Coverage Report

Created: 2025-09-18 13:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dlarft.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
0
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
static doublereal c_b6 = 1.;
517
518
/* > \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH */
519
520
/*  =========== DOCUMENTATION =========== */
521
522
/* Online html documentation available at */
523
/*            http://www.netlib.org/lapack/explore-html/ */
524
525
/* > \htmlonly */
526
/* > Download DLARFT + dependencies */
527
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.
528
f"> */
529
/* > [TGZ]</a> */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.
531
f"> */
532
/* > [ZIP]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.
534
f"> */
535
/* > [TXT]</a> */
536
/* > \endhtmlonly */
537
538
/*  Definition: */
539
/*  =========== */
540
541
/*       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) */
542
543
/*       CHARACTER          DIRECT, STOREV */
544
/*       INTEGER            K, LDT, LDV, N */
545
/*       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * ) */
546
547
548
/* > \par Purpose: */
549
/*  ============= */
550
/* > */
551
/* > \verbatim */
552
/* > */
553
/* > DLARFT forms the triangular factor T of a real block reflector H */
554
/* > of order n, which is defined as a product of k elementary reflectors. */
555
/* > */
556
/* > If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */
557
/* > */
558
/* > If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */
559
/* > */
560
/* > If STOREV = 'C', the vector which defines the elementary reflector */
561
/* > H(i) is stored in the i-th column of the array V, and */
562
/* > */
563
/* >    H  =  I - V * T * V**T */
564
/* > */
565
/* > If STOREV = 'R', the vector which defines the elementary reflector */
566
/* > H(i) is stored in the i-th row of the array V, and */
567
/* > */
568
/* >    H  =  I - V**T * T * V */
569
/* > \endverbatim */
570
571
/*  Arguments: */
572
/*  ========== */
573
574
/* > \param[in] DIRECT */
575
/* > \verbatim */
576
/* >          DIRECT is CHARACTER*1 */
577
/* >          Specifies the order in which the elementary reflectors are */
578
/* >          multiplied to form the block reflector: */
579
/* >          = 'F': H = H(1) H(2) . . . H(k) (Forward) */
580
/* >          = 'B': H = H(k) . . . H(2) H(1) (Backward) */
581
/* > \endverbatim */
582
/* > */
583
/* > \param[in] STOREV */
584
/* > \verbatim */
585
/* >          STOREV is CHARACTER*1 */
586
/* >          Specifies how the vectors which define the elementary */
587
/* >          reflectors are stored (see also Further Details): */
588
/* >          = 'C': columnwise */
589
/* >          = 'R': rowwise */
590
/* > \endverbatim */
591
/* > */
592
/* > \param[in] N */
593
/* > \verbatim */
594
/* >          N is INTEGER */
595
/* >          The order of the block reflector H. N >= 0. */
596
/* > \endverbatim */
597
/* > */
598
/* > \param[in] K */
599
/* > \verbatim */
600
/* >          K is INTEGER */
601
/* >          The order of the triangular factor T (= the number of */
602
/* >          elementary reflectors). K >= 1. */
603
/* > \endverbatim */
604
/* > */
605
/* > \param[in] V */
606
/* > \verbatim */
607
/* >          V is DOUBLE PRECISION array, dimension */
608
/* >                               (LDV,K) if STOREV = 'C' */
609
/* >                               (LDV,N) if STOREV = 'R' */
610
/* >          The matrix V. See further details. */
611
/* > \endverbatim */
612
/* > */
613
/* > \param[in] LDV */
614
/* > \verbatim */
615
/* >          LDV is INTEGER */
616
/* >          The leading dimension of the array V. */
617
/* >          If STOREV = 'C', LDV >= f2cmax(1,N); if STOREV = 'R', LDV >= K. */
618
/* > \endverbatim */
619
/* > */
620
/* > \param[in] TAU */
621
/* > \verbatim */
622
/* >          TAU is DOUBLE PRECISION array, dimension (K) */
623
/* >          TAU(i) must contain the scalar factor of the elementary */
624
/* >          reflector H(i). */
625
/* > \endverbatim */
626
/* > */
627
/* > \param[out] T */
628
/* > \verbatim */
629
/* >          T is DOUBLE PRECISION array, dimension (LDT,K) */
630
/* >          The k by k triangular factor T of the block reflector. */
631
/* >          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
632
