Coverage Report

Created: 2025-09-16 20:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slalsa.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static real c_b7 = 1.f;
516
static real c_b8 = 0.f;
517
static integer c__2 = 2;
518
519
/* > \brief \b SLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
520
521
/*  =========== DOCUMENTATION =========== */
522
523
/* Online html documentation available at */
524
/*            http://www.netlib.org/lapack/explore-html/ */
525
526
/* > \htmlonly */
527
/* > Download SLALSA + dependencies */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsa.
529
f"> */
530
/* > [TGZ]</a> */
531
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsa.
532
f"> */
533
/* > [ZIP]</a> */
534
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsa.
535
f"> */
536
/* > [TXT]</a> */
537
/* > \endhtmlonly */
538
539
/*  Definition: */
540
/*  =========== */
541
542
/*       SUBROUTINE SLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
543
/*                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
544
/*                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, */
545
/*                          IWORK, INFO ) */
546
547
/*       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
548
/*      $                   SMLSIZ */
549
/*       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
550
/*      $                   K( * ), PERM( LDGCOL, * ) */
551
/*       REAL               B( LDB, * ), BX( LDBX, * ), C( * ), */
552
/*      $                   DIFL( LDU, * ), DIFR( LDU, * ), */
553
/*      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), */
554
/*      $                   U( LDU, * ), VT( LDU, * ), WORK( * ), */
555
/*      $                   Z( LDU, * ) */
556
557
558
/* > \par Purpose: */
559
/*  ============= */
560
/* > */
561
/* > \verbatim */
562
/* > */
563
/* > SLALSA is an itermediate step in solving the least squares problem */
564
/* > by computing the SVD of the coefficient matrix in compact form (The */
565
/* > singular vectors are computed as products of simple orthorgonal */
566
/* > matrices.). */
567
/* > */
568
/* > If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector */
569
/* > matrix of an upper bidiagonal matrix to the right hand side; and if */
570
/* > ICOMPQ = 1, SLALSA applies the right singular vector matrix to the */
571
/* > right hand side. The singular vector matrices were generated in */
572
/* > compact form by SLALSA. */
573
/* > \endverbatim */
574
575
/*  Arguments: */
576
/*  ========== */
577
578
/* > \param[in] ICOMPQ */
579
/* > \verbatim */
580
/* >          ICOMPQ is INTEGER */
581
/* >         Specifies whether the left or the right singular vector */
582
/* >         matrix is involved. */
583
/* >         = 0: Left singular vector matrix */
584
/* >         = 1: Right singular vector matrix */
585
/* > \endverbatim */
586
/* > */
587
/* > \param[in] SMLSIZ */
588
/* > \verbatim */
589
/* >          SMLSIZ is INTEGER */
590
/* >         The maximum size of the subproblems at the bottom of the */
591
/* >         computation tree. */
592
/* > \endverbatim */
593
/* > */
594
/* > \param[in] N */
595
/* > \verbatim */
596
/* >          N is INTEGER */
597
/* >         The row and column dimensions of the upper bidiagonal matrix. */
598
/* > \endverbatim */
599
/* > */
600
/* > \param[in] NRHS */
601
/* > \verbatim */
602
/* >          NRHS is INTEGER */
603
/* >         The number of columns of B and BX. NRHS must be at least 1. */
604
/* > \endverbatim */
605
/* > */
606
/* > \param[in,out] B */
607
/* > \verbatim */
608
/* >          B is REAL array, dimension ( LDB, NRHS ) */
609
/* >         On input, B contains the right hand sides of the least */
610
/* >         squares problem in rows 1 through M. */
611
/* >         On output, B contains the solution X in rows 1 through N. */
612
/* > \endverbatim */
613
/* > */
614
/* > \param[in] LDB */
615
/* > \verbatim */
616
/* >          LDB is INTEGER */
617
