Coverage Report

Created: 2025-09-18 13:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dsterf.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
0
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
0
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__0 = 0;
516
static integer c__1 = 1;
517
static doublereal c_b33 = 1.;
518
519
/* > \brief \b DSTERF */
520
521
/*  =========== DOCUMENTATION =========== */
522
523
/* Online html documentation available at */
524
/*            http://www.netlib.org/lapack/explore-html/ */
525
526
/* > \htmlonly */
527
/* > Download DSTERF + dependencies */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsterf.
529
f"> */
530
/* > [TGZ]</a> */
531
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsterf.
532
f"> */
533
/* > [ZIP]</a> */
534
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsterf.
535
f"> */
536
/* > [TXT]</a> */
537
/* > \endhtmlonly */
538
539
/*  Definition: */
540
/*  =========== */
541
542
/*       SUBROUTINE DSTERF( N, D, E, INFO ) */
543
544
/*       INTEGER            INFO, N */
545
/*       DOUBLE PRECISION   D( * ), E( * ) */
546
547
548
/* > \par Purpose: */
549
/*  ============= */
550
/* > */
551
/* > \verbatim */
552
/* > */
553
/* > DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
554
/* > using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
555
/* > \endverbatim */
556
557
/*  Arguments: */
558
/*  ========== */
559
560
/* > \param[in] N */
561
/* > \verbatim */
562
/* >          N is INTEGER */
563
/* >          The order of the matrix.  N >= 0. */
564
/* > \endverbatim */
565
/* > */
566
/* > \param[in,out] D */
567
/* > \verbatim */
568
/* >          D is DOUBLE PRECISION array, dimension (N) */
569
/* >          On entry, the n diagonal elements of the tridiagonal matrix. */
570
/* >          On exit, if INFO = 0, the eigenvalues in ascending order. */
571
/* > \endverbatim */
572
/* > */
573
/* > \param[in,out] E */
574
/* > \verbatim */
575
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
576
/* >          On entry, the (n-1) subdiagonal elements of the tridiagonal */
577
/* >          matrix. */
578
/* >          On exit, E has been destroyed. */
579
/* > \endverbatim */
580
/* > */
581
/* > \param[out] INFO */
582
/* > \verbatim */
583
/* >          INFO is INTEGER */
584
/* >          = 0:  successful exit */
585
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
586
/* >          > 0:  the algorithm failed to find all of the eigenvalues in */
587
/* >                a total of 30*N iterations; if INFO = i, then i */
588
/* >                elements of E have not converged to zero. */
589
/* > \endverbatim */
590
591
/*  Authors: */
592
/*  ======== */
593
594
/* > \author Univ. of Tennessee */
595
/* > \author Univ. of California Berkeley */
596
/* > \author Univ. of Colorado Denver */
597
/* > \author NAG Ltd. */
598
599
/* > \date December 2016 */
600
601
/* > \ingroup auxOTHERcomputational */
602
603
/*  ===================================================================== */
604
/* Subroutine */ void dsterf_(integer *n, doublereal *d__, doublereal *e, 
605
  integer *info)
606
0
{
607
    /* System generated locals */
608
0
    integer i__1;
609
0
    doublereal d__1, d__2, d__3;
610
611
    /* Local variables */
612
0
    doublereal oldc;
613
0
    integer lend;
614
0
    doublereal rmax;
615
0
    integer jtot;
616
0
    extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal 
617
0
      *, doublereal *, doublereal *);
618
0
    doublereal c__;
619
0
    integer i__, l, m;
620
0
    doublereal p, gamma, r__, s, alpha, sigma, anorm;
621
0
    integer l1;
622
0
    extern doublereal dlapy2_(doublereal *, doublereal *);
623
0
    doublereal bb;
624
0
    extern doublereal dlamch_(char *);
625
0
    integer iscale;
626
0
    extern /* Subroutine */ void dlascl_(char *, integer *, integer *, 
627
0
      doublereal *, doublereal *, integer *, integer *, doublereal *, 
628
0
      integer *, integer *);
629
0
    doublereal oldgam, safmin;
630
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
631
0
    doublereal safmax;
632
0
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
633
0
    extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *, 
634
0
      integer *);
635
0
    integer lendsv;
636
0
    doublereal ssfmin;
637
0
    integer nmaxit;