/* >          lower triangular. The rest of the array is not used. */
633
/* > \endverbatim */
634
/* > */
635
/* > \param[in] LDT */
636
/* > \verbatim */
637
/* >          LDT is INTEGER */
638
/* >          The leading dimension of the array T. LDT >= K. */
639
/* > \endverbatim */
640
641
/*  Authors: */
642
/*  ======== */
643
644
/* > \author Univ. of Tennessee */
645
/* > \author Univ. of California Berkeley */
646
/* > \author Univ. of Colorado Denver */
647
/* > \author NAG Ltd. */
648
649
/* > \date December 2016 */
650
651
/* > \ingroup doubleOTHERauxiliary */
652
653
/* > \par Further Details: */
654
/*  ===================== */
655
/* > */
656
/* > \verbatim */
657
/* > */
658
/* >  The shape of the matrix V and the storage of the vectors which define */
659
/* >  the H(i) is best illustrated by the following example with n = 5 and */
660
/* >  k = 3. The elements equal to 1 are not stored. */
661
/* > */
662
/* >  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */
663
/* > */
664
/* >               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) */
665
/* >                   ( v1  1    )                     (     1 v2 v2 v2 ) */
666
/* >                   ( v1 v2  1 )                     (        1 v3 v3 ) */
667
/* >                   ( v1 v2 v3 ) */
668
/* >                   ( v1 v2 v3 ) */
669
/* > */
670
/* >  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */
671
/* > */
672
/* >               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) */
673
/* >                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) */
674
/* >                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) */
675
/* >                   (     1 v3 ) */
676
/* >                   (        1 ) */
677
/* > \endverbatim */
678
/* > */
679
/*  ===================================================================== */
680
/* Subroutine */ void dlarft_(char *direct, char *storev, integer *n, integer *
681
  k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 
682
  integer *ldt)
683
0
{
684
    /* System generated locals */
685
0
    integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
686
0
    doublereal d__1;
687
688
    /* Local variables */
689
0
    integer i__, j;
690
0
    extern logical lsame_(char *, char *);
691
0
    extern /* Subroutine */ void dgemv_(char *, integer *, integer *, 
692
0
      doublereal *, doublereal *, integer *, doublereal *, integer *, 
693
0
      doublereal *, doublereal *, integer *);
694
0
    integer lastv;
695
0
    extern /* Subroutine */ void dtrmv_(char *, char *, char *, integer *, 
696
0
      doublereal *, integer *, doublereal *, integer *);
697
0
    integer prevlastv;
698
699
700
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
701
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
702
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
703
/*     December 2016 */
704
705
706
/*  ===================================================================== */
707
708
709
/*     Quick return if possible */
710
711
    /* Parameter adjustments */
712
0
    v_dim1 = *ldv;
713
0
    v_offset = 1 + v_dim1 * 1;
714
0
    v -= v_offset;
715
0
    --tau;
716
0
    t_dim1 = *ldt;
717
0
    t_offset = 1 + t_dim1 * 1;
718
0
    t -= t_offset;
719
720
    /* Function Body */
721
0
    if (*n == 0) {
722
0
  return;
723
0
    }
724
725
0
    if (lsame_(direct, "F")) {
726
0
  prevlastv = *n;
727
0
  i__1 = *k;
728
0
  for (i__ = 1; i__ <= i__1; ++i__) {
729
0
      prevlastv = f2cmax(i__,prevlastv);
730
0
      if (tau[i__] == 0.) {
731
732
/*              H(i)  =  I */
733
734
0
    i__2 = i__;
735
0
    for (j = 1; j <= i__2; ++j) {
736
0
        t[j + i__ * t_dim1] = 0.;
737
0
    }
738
0
      } else {
739
740
/*              general case */
741
742
0
    if (lsame_(storev, "C")) {
743
/*                 Skip any trailing zeros. */
744
0
        i__2 = i__ + 1;
745
0
        for (lastv = *n; lastv >= i__2; --lastv) {
746
0
      if (v[lastv + i__ * v_dim1] != 0.) {
747
0
          myexit_();
748
0
      }
749
0
        }
750
0
        i__2 = i__ - 1;
751
0
        for (j = 1; j <= i__2; ++j) {
752
0
      t[j + i__ * t_dim1] = -tau[i__] * v[i__ + j * v_dim1];
753
0
        }
754
0
        j = f2cmin(lastv,prevlastv);
755
756
/*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) */
757
758
0
