Coverage Report

Created: 2025-09-16 20:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/sgeqr2.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef char integer1;
56
57
#define TRUE_ (1)
58
#define FALSE_ (0)
59
60
/* Extern is for use with -E */
61
#ifndef Extern
62
#define Extern extern
63
#endif
64
65
/* I/O stuff */
66
67
typedef int flag;
68
typedef int ftnlen;
69
typedef int ftnint;
70
71
/*external read, write*/
72
typedef struct
73
{ flag cierr;
74
  ftnint ciunit;
75
  flag ciend;
76
  char *cifmt;
77
  ftnint cirec;
78
} cilist;
79
80
/*internal read, write*/
81
typedef struct
82
{ flag icierr;
83
  char *iciunit;
84
  flag iciend;
85
  char *icifmt;
86
  ftnint icirlen;
87
  ftnint icirnum;
88
} icilist;
89
90
/*open*/
91
typedef struct
92
{ flag oerr;
93
  ftnint ounit;
94
  char *ofnm;
95
  ftnlen ofnmlen;
96
  char *osta;
97
  char *oacc;
98
  char *ofm;
99
  ftnint orl;
100
  char *oblnk;
101
} olist;
102
103
/*close*/
104
typedef struct
105
{ flag cerr;
106
  ftnint cunit;
107
  char *csta;
108
} cllist;
109
110
/*rewind, backspace, endfile*/
111
typedef struct
112
{ flag aerr;
113
  ftnint aunit;
114
} alist;
115
116
/* inquire */
117
typedef struct
118
{ flag inerr;
119
  ftnint inunit;
120
  char *infile;
121
  ftnlen infilen;
122
  ftnint  *inex;  /*parameters in standard's order*/
123
  ftnint  *inopen;
124
  ftnint  *innum;
125
  ftnint  *innamed;
126
  char  *inname;
127
  ftnlen  innamlen;
128
  char  *inacc;
129
  ftnlen  inacclen;
130
  char  *inseq;
131
  ftnlen  inseqlen;
132
  char  *indir;
133
  ftnlen  indirlen;
134
  char  *infmt;
135
  ftnlen  infmtlen;
136
  char  *inform;
137
  ftnint  informlen;
138
  char  *inunf;
139
  ftnlen  inunflen;
140
  ftnint  *inrecl;
141
  ftnint  *innrec;
142
  char  *inblank;
143
  ftnlen  inblanklen;
144
} inlist;
145
146
#define VOID void
147
148
union Multitype { /* for multiple entry points */
149
  integer1 g;
150
  shortint h;
151
  integer i;
152
  /* longint j; */
153
  real r;
154
  doublereal d;
155
  complex c;
156
  doublecomplex z;
157
  };
158
159
typedef union Multitype Multitype;
160
161
struct Vardesc {  /* for Namelist */
162
  char *name;
163
  char *addr;
164
  ftnlen *dims;
165
  int  type;
166
  };
167
typedef struct Vardesc Vardesc;
168
169
struct Namelist {
170
  char *name;
171
  Vardesc **vars;
172
  int nvars;
173
  };
174
typedef struct Namelist Namelist;
175
176
#define abs(x) ((x) >= 0 ? (x) : -(x))
177
#define dabs(x) (fabs(x))
178
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
179
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
180
#define dmin(a,b) (f2cmin(a,b))
181
#define dmax(a,b) (f2cmax(a,b))
182
#define bit_test(a,b) ((a) >> (b) & 1)
183
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
184
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
185
186
#define abort_() { sig_die("Fortran abort routine called", 1); }
187
#define c_abs(z) (cabsf(Cf(z)))
188
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
189
#ifdef _MSC_VER
190
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
191
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
192
#else
193
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
194
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
195
#endif
196
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
197
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
198
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
199
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
200
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
201
#define d_abs(x) (fabs(*(x)))
202
#define d_acos(x) (acos(*(x)))
203
#define d_asin(x) (asin(*(x)))
204
#define d_atan(x) (atan(*(x)))
205
#define d_atn2(x, y) (atan2(*(x),*(y)))
206
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
207
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
208
#define d_cos(x) (cos(*(x)))
209
#define d_cosh(x) (cosh(*(x)))
210
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
211
#define d_exp(x) (exp(*(x)))
212
#define d_imag(z) (cimag(Cd(z)))
213
#define r_imag(z) (cimagf(Cf(z)))
214
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
