Coverage Report

Created: 2025-10-16 19:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasd4.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
0
#define TRUE_ (1)
61
0
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b SLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one
514
 modification to a positive diagonal matrix. Used by sbdsdc. */
515
516
/*  =========== DOCUMENTATION =========== */
517
518
/* Online html documentation available at */
519
/*            http://www.netlib.org/lapack/explore-html/ */
520
521
/* > \htmlonly */
522
/* > Download SLASD4 + dependencies */
523
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd4.
524
f"> */
525
/* > [TGZ]</a> */
526
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd4.
527
f"> */
528
/* > [ZIP]</a> */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd4.
530
f"> */
531
/* > [TXT]</a> */
532
/* > \endhtmlonly */
533
534
/*  Definition: */
535
/*  =========== */
536
537
/*       SUBROUTINE SLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO ) */
538
539
/*       INTEGER            I, INFO, N */
540
/*       REAL               RHO, SIGMA */
541
/*       REAL               D( * ), DELTA( * ), WORK( * ), Z( * ) */
542
543
544
/* > \par Purpose: */
545
/*  ============= */
546
/* > */
547
/* > \verbatim */
548
/* > */
549
/* > This subroutine computes the square root of the I-th updated */
550
/* > eigenvalue of a positive symmetric rank-one modification to */
551
/* > a positive diagonal matrix whose entries are given as the squares */
552
/* > of the corresponding entries in the array d, and that */
553
/* > */
554
/* >        0 <= D(i) < D(j)  for  i < j */
555
/* > */
556
/* > and that RHO > 0. This is arranged by the calling routine, and is */
557
/* > no loss in generality.  The rank-one modified system is thus */
558
/* > */
559
/* >        diag( D ) * diag( D ) +  RHO * Z * Z_transpose. */
560
/* > */
561
/* > where we assume the Euclidean norm of Z is 1. */
562
/* > */
563
/* > The method consists of approximating the rational functions in the */
564
/* > secular equation by simpler interpolating rational functions. */
565
/* > \endverbatim */
566
567
/*  Arguments: */
568
/*  ========== */
569
570
/* > \param[in] N */
571
/* > \verbatim */
572
/* >          N is INTEGER */
573
/* >         The length of all arrays. */
574
/* > \endverbatim */
575
/* > */
576
/* > \param[in] I */
577
/* > \verbatim */
578
/* >          I is INTEGER */
579
/* >         The index of the eigenvalue to be computed.  1 <= I <= N. */
580
/* > \endverbatim */
581
/* > */
582
/* > \param[in] D */
583
/* > \verbatim */
584
/* >          D is REAL array, dimension ( N ) */
585
/* >         The original eigenvalues.  It is assumed that they are in */
586
/* >         order, 0 <= D(I) < D(J)  for I < J. */
587
/* > \endverbatim */
588
/* > */
589
/* > \param[in] Z */
590
/* > \verbatim */
591
/* >          Z is REAL array, dimension ( N ) */
592
/* >         The components of the updating vector. */
593
/* > \endverbatim */
594
/* > */
595
/* > \param[out] DELTA */
596
/* > \verbatim */
597
/* >          DELTA is REAL array, dimension ( N ) */
598
/* >         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th */
599
/* >         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA */
600
/* >         contains the information necessary to construct the */
601
/* >         (singular) eigenvectors. */
602
/* > \endverbatim */
603
/* > */
604
/* > \param[in] RHO */
605
/* > \verbatim */
606
/* >          RHO is REAL */
607
/* >         The scalar in the symmetric updating formula. */
608
/* > \endverbatim */
609
/* > */
610
/* > \param[out] SIGMA */
611
/* > \verbatim */
612
/* >          SIGMA is REAL */
613
/* >         The computed sigma_I, the I-th updated eigenvalue. */
614
/* > \endverbatim */
615
/* > */
616
/* > \param[out] WORK */
617
/* > \verbatim */
618
/* >          WORK is REAL array, dimension ( N ) */
619
/* >         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th */
620
/* >         component.  If N = 1, then WORK( 1 ) = 1. */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[out] INFO */
624
/* > \verbatim */
625
/* >          INFO is INTEGER */
626
/* >         = 0:  successful exit */
627
/* >         > 0:  if INFO = 1, the updating process failed. */
628
/* > \endverbatim */
629
630