638
0
    doublereal ssfmax, rt1, rt2, eps, rte;
639
0
    integer lsv;
640
0
    doublereal eps2;
641
642
643
/*  -- LAPACK computational routine (version 3.7.0) -- */
644
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
645
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
646
/*     December 2016 */
647
648
649
/*  ===================================================================== */
650
651
652
/*     Test the input parameters. */
653
654
    /* Parameter adjustments */
655
0
    --e;
656
0
    --d__;
657
658
    /* Function Body */
659
0
    *info = 0;
660
661
/*     Quick return if possible */
662
663
0
    if (*n < 0) {
664
0
  *info = -1;
665
0
  i__1 = -(*info);
666
0
  xerbla_("DSTERF", &i__1, (ftnlen)6);
667
0
  return;
668
0
    }
669
0
    if (*n <= 1) {
670
0
  return;
671
0
    }
672
673
/*     Determine the unit roundoff for this environment. */
674
675
0
    eps = dlamch_("E");
676
/* Computing 2nd power */
677
0
    d__1 = eps;
678
0
    eps2 = d__1 * d__1;
679
0
    safmin = dlamch_("S");
680
0
    safmax = 1. / safmin;
681
0
    ssfmax = sqrt(safmax) / 3.;
682
0
    ssfmin = sqrt(safmin) / eps2;
683
0
    rmax = dlamch_("O");
684
685
/*     Compute the eigenvalues of the tridiagonal matrix. */
686
687
0
    nmaxit = *n * 30;
688
0
    sigma = 0.;
689
0
    jtot = 0;
690
691
/*     Determine where the matrix splits and choose QL or QR iteration */
692
/*     for each block, according to whether top or bottom diagonal */
693
/*     element is smaller. */
694
695
0
    l1 = 1;
696
697
0
L10:
698
0
    if (l1 > *n) {
699
0
  goto L170;
700
0
    }
701
0
    if (l1 > 1) {
702
0
  e[l1 - 1] = 0.;
703
0
    }
704
0
    i__1 = *n - 1;
705
0
    for (m = l1; m <= i__1; ++m) {
706
0
  if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) * 
707
0
    sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
708
0
      e[m] = 0.;
709
0
      goto L30;
710
0
  }
711
/* L20: */
712
0
    }
713
0
    m = *n;
714
715
0
L30:
716
0
    l = l1;
717
0
    lsv = l;
718
0
    lend = m;
719
0
    lendsv = lend;
720
0
    l1 = m + 1;
721
0
    if (lend == l) {
722
0
  goto L10;
723
0
    }
724
725
/*     Scale submatrix in rows and columns L to LEND */
726
727
0
    i__1 = lend - l + 1;
728
0
    anorm = dlanst_("M", &i__1, &d__[l], &e[l]);
729
0
    iscale = 0;
730
0
    if (anorm == 0.) {
731
0
  goto L10;
732
0
    }
733
0
    if (anorm > ssfmax) {
734
0
  iscale = 1;
735
0
  i__1 = lend - l + 1;
736
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
737
0
    info);
738
0
  i__1 = lend - l;
739
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
740
0
    info);
741
0
    } else if (anorm < ssfmin) {
742
0
  iscale = 2;
743
0
  i__1 = lend - l + 1;
744
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
745
0
    info);
746
0
  i__1 = lend - l;
747
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
748
0
    info);
749
0
    }
750
751
0
    i__1 = lend - 1;
752
0
    for (i__ = l; i__ <= i__1; ++i__) {
753
/* Computing 2nd power */
754
0
  d__1 = e[i__];
755
0
  e[i__] = d__1 * d__1;
756
/* L40: */
757
0
    }
758
759
/*     Choose between QL and QR iteration */
760
761
0
    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
762
0
  lend = lsv;
763
0
  l = lendsv;
764
0
    }
765
766
0
    if (lend >= l) {
767
768
/*        QL Iteration */
769
770
/*        Look for small subdiagonal element. */
771
772
0
L50:
773
0
  if (l != lend) {
774
0
      i__1 = lend - 1;
775
0
      for (m = l; m <= i__1; ++m) {
776
0
    if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
777
0
      + 1], abs(d__1))) {
778
0
        goto L70;
779
0
    }
780
/* L60: */
781
0
      }
782
0
  }
783
0
  m = lend;
784
785
0
L70:
786
0
  if (m < lend) {
787
0
      e[m] = 0.;
788
0
  }
789
0
  p = d__[l];
790
0
  if (m == l) {
791
0
      goto L90;
792
0
  }
793
794
/*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
795
/*        eigenvalues. */
796
797
0
  if (m == l + 1) {
798
0
      rte = sqrt(e[l]);
799
0
      dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
800
0
      d__[l] = rt1;
801
0
      d__[l + 1] = rt2;
802
0
      e[l] = 0.;
803
0
      l += 2;
804
0
      if (l <= lend) {
805
0
    goto L50;
806
0
      }
807
0
      goto L150;
808
0
  }
809
810
0
  if (jtot == nmaxit) {
811
0
      goto L150;
812
0
  }
813
0
  ++jtot;
814