        i__2 = j - i__;
759
0
        i__3 = i__ - 1;
760
0
        d__1 = -tau[i__];
761
0
        dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + 1 + 
762
0
          v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], &c__1, &
763
0
          c_b6, &t[i__ * t_dim1 + 1], &c__1);
764
0
    } else {
765
/*                 Skip any trailing zeros. */
766
0
        i__2 = i__ + 1;
767
0
        for (lastv = *n; lastv >= i__2; --lastv) {
768
0
      if (v[i__ + lastv * v_dim1] != 0.) {
769
0
          myexit_();
770
0
      }
771
0
        }
772
0
        i__2 = i__ - 1;
773
0
        for (j = 1; j <= i__2; ++j) {
774
0
      t[j + i__ * t_dim1] = -tau[i__] * v[j + i__ * v_dim1];
775
0
        }
776
0
        j = f2cmin(lastv,prevlastv);
777
778
/*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T */
779
780
0
        i__2 = i__ - 1;
781
0
        i__3 = j - i__;
782
0
        d__1 = -tau[i__];
783
0
        dgemv_("No transpose", &i__2, &i__3, &d__1, &v[(i__ + 1) *
784
0
           v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1], 
785
0
          ldv, &c_b6, &t[i__ * t_dim1 + 1], &c__1);
786
0
    }
787
788
/*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
789
790
0
    i__2 = i__ - 1;
791
0
    dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
792
0
      t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
793
0
    t[i__ + i__ * t_dim1] = tau[i__];
794
0
    if (i__ > 1) {
795
0
        prevlastv = f2cmax(prevlastv,lastv);
796
0
    } else {
797
0
        prevlastv = lastv;
798
0
    }
799
0
      }
800
0
  }
801
0
    } else {
802
0
  prevlastv = 1;
803
0
  for (i__ = *k; i__ >= 1; --i__) {
804
0
      if (tau[i__] == 0.) {
805
806
/*              H(i)  =  I */
807
808
0
    i__1 = *k;
809
0
    for (j = i__; j <= i__1; ++j) {
810
0
        t[j + i__ * t_dim1] = 0.;
811
0
    }
812
0
      } else {
813
814
/*              general case */
815
816
0
    if (i__ < *k) {
817
0
        if (lsame_(storev, "C")) {
818
/*                    Skip any leading zeros. */
819
0
      i__1 = i__ - 1;
820
0
      for (lastv = 1; lastv <= i__1; ++lastv) {
821
0
          if (v[lastv + i__ * v_dim1] != 0.) {
822
0
        myexit_();
823
0
          }
824
0
      }
825
0
      i__1 = *k;
826
0
      for (j = i__ + 1; j <= i__1; ++j) {
827
0
          t[j + i__ * t_dim1] = -tau[i__] * v[*n - *k + i__ 
828
0
            + j * v_dim1];
829
0
      }
830
0
      j = f2cmax(lastv,prevlastv);
831
832
/*                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) */
833
834
0
      i__1 = *n - *k + i__ - j;
835
0
      i__2 = *k - i__;
836
0
      d__1 = -tau[i__];
837
0
      dgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__ 
838
0
        + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &
839
0
        c__1, &c_b6, &t[i__ + 1 + i__ * t_dim1], &
840
0
        c__1);
841
0
        } else {
842
/*                    Skip any leading zeros. */
843
0
      i__1 = i__ - 1;
844
0
      for (lastv = 1; lastv <= i__1; ++lastv) {
845
0
          if (v[i__ + lastv * v_dim1] != 0.) {
846
0
        myexit_();
847
0
          }
848
0
      }
849
0
      i__1 = *k;
850
0
      for (j = i__ + 1; j <= i__1; ++j) {
851
0
          t[j + i__ * t_dim1] = -tau[i__] * v[j + (*n - *k 
852
0
            + i__) * v_dim1];
853
0
      }
854
0
      j = f2cmax(lastv,prevlastv);
855
856
/*                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T */
857
858
0
      i__1 = *k - i__;
859
0
      i__2 = *n - *k + i__ - j;
860
0
      d__1 = -tau[i__];
861
0
      dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 
862
0
        1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], 
863
0
        ldv, &c_b6, &t[i__ + 1 + i__ * t_dim1], &c__1);
864
0
        }
865
866
/*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
867
868
0
        i__1 = *k - i__;
869
0
        dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ 
870
0
          + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
871
0
           t_dim1], &c__1)
872
0
          ;
873
0
        if (i__ > 1) {
874
0
      prevlastv = f2cmin(prevlastv,lastv);
875
0
        } else {
876
0
      prevlastv = lastv;
877
0
        }
878
0
    }
879
0
    t[i__ + i__ * t_dim1] = tau[i__];
880
0
      }
881
0
  }
882
0
    }
883
0
    return;
884
885
/*     End of DLARFT */
886
887
0
} /* dlarft_ */
888