/* >         The leading dimension of B in the calling subprogram. */
618
/* >         LDB must be at least f2cmax(1,MAX( M, N ) ). */
619
/* > \endverbatim */
620
/* > */
621
/* > \param[out] BX */
622
/* > \verbatim */
623
/* >          BX is REAL array, dimension ( LDBX, NRHS ) */
624
/* >         On exit, the result of applying the left or right singular */
625
/* >         vector matrix to B. */
626
/* > \endverbatim */
627
/* > */
628
/* > \param[in] LDBX */
629
/* > \verbatim */
630
/* >          LDBX is INTEGER */
631
/* >         The leading dimension of BX. */
632
/* > \endverbatim */
633
/* > */
634
/* > \param[in] U */
635
/* > \verbatim */
636
/* >          U is REAL array, dimension ( LDU, SMLSIZ ). */
637
/* >         On entry, U contains the left singular vector matrices of all */
638
/* >         subproblems at the bottom level. */
639
/* > \endverbatim */
640
/* > */
641
/* > \param[in] LDU */
642
/* > \verbatim */
643
/* >          LDU is INTEGER, LDU = > N. */
644
/* >         The leading dimension of arrays U, VT, DIFL, DIFR, */
645
/* >         POLES, GIVNUM, and Z. */
646
/* > \endverbatim */
647
/* > */
648
/* > \param[in] VT */
649
/* > \verbatim */
650
/* >          VT is REAL array, dimension ( LDU, SMLSIZ+1 ). */
651
/* >         On entry, VT**T contains the right singular vector matrices of */
652
/* >         all subproblems at the bottom level. */
653
/* > \endverbatim */
654
/* > */
655
/* > \param[in] K */
656
/* > \verbatim */
657
/* >          K is INTEGER array, dimension ( N ). */
658
/* > \endverbatim */
659
/* > */
660
/* > \param[in] DIFL */
661
/* > \verbatim */
662
/* >          DIFL is REAL array, dimension ( LDU, NLVL ). */
663
/* >         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
664
/* > \endverbatim */
665
/* > */
666
/* > \param[in] DIFR */
667
/* > \verbatim */
668
/* >          DIFR is REAL array, dimension ( LDU, 2 * NLVL ). */
669
/* >         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
670
/* >         distances between singular values on the I-th level and */
671
/* >         singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
672
/* >         record the normalizing factors of the right singular vectors */
673
/* >         matrices of subproblems on I-th level. */
674
/* > \endverbatim */
675
/* > */
676
/* > \param[in] Z */
677
/* > \verbatim */
678
/* >          Z is REAL array, dimension ( LDU, NLVL ). */
679
/* >         On entry, Z(1, I) contains the components of the deflation- */
680
/* >         adjusted updating row vector for subproblems on the I-th */
681
/* >         level. */
682
/* > \endverbatim */
683
/* > */
684
/* > \param[in] POLES */
685
/* > \verbatim */
686
/* >          POLES is REAL array, dimension ( LDU, 2 * NLVL ). */
687
/* >         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
688
/* >         singular values involved in the secular equations on the I-th */
689
/* >         level. */
690
/* > \endverbatim */
691
/* > */
692
/* > \param[in] GIVPTR */
693
/* > \verbatim */
694
/* >          GIVPTR is INTEGER array, dimension ( N ). */
695
/* >         On entry, GIVPTR( I ) records the number of Givens */
696
/* >         rotations performed on the I-th problem on the computation */
697
/* >         tree. */
698
/* > \endverbatim */
699
/* > */
700
/* > \param[in] GIVCOL */
701
/* > \verbatim */
702
/* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
703
/* >         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
704
/* >         locations of Givens rotations performed on the I-th level on */
705
/* >         the computation tree. */
706
/* > \endverbatim */
707
/* > */
708
/* > \param[in] LDGCOL */
709
/* > \verbatim */
710
/* >          LDGCOL is INTEGER, LDGCOL = > N. */
711
/* >         The leading dimension of arrays GIVCOL and PERM. */
712
/* > \endverbatim */
713
/* > */
714
/* > \param[in] PERM */
715
/* > \verbatim */
716
/* >          PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
717
/* >         On entry, PERM(*, I) records permutations done on the I-th */