215
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
216
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
217
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
218
#define d_log(x) (log(*(x)))
219
#define d_mod(x, y) (fmod(*(x), *(y)))
220
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
221
#define d_nint(x) u_nint(*(x))
222
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
223
#define d_sign(a,b) u_sign(*(a),*(b))
224
#define r_sign(a,b) u_sign(*(a),*(b))
225
#define d_sin(x) (sin(*(x)))
226
#define d_sinh(x) (sinh(*(x)))
227
#define d_sqrt(x) (sqrt(*(x)))
228
#define d_tan(x) (tan(*(x)))
229
#define d_tanh(x) (tanh(*(x)))
230
#define i_abs(x) abs(*(x))
231
#define i_dnnt(x) ((integer)u_nint(*(x)))
232
#define i_len(s, n) (n)
233
#define i_nint(x) ((integer)u_nint(*(x)))
234
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
235
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
236
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
237
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
238
#define sig_die(s, kill) { exit(1); }
239
#define s_stop(s, n) {exit(0);}
240
#define z_abs(z) (cabs(Cd(z)))
241
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
242
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
243
#define myexit_() break;
244
#define mycycle() continue;
245
#define myceiling(w) {ceil(w)}
246
#define myhuge(w) {HUGE_VAL}
247
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
248
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
249
250
/*  -- translated by f2c (version 20000121).
251
   You must link the resulting object file with the libraries:
252
  -lf2c -lm   (in that order)
253
*/
254
255
256
257
258
/* Table of constant values */
259
260
static integer c__1 = 1;
261
262
/* > \brief \b SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorit
263
hm. */
264
265
/*  =========== DOCUMENTATION =========== */
266
267
/* Online html documentation available at */
268
/*            http://www.netlib.org/lapack/explore-html/ */
269
270
/* > \htmlonly */
271
/* > Download SGEQR2 + dependencies */
272
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqr2.
273
f"> */
274
/* > [TGZ]</a> */
275
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqr2.
276
f"> */
277
/* > [ZIP]</a> */
278
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqr2.
279
f"> */
280
/* > [TXT]</a> */
281
/* > \endhtmlonly */
282
283
/*  Definition: */
284
/*  =========== */
285
286
/*       SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO ) */
287
288
/*       INTEGER            INFO, LDA, M, N */
289
/*       REAL               A( LDA, * ), TAU( * ), WORK( * ) */
290
291
292
/* > \par Purpose: */
293
/*  ============= */
294
/* > */
295
/* > \verbatim */
296
/* > */
297
/* > SGEQR2 computes a QR factorization of a real m-by-n matrix A: */
298
/* > */
299
/* >    A = Q * ( R ), */
300
/* >            ( 0 ) */
301
/* > */
302
/* > where: */
303
/* > */
304
/* >    Q is a m-by-m orthogonal matrix; */
305
/* >    R is an upper-triangular n-by-n matrix; */
306
/* >    0 is a (m-n)-by-n zero matrix, if m > n. */
307
/* > */
308
/* > \endverbatim */
309
310
/*  Arguments: */
311
/*  ========== */
312
313
/* > \param[in] M */
314
/* > \verbatim */
315
/* >          M is INTEGER */
316
/* >          The number of rows of the matrix A.  M >= 0. */
317
/* > \endverbatim */
318
/* > */
319
/* > \param[in] N */
320
/* > \verbatim */
321
/* >          N is INTEGER */
322
/* >          The number of columns of the matrix A.  N >= 0. */
323
/* > \endverbatim */
324
/* > */
325
/* > \param[in,out] A */
326
/* > \verbatim */
327
/* >          A is REAL array, dimension (LDA,N) */
328
/* >          On entry, the m by n matrix A. */
329
/* >          On exit, the elements on and above the diagonal of the array */
330
/* >          contain the f2cmin(m,n) by n upper trapezoidal matrix R (R is */
331
/* >          upper triangular if m >= n); the elements below the diagonal, */
332
/* >          with the array TAU, represent the orthogonal matrix Q as a */
333
/* >          product of elementary reflectors (see Further Details). */
