columns 1:ILO-1 and IHI+1:N. */
649
/* > \endverbatim */
650
/* > */
651
/* > \param[in] LWORK */
652
/* > \verbatim */
653
/* >          LWORK is INTEGER */
654
/* >               The amount of workspace available. */
655
/* > \endverbatim */
656
657
/*  Authors: */
658
/*  ======== */
659
660
/* > \author Univ. of Tennessee */
661
/* > \author Univ. of California Berkeley */
662
/* > \author Univ. of Colorado Denver */
663
/* > \author NAG Ltd. */
664
665
/* > \date June 2017 */
666
667
/* > \ingroup OTHERauxiliary */
668
669
/* > \par Further Details: */
670
/*  ===================== */
671
/* > */
672
/* > \verbatim */
673
/* > */
674
/* >       Little is known about how best to choose these parameters. */
675
/* >       It is possible to use different values of the parameters */
676
/* >       for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR. */
677
/* > */
678
/* >       It is probably best to choose different parameters for */
679
/* >       different matrices and different parameters at different */
680
/* >       times during the iteration, but this has not been */
681
/* >       implemented --- yet. */
682
/* > */
683
/* > */
684
/* >       The best choices of most of the parameters depend */
685
/* >       in an ill-understood way on the relative execution */
686
/* >       rate of xLAQR3 and xLAQR5 and on the nature of each */
687
/* >       particular eigenvalue problem.  Experiment may be the */
688
/* >       only practical way to determine which choices are most */
689
/* >       effective. */
690
/* > */
691
/* >       Following is a list of default values supplied by IPARMQ. */
692
/* >       These defaults may be adjusted in order to attain better */
693
/* >       performance in any particular computational environment. */
694
/* > */
695
/* >       IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point. */
696
/* >                        Default: 75. (Must be at least 11.) */
697
/* > */
698
/* >       IPARMQ(ISPEC=13) Recommended deflation window size. */
699
/* >                        This depends on ILO, IHI and NS, the */
700
/* >                        number of simultaneous shifts returned */
701
/* >                        by IPARMQ(ISPEC=15).  The default for */
702
/* >                        (IHI-ILO+1) <= 500 is NS.  The default */
703
/* >                        for (IHI-ILO+1) > 500 is 3*NS/2. */
704
/* > */
705
/* >       IPARMQ(ISPEC=14) Nibble crossover point.  Default: 14. */
706
/* > */
707
/* >       IPARMQ(ISPEC=15) Number of simultaneous shifts, NS. */
708
/* >                        a multi-shift QR iteration. */
709
/* > */
710
/* >                        If IHI-ILO+1 is ... */
711
/* > */
712
/* >                        greater than      ...but less    ... the */
713
/* >                        or equal to ...      than        default is */
714
/* > */
715
/* >                                0               30       NS =   2+ */
716
/* >                               30               60       NS =   4+ */
717
/* >                               60              150       NS =  10 */
718
/* >                              150              590       NS =  ** */
719
/* >                              590             3000       NS =  64 */
720
/* >                             3000             6000       NS = 128 */
721
/* >                             6000             infinity   NS = 256 */
722
/* > */
723
/* >                    (+)  By default matrices of this order are */
724
/* >                         passed to the implicit double shift routine */
725
/* >                         xLAHQR.  See IPARMQ(ISPEC=12) above.   These */
726
/* >                         values of NS are used only in case of a rare */
727
/* >                         xLAHQR failure. */
728
/* > */
729
/* >                    (**) The asterisks (**) indicate an ad-hoc */
730
/* >                         function increasing from 10 to 64. */
731
/* > */
732
/* >       IPARMQ(ISPEC=16) Select structured matrix multiply. */
733
/* >                        (See ISPEC=16 above for details.) */
734
/* >                        Default: 3. */
735
/* > \endverbatim */
736
/* > */
737
/*  ===================================================================== */
738
integer iparmq_(integer *ispec, char *name__, char *opts, integer *n, integer 
739
  *ilo, integer *ihi, integer *lwork)
740
0
{
741
    /* System generated locals */
742
0
    integer ret_val, i__1, i__2;
743
0
    real r__1;
744
745
    /* Local variables */
746
0
    integer i__, ic, nh, ns, iz;
747
0
    char subnam[6];
748
0
    integer name_len;
749
750
/*  -- LAPACK auxiliary routine (version 3.7.1) -- */
751
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
752
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
753