718
/* >         level of the computation tree. */
719
/* > \endverbatim */
720
/* > */
721
/* > \param[in] GIVNUM */
722
/* > \verbatim */
723
/* >          GIVNUM is REAL array, dimension ( LDU, 2 * NLVL ). */
724
/* >         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
725
/* >         values of Givens rotations performed on the I-th level on the */
726
/* >         computation tree. */
727
/* > \endverbatim */
728
/* > */
729
/* > \param[in] C */
730
/* > \verbatim */
731
/* >          C is REAL array, dimension ( N ). */
732
/* >         On entry, if the I-th subproblem is not square, */
733
/* >         C( I ) contains the C-value of a Givens rotation related to */
734
/* >         the right null space of the I-th subproblem. */
735
/* > \endverbatim */
736
/* > */
737
/* > \param[in] S */
738
/* > \verbatim */
739
/* >          S is REAL array, dimension ( N ). */
740
/* >         On entry, if the I-th subproblem is not square, */
741
/* >         S( I ) contains the S-value of a Givens rotation related to */
742
/* >         the right null space of the I-th subproblem. */
743
/* > \endverbatim */
744
/* > */
745
/* > \param[out] WORK */
746
/* > \verbatim */
747
/* >          WORK is REAL array, dimension (N) */
748
/* > \endverbatim */
749
/* > */
750
/* > \param[out] IWORK */
751
/* > \verbatim */
752
/* >          IWORK is INTEGER array, dimension (3*N) */
753
/* > \endverbatim */
754
/* > */
755
/* > \param[out] INFO */
756
/* > \verbatim */
757
/* >          INFO is INTEGER */
758
/* >          = 0:  successful exit. */
759
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
760
/* > \endverbatim */
761
762
/*  Authors: */
763
/*  ======== */
764
765
/* > \author Univ. of Tennessee */
766
/* > \author Univ. of California Berkeley */
767
/* > \author Univ. of Colorado Denver */
768
/* > \author NAG Ltd. */
769
770
/* > \date June 2017 */
771
772
/* > \ingroup realOTHERcomputational */
773
774
/* > \par Contributors: */
775
/*  ================== */
776
/* > */
777
/* >     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
778
/* >       California at Berkeley, USA \n */
779
/* >     Osni Marques, LBNL/NERSC, USA \n */
780
781
/*  ===================================================================== */
782
/* Subroutine */ void slalsa_(integer *icompq, integer *smlsiz, integer *n, 
783
  integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, real *
784
  u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *
785
  z__, real *poles, integer *givptr, integer *givcol, integer *ldgcol, 
786
  integer *perm, real *givnum, real *c__, real *s, real *work, integer *
787
  iwork, integer *info)
788
0
{
789
    /* System generated locals */
790
0
    integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, 
791
0
      b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, 
792
0
      difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
793
0
       u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, 
794
0
      i__2;
795
796
    /* Local variables */
797
0
    integer nlvl, sqre, i__, j, inode, ndiml;
798
0
    extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
799
0
      integer *, real *, real *, integer *, real *, integer *, real *, 
800
0
      real *, integer *);
801
0
    integer ndimr, i1;
802
0
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
803
0
      integer *), slals0_(integer *, integer *, integer *, integer *, 
804
0
      integer *, real *, integer *, real *, integer *, integer *, 
805
0
      integer *, integer *, integer *, real *, integer *, real *, real *
806
0
      , real *, real *, integer *, real *, real *, real *, integer *);
807
0
    integer ic, lf, nd, ll, nl, nr;
808
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
809
0
    extern void slasdt_(
810
0
      integer *, integer *, integer *, integer *, integer *, integer *, 
811
0
      integer *);
812
0
    integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
813
814
815