334
/* > \endverbatim */
335
/* > */
336
/* > \param[in] LDA */
337
/* > \verbatim */
338
/* >          LDA is INTEGER */
339
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
340
/* > \endverbatim */
341
/* > */
342
/* > \param[out] TAU */
343
/* > \verbatim */
344
/* >          TAU is REAL array, dimension (f2cmin(M,N)) */
345
/* >          The scalar factors of the elementary reflectors (see Further */
346
/* >          Details). */
347
/* > \endverbatim */
348
/* > */
349
/* > \param[out] WORK */
350
/* > \verbatim */
351
/* >          WORK is REAL array, dimension (N) */
352
/* > \endverbatim */
353
/* > */
354
/* > \param[out] INFO */
355
/* > \verbatim */
356
/* >          INFO is INTEGER */
357
/* >          = 0: successful exit */
358
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
359
/* > \endverbatim */
360
361
/*  Authors: */
362
/*  ======== */
363
364
/* > \author Univ. of Tennessee */
365
/* > \author Univ. of California Berkeley */
366
/* > \author Univ. of Colorado Denver */
367
/* > \author NAG Ltd. */
368
369
/* > \date November 2019 */
370
371
/* > \ingroup realGEcomputational */
372
373
/* > \par Further Details: */
374
/*  ===================== */
375
/* > */
376
/* > \verbatim */
377
/* > */
378
/* >  The matrix Q is represented as a product of elementary reflectors */
379
/* > */
380
/* >     Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */
381
/* > */
382
/* >  Each H(i) has the form */
383
/* > */
384
/* >     H(i) = I - tau * v * v**T */
385
/* > */
386
/* >  where tau is a real scalar, and v is a real vector with */
387
/* >  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
388
/* >  and tau in TAU(i). */
389
/* > \endverbatim */
390
/* > */
391
/*  ===================================================================== */
392
/* Subroutine */ void sgeqr2_(integer *m, integer *n, real *a, integer *lda, 
393
  real *tau, real *work, integer *info)
394
0
{
395
    /* System generated locals */
396
0
    integer a_dim1, a_offset, i__1, i__2, i__3;
397
398
    /* Local variables */
399
0
    integer i__, k;
400
0
    extern /* Subroutine */ void slarf_(char *, integer *, integer *, real *, 
401
0
      integer *, real *, real *, integer *, real *);
402
0
    extern int xerbla_(char *, integer *, ftnlen);
403
0
    extern void slarfg_(integer *, real *, real *, integer *, real *);
404
0
    real aii;
405
406
407
/*  -- LAPACK computational routine (version 3.9.0) -- */
408
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
409
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
410
/*     November 2019 */
411
412
413
/*  ===================================================================== */
414
415
416
/*     Test the input arguments */
417
418
    /* Parameter adjustments */
419
0
    a_dim1 = *lda;
420
0
    a_offset = 1 + a_dim1 * 1;
421
0
    a -= a_offset;
422
0
    --tau;
423
0
    --work;
424
425
    /* Function Body */
426
0
    *info = 0;
427
0
    if (*m < 0) {
428
0
  *info = -1;
429
0
    } else if (*n < 0) {
430
0
  *info = -2;
431
0
    } else if (*lda < f2cmax(1,*m)) {
432
0
  *info = -4;
433
0
    }
434
0
    if (*info != 0) {
435
0
  i__1 = -(*info);
436
0
  xerbla_("SGEQR2", &i__1, (ftnlen)6);
437
0
  return;
438
0
    }
439
440
0
    k = f2cmin(*m,*n);
441
442
0
    i__1 = k;
443
0
    for (i__ = 1; i__ <= i__1; ++i__) {
444
445
/*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
446
447
0
  i__2 = *m - i__ + 1;
448
/* Computing MIN */
449
0
  i__3 = i__ + 1;
450
0
  slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ * a_dim1]
451
0
    , &c__1, &tau[i__]);
452
0
  if (i__ < *n) {
453
454
/*           Apply H(i) to A(i:m,i+1:n) from the left */
455
456
0
      aii = a[i__ + i__ * a_dim1];
457
0
      a[i__ + i__ * a_dim1] = 1.f;
458
0
      i__2 = *m - i__ + 1;
459
0
      i__3 = *n - i__;
460
0
      slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
461
0
        i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
462
0
      a[i__ + i__ * a_dim1] = aii;
463
0
  }
464
/* L10: */
465
0
    }
466
0
    return;
467
468
/*     End of SGEQR2 */
469
470
0
} /* sgeqr2_ */
471