/*     June 2017 */
754
755
756
/*  ================================================================ */
757
0
    if (*ispec == 15 || *ispec == 13 || *ispec == 16) {
758
759
/*        ==== Set the number simultaneous shifts ==== */
760
761
0
  nh = *ihi - *ilo + 1;
762
0
  ns = 2;
763
0
  if (nh >= 30) {
764
0
      ns = 4;
765
0
  }
766
0
  if (nh >= 60) {
767
0
      ns = 10;
768
0
  }
769
0
  if (nh >= 150) {
770
/* Computing MAX */
771
0
      r__1 = log((real) nh) / log(2.f);
772
0
      i__1 = 10, i__2 = nh / i_nint(&r__1);
773
0
      ns = f2cmax(i__1,i__2);
774
0
  }
775
0
  if (nh >= 590) {
776
0
      ns = 64;
777
0
  }
778
0
  if (nh >= 3000) {
779
0
      ns = 128;
780
0
  }
781
0
  if (nh >= 6000) {
782
0
      ns = 256;
783
0
  }
784
/* Computing MAX */
785
0
  i__1 = 2, i__2 = ns - ns % 2;
786
0
  ns = f2cmax(i__1,i__2);
787
0
    }
788
789
0
    if (*ispec == 12) {
790
791
792
/*        ===== Matrices of order smaller than NMIN get sent */
793
/*        .     to xLAHQR, the classic double shift algorithm. */
794
/*        .     This must be at least 11. ==== */
795
796
0
  ret_val = 75;
797
798
0
    } else if (*ispec == 14) {
799
800
/*        ==== INIBL: skip a multi-shift qr iteration and */
801
/*        .    whenever aggressive early deflation finds */
802
/*        .    at least (NIBBLE*(window size)/100) deflations. ==== */
803
804
0
  ret_val = 14;
805
806
0
    } else if (*ispec == 15) {
807
808
/*        ==== NSHFTS: The number of simultaneous shifts ===== */
809
810
0
  ret_val = ns;
811
812
0
    } else if (*ispec == 13) {
813
814
/*        ==== NW: deflation window size.  ==== */
815
816
0
  if (nh <= 500) {
817
0
      ret_val = ns;
818
0
  } else {
819
0
      ret_val = ns * 3 / 2;
820
0
  }
821
822
0
    } else if (*ispec == 16) {
823
824
/*        ==== IACC22: Whether to accumulate reflections */
825
/*        .     before updating the far-from-diagonal elements */
826
/*        .     and whether to use 2-by-2 block structure while */
827
/*        .     doing it.  A small amount of work could be saved */
828
/*        .     by making this choice dependent also upon the */
829
/*        .     NH=IHI-ILO+1. */
830
831
832
/*        Convert NAME to upper case if the first character is lower case. */
833
834
0
  ret_val = 0;
835
0
  s_copy(subnam, name__, (ftnlen)6, name_len);
836
0
  ic = *(unsigned char *)subnam;
837
0
  iz = 'Z';
838
0
  if (iz == 90 || iz == 122) {
839
840
/*           ASCII character set */
841
842
0
      if (ic >= 97 && ic <= 122) {
843
0
    *(unsigned char *)subnam = (char) (ic - 32);
844
0
    for (i__ = 2; i__ <= 6; ++i__) {
845
0
        ic = *(unsigned char *)&subnam[i__ - 1];
846
0
        if (ic >= 97 && ic <= 122) {
847
0
      *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
848
0
        }
849
0
    }
850
0
      }
851
852
0
  } else if (iz == 233 || iz == 169) {
853
854
/*           EBCDIC character set */
855
856
0
      if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 
857
0
        && ic <= 169) {
858
0
    *(unsigned char *)subnam = (char) (ic + 64);
859
0
    for (i__ = 2; i__ <= 6; ++i__) {
860
0
        ic = *(unsigned char *)&subnam[i__ - 1];
861
0
        if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || 
862
0
          ic >= 162 && ic <= 169) {
863
0
      *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
864
0
        }
865
0
    }
866
0
      }
867
868
0
  } else if (iz == 218 || iz == 250) {
869
870
/*           Prime machines:  ASCII+128 */
871
872
0
      if (ic >= 225 && ic <= 250) {
873
0
    *(unsigned char *)subnam = (char) (ic - 32);
874
0
    for (i__ = 2; i__ <= 6; ++i__) {
875
0
        ic = *(unsigned char *)&subnam[i__ - 1];
876
0
        if (ic >= 225 && ic <= 250) {
877
0
      *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
878
0
        }
879
0
    }
880
0
      }
881
0
  }
882
883
0
  if (s_cmp(subnam + 1, "GGHRD", (ftnlen)5, (ftnlen)5) == 0 || s_cmp(
884
0
    subnam + 1, "GGHD3", (ftnlen)5, (ftnlen)5) == 0) {
885
0
      ret_val = 1;
886
0
      if (nh >= 14) {
887
0
    ret_val = 2;
888
0
      }
889
0
  } else if (s_cmp(subnam + 3, "EXC", (ftnlen)3, (ftnlen)3) == 0) {
890
0
      if (nh >= 14) {
891
0
    ret_val = 1;
892
0
      }
893
0
      if (nh >= 14) {
894
0
    ret_val = 2;
895
0
      }
896
0
  } else if (s_cmp(subnam + 1, "HSEQR", (ftnlen)5, (ftnlen)5) == 0 || 
897
0
    s_cmp(subnam + 1, "LAQR", (ftnlen)4, (ftnlen)4) == 0) {
898
0
      if (ns >= 14) {
899
0
    ret_val = 1;
900
0
      }
901
0
      if (ns >= 14) {
902
0
    ret_val = 2;
903
0
      }
904
0
  }
905
906
0
    } else {
907
/*        ===== invalid value of ispec ===== */
908
0
  ret_val = -1;
909
910
0
    }
911
912
/*     ==== End of IPARMQ ==== */
913
914
0
    return ret_val;
915
0
} /* iparmq_ */
916