815
/*        Form shift. */
816
817
0
  rte = sqrt(e[l]);
818
0
  sigma = (d__[l + 1] - p) / (rte * 2.);
819
0
  r__ = dlapy2_(&sigma, &c_b33);
820
0
  sigma = p - rte / (sigma + d_sign(&r__, &sigma));
821
822
0
  c__ = 1.;
823
0
  s = 0.;
824
0
  gamma = d__[m] - sigma;
825
0
  p = gamma * gamma;
826
827
/*        Inner loop */
828
829
0
  i__1 = l;
830
0
  for (i__ = m - 1; i__ >= i__1; --i__) {
831
0
      bb = e[i__];
832
0
      r__ = p + bb;
833
0
      if (i__ != m - 1) {
834
0
    e[i__ + 1] = s * r__;
835
0
      }
836
0
      oldc = c__;
837
0
      c__ = p / r__;
838
0
      s = bb / r__;
839
0
      oldgam = gamma;
840
0
      alpha = d__[i__];
841
0
      gamma = c__ * (alpha - sigma) - s * oldgam;
842
0
      d__[i__ + 1] = oldgam + (alpha - gamma);
843
0
      if (c__ != 0.) {
844
0
    p = gamma * gamma / c__;
845
0
      } else {
846
0
    p = oldc * bb;
847
0
      }
848
/* L80: */
849
0
  }
850
851
0
  e[l] = s * p;
852
0
  d__[l] = sigma + gamma;
853
0
  goto L50;
854
855
/*        Eigenvalue found. */
856
857
0
L90:
858
0
  d__[l] = p;
859
860
0
  ++l;
861
0
  if (l <= lend) {
862
0
      goto L50;
863
0
  }
864
0
  goto L150;
865
866
0
    } else {
867
868
/*        QR Iteration */
869
870
/*        Look for small superdiagonal element. */
871
872
0
L100:
873
0
  i__1 = lend + 1;
874
0
  for (m = l; m >= i__1; --m) {
875
0
      if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
876
0
        - 1], abs(d__1))) {
877
0
    goto L120;
878
0
      }
879
/* L110: */
880
0
  }
881
0
  m = lend;
882
883
0
L120:
884
0
  if (m > lend) {
885
0
      e[m - 1] = 0.;
886
0
  }
887
0
  p = d__[l];
888
0
  if (m == l) {
889
0
      goto L140;
890
0
  }
891
892
/*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
893
/*        eigenvalues. */
894
895
0
  if (m == l - 1) {
896
0
      rte = sqrt(e[l - 1]);
897
0
      dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
898
0
      d__[l] = rt1;
899
0
      d__[l - 1] = rt2;
900
0
      e[l - 1] = 0.;
901
0
      l += -2;
902
0
      if (l >= lend) {
903
0
    goto L100;
904
0
      }
905
0
      goto L150;
906
0
  }
907
908
0
  if (jtot == nmaxit) {
909
0
      goto L150;
910
0
  }
911
0
  ++jtot;
912
913
/*        Form shift. */
914
915
0
  rte = sqrt(e[l - 1]);
916
0
  sigma = (d__[l - 1] - p) / (rte * 2.);
917
0
  r__ = dlapy2_(&sigma, &c_b33);
918
0
  sigma = p - rte / (sigma + d_sign(&r__, &sigma));
919
920
0
  c__ = 1.;
921
0
  s = 0.;
922
0
  gamma = d__[m] - sigma;
923
0
  p = gamma * gamma;
924
925
/*        Inner loop */
926
927
0
  i__1 = l - 1;
928
0
  for (i__ = m; i__ <= i__1; ++i__) {
929
0
      bb = e[i__];
930
0
      r__ = p + bb;
931
0
      if (i__ != m) {
932
0
    e[i__ - 1] = s * r__;
933
0
      }
934
0
      oldc = c__;
935
0
      c__ = p / r__;
936
0
      s = bb / r__;
937
0
      oldgam = gamma;
938
0
      alpha = d__[i__ + 1];
939
0
      gamma = c__ * (alpha - sigma) - s * oldgam;
940
0
      d__[i__] = oldgam + (alpha - gamma);
941
0
      if (c__ != 0.) {
942
0
    p = gamma * gamma / c__;
943
0
      } else {
944
0
    p = oldc * bb;
945
0
      }
946
/* L130: */
947
0
  }
948
949
0
  e[l - 1] = s * p;
950
0
  d__[l] = sigma + gamma;
951
0
  goto L100;
952
953
/*        Eigenvalue found. */
954
955
0
L140:
956
0
  d__[l] = p;
957
958
0
  --l;
959
0
  if (l >= lend) {
960
0
      goto L100;
961
0
  }
962
0
  goto L150;
963
964
0
    }
965
966
/*     Undo scaling if necessary */
967
968
0
L150:
969
0
    if (iscale == 1) {
970
0
  i__1 = lendsv - lsv + 1;
971
0
  dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
972
0
    n, info);
973
0
    }
974
0
    if (iscale == 2) {
975
0
  i__1 = lendsv - lsv + 1;
976
0
  dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
977
0
    n, info);
978
0
    }
979
980
/*     Check for no convergence to an eigenvalue after a total */
981
/*     of N*MAXIT iterations. */
982
983
0
    if (jtot < nmaxit) {
984
0
  goto L10;
985
0
    }
986
0
    i__1 = *n - 1;
987
0
    for (i__ = 1; i__ <= i__1; ++i__) {
988
0
  if (e[i__] != 0.) {
989
0
      ++(*info);
990
0
  }
991
/* L160: */
992
0
    }
993
0
    goto L180;
994
995
/*     Sort eigenvalues in increasing order. */
996
997
0
L170:
998
0
    dlasrt_("I", n, &d__[1], info);
999
1000
0
L180:
1001
0
    return;
1002
1003
/*     End of DSTERF */
1004
1005
0
} /* dsterf_ */
1006