/*  -- LAPACK computational routine (version 3.7.1) -- */
816
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
817
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
818
/*     June 2017 */
819
820
821
/*  ===================================================================== */
822
823
824
/*     Test the input parameters. */
825
826
    /* Parameter adjustments */
827
0
    b_dim1 = *ldb;
828
0
    b_offset = 1 + b_dim1 * 1;
829
0
    b -= b_offset;
830
0
    bx_dim1 = *ldbx;
831
0
    bx_offset = 1 + bx_dim1 * 1;
832
0
    bx -= bx_offset;
833
0
    givnum_dim1 = *ldu;
834
0
    givnum_offset = 1 + givnum_dim1 * 1;
835
0
    givnum -= givnum_offset;
836
0
    poles_dim1 = *ldu;
837
0
    poles_offset = 1 + poles_dim1 * 1;
838
0
    poles -= poles_offset;
839
0
    z_dim1 = *ldu;
840
0
    z_offset = 1 + z_dim1 * 1;
841
0
    z__ -= z_offset;
842
0
    difr_dim1 = *ldu;
843
0
    difr_offset = 1 + difr_dim1 * 1;
844
0
    difr -= difr_offset;
845
0
    difl_dim1 = *ldu;
846
0
    difl_offset = 1 + difl_dim1 * 1;
847
0
    difl -= difl_offset;
848
0
    vt_dim1 = *ldu;
849
0
    vt_offset = 1 + vt_dim1 * 1;
850
0
    vt -= vt_offset;
851
0
    u_dim1 = *ldu;
852
0
    u_offset = 1 + u_dim1 * 1;
853
0
    u -= u_offset;
854
0
    --k; 
855
0
    --givptr;
856
0
    perm_dim1 = *ldgcol;
857
0
    perm_offset = 1 + perm_dim1 * 1;
858
0
    perm -= perm_offset;
859
0
    givcol_dim1 = *ldgcol;
860
0
    givcol_offset = 1 + givcol_dim1 * 1;
861
0
    givcol -= givcol_offset;
862
0
    --c__;
863
0
    --s;
864
0
    --work;
865
0
    --iwork;
866
867
    /* Function Body */
868
0
    *info = 0;
869
870
0
    if (*icompq < 0 || *icompq > 1) {
871
0
  *info = -1;
872
0
    } else if (*smlsiz < 3) {
873
0
  *info = -2;
874
0
    } else if (*n < *smlsiz) {
875
0
  *info = -3;
876
0
    } else if (*nrhs < 1) {
877
0
  *info = -4;
878
0
    } else if (*ldb < *n) {
879
0
  *info = -6;
880
0
    } else if (*ldbx < *n) {
881
0
  *info = -8;
882
0
    } else if (*ldu < *n) {
883
0
  *info = -10;
884
0
    } else if (*ldgcol < *n) {
885
0
  *info = -19;
886
0
    }
887
0
    if (*info != 0) {
888
0
  i__1 = -(*info);
889
0
  xerbla_("SLALSA", &i__1, (ftnlen)6);
890
0
  return;
891
0
    }
892
893
/*     Book-keeping and  setting up the computation tree. */
894
895
0
    inode = 1;
896
0
    ndiml = inode + *n;
897
0
    ndimr = ndiml + *n;
898
899
0
    slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
900
0
      smlsiz);
901
902
/*     The following code applies back the left singular vector factors. */
903
/*     For applying back the right singular vector factors, go to 50. */
904
905
0
    if (*icompq == 1) {
906
0
  goto L50;
907
0
    }
908
909
/*     The nodes on the bottom level of the tree were solved */
910
/*     by SLASDQ. The corresponding left and right singular vector */
911
/*     matrices are in explicit form. First apply back the left */
912
/*     singular vector matrices. */
913
914
0
    ndb1 = (nd + 1) / 2;
915
0
    i__1 = nd;
916
0
    for (i__ = ndb1; i__ <= i__1; ++i__) {
917
918
/*        IC : center row of each node */
919
/*        NL : number of rows of left  subproblem */
920
/*        NR : number of rows of right subproblem */
921
/*        NLF: starting row of the left   subproblem */
922
/*        NRF: starting row of the right  subproblem */
923
924
0
  i1 = i__ - 1;
925
0
  ic = iwork[inode + i1];
926
0
  nl = iwork[ndiml + i1];
927
0
  nr = iwork[ndimr + i1];
928
0
  nlf = ic - nl;
929
0
  nrf = ic + 1;
930
0
  sgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf 
931
0
    + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
932
0
  sgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf 
933
0
    + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
934
/* L10: */
935
0
    }
936
937
/*     Next copy the rows of B that correspond to unchanged rows */
938
/*     in the bidiagonal matrix to BX. */
939
940
0
    i__1 = nd;
941
0
    for (i__ = 1; i__ <= i__1; ++i__) {
942
0
  ic = iwork[inode + i__ - 1];
943
0
  scopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
944
/* L20: */
945
0
    }
946
947
/*     Finally go through the left singular vector matrices of all */
948
/*     the other subproblems bottom-up on the tree. */
949
950
0
    j = pow_ii(c__2, nlvl);
951
0
    sqre = 0;
952
953
0
    for (lvl = nlvl; lvl >= 1; --lvl) {
954
0
  lvl2 = (lvl << 1) - 1;
955
956
/*        find the first node LF and last node LL on */
957
/*        the current level LVL */
958
959
0
  if (lvl == 1) {
960
0
      lf = 1;
961
0
      ll = 1;
962
0
  } else {
963
0
      i__1 = lvl - 1;
964
0
      lf = pow_ii(c__2, i__1);
965
0
      ll = (lf << 1) - 1;
966
0
  }
967
0
  i__1 = ll;
968
0
  for (i__ = lf; i__ <= i__1; ++i__) {
969
0
      im1 = i__ - 1;
970
0
      ic = iwork[inode + im1];
971
0
      nl = iwork[ndiml + im1];
972
0
      nr = iwork[ndimr + im1];
973
0
      nlf = ic - nl;
974
0
      nrf = ic + 1;
975
0
      --j;
976
0
      slals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
977
0
        b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
978
0
        givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
979
0
        givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
980
0
         poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
981
0
        lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
982
0
        j], &s[j], &work[1], info);
983
/* L30: */
984
0
  }
985
/* L40: */
986
0
    }
987
0
    goto L90;
988
989
/*     ICOMPQ = 1: applying back the right singular vector factors. */
990
991
0
L50:
992
993
/*     First now go through the right singular vector matrices of all */
994
/*     the tree nodes top-down. */
995
996
0
    j = 0;
997
0
    i__1 = nlvl;
998
0
    for (lvl = 1; lvl <= i__1; ++lvl) {
999
0
  lvl2 = (lvl << 1) - 1;
1000
1001
/*        Find the first node LF and last node LL on */
1002
/*        the current level LVL. */
1003
1004
0
  if (lvl == 1) {
1005
0
      lf = 1;
1006
0
      ll = 1;
1007
0
  } else {
1008
0
      i__2 = lvl - 1;
1009
0
      lf = pow_ii(c__2, i__2);
1010
0
      ll = (lf << 1) - 1;
1011
0
  }
1012
0
  i__2 = lf;
1013
0
  for (i__ = ll; i__ >= i__2; --i__) {
1014
0
      im1 = i__ - 1;
1015
0
      ic = iwork[inode + im1];
1016
0
      nl = iwork[ndiml + im1];
1017
0
      nr = iwork[ndimr + im1];
1018
0
      nlf = ic - nl;
1019
0
      nrf = ic + 1;
1020
0
      if (i__ == ll) {
1021
0
    sqre = 0;
1022
0
      } else {
1023
0
    sqre = 1;
1024
0
      }
1025
0
      ++j;
1026
0
      slals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
1027
0
        nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
1028
0
        givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
1029
0
        givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
1030
0
         poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
1031
0
        lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
1032
0
        j], &s[j], &work[1], info);
1033
/* L60: */
1034
0
  }
1035
/* L70: */
1036
0
    }
1037
1038
/*     The nodes on the bottom level of the tree were solved */
1039
/*     by SLASDQ. The corresponding right singular vector */
1040
/*     matrices are in explicit form. Apply them back. */
1041
1042
0
    ndb1 = (nd + 1) / 2;
1043
0
    i__1 = nd;
1044
0
    for (i__ = ndb1; i__ <= i__1; ++i__) {
1045
0
  i1 = i__ - 1;
1046
0
  ic = iwork[inode + i1];
1047
0
  nl = iwork[ndiml + i1];
1048
0
  nr = iwork[ndimr + i1];
1049
0
  nlp1 = nl + 1;
1050
0
  if (i__ == nd) {
1051
0
      nrp1 = nr;
1052
0
  } else {
1053
0
      nrp1 = nr + 1;
1054
0
  }
1055
0
  nlf = ic - nl;
1056
0
  nrf = ic + 1;
1057
0
  sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
1058
0
    b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
1059
0
  sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
1060
0
    b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
1061
/* L80: */
1062
0
    }
1063
1064
0
L90:
1065
1066
0
    return;
1067
1068
/*     End of SLALSA */
1069
1070
0
} /* slalsa_ */
1071