/* > \par Internal Parameters: */
631
/*  ========================= */
632
/* > */
633
/* > \verbatim */
634
/* >  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
635
/* >  whether D(i) or D(i+1) is treated as the origin. */
636
/* > */
637
/* >            ORGATI = .true.    origin at i */
638
/* >            ORGATI = .false.   origin at i+1 */
639
/* > */
640
/* >  Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
641
/* >  if we are working with THREE poles! */
642
/* > */
643
/* >  MAXIT is the maximum number of iterations allowed for each */
644
/* >  eigenvalue. */
645
/* > \endverbatim */
646
647
/*  Authors: */
648
/*  ======== */
649
650
/* > \author Univ. of Tennessee */
651
/* > \author Univ. of California Berkeley */
652
/* > \author Univ. of Colorado Denver */
653
/* > \author NAG Ltd. */
654
655
/* > \date December 2016 */
656
657
/* > \ingroup OTHERauxiliary */
658
659
/* > \par Contributors: */
660
/*  ================== */
661
/* > */
662
/* >     Ren-Cang Li, Computer Science Division, University of California */
663
/* >     at Berkeley, USA */
664
/* > */
665
/*  ===================================================================== */
666
/* Subroutine */ void slasd4_(integer *n, integer *i__, real *d__, real *z__, 
667
  real *delta, real *rho, real *sigma, real *work, integer *info)
668
0
{
669
    /* System generated locals */
670
0
    integer i__1;
671
0
    real r__1;
672
673
    /* Local variables */
674
0
    real dphi, sglb, dpsi, sgub;
675
0
    integer iter;
676
0
    real temp, prew, temp1, temp2, a, b, c__;
677
0
    integer j;
678
0
    real w, dtiim, delsq, dtiip;
679
0
    integer niter;
680
0
    real dtisq;
681
0
    logical swtch;
682
0
    real dtnsq;
683
0
    extern /* Subroutine */ void slaed6_(integer *, logical *, real *, real *, 
684
0
      real *, real *, real *, integer *);
685
0
    real delsq2;
686
0
    extern /* Subroutine */ void slasd5_(integer *, real *, real *, real *, 
687
0
      real *, real *, real *);
688
0
    real dd[3], dtnsq1;
689
0
    logical swtch3;
690
0
    integer ii;
691
0
    real dw;
692
0
    extern real slamch_(char *);
693
0
    real zz[3];
694
0
    logical orgati;
695
0
    real erretm, dtipsq, rhoinv;
696
0
    integer ip1;
697
0
    real sq2, eta, phi, eps, tau, psi;
698
0
    logical geomavg;
699
0
    integer iim1, iip1;
700
0
    real tau2;
701
702
703
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
704
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
705
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
706
/*     December 2016 */
707
708
709
/*  ===================================================================== */
710
711
712
/*     Since this routine is called in an inner loop, we do no argument */
713
/*     checking. */
714
715
/*     Quick return for N=1 and 2. */
716
717
    /* Parameter adjustments */
718
0
    --work;
719
0
    --delta;
720
0
    --z__;
721
0
    --d__;
722
723
    /* Function Body */
724
0
    *info = 0;
725
0
    if (*n == 1) {
726
727
/*        Presumably, I=1 upon entry */
728
729
0
  *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
730
0
  delta[1] = 1.f;
731
0
  work[1] = 1.f;
732
0
  return;
733
0
    }
734
0
    if (*n == 2) {
735
0
  slasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
736
0
  return;
737
0
    }
738
739
/*     Compute machine epsilon */
740
741
0
    eps = slamch_("Epsilon");
742
0
    rhoinv = 1.f / *rho;
743
0
    tau2 = 0.f;
744
745
/*     The case I = N */
746
747
0
    if (*i__ == *n) {
748
749
/*        Initialize some basic variables */
750
751
0
  ii = *n - 1;
752
0
  niter = 1;
753
754
/*        Calculate initial guess */
755
756
0
  temp = *rho / 2.f;
757
758
/*        If ||Z||_2 is not one, then TEMP should be set to */
759
/*        RHO * ||Z||_2^2 / TWO */
760
761
0
  temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
762
0
  i__1 = *n;
763
0
  for (j = 1; j <= i__1; ++j) {
764
0
      work[j] = d__[j] + d__[*n] + temp1;
765
0
      delta[j] = d__[j] - d__[*n] - temp1;
766
/* L10: */
767
0
  }
768
769
0
  psi = 0.f;
770
0
  i__1 = *n - 2;
771
0
  for (j = 1; j <= i__1; ++j) {
772
0
      psi += z__[j] * z__[j] / (delta[j] * work[j]);
773
/* L20: */
774
0
  }
775
776
0
  c__ = rhoinv + psi;
777
0
  w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
778
0
    n] / (delta[*n] * work[*n]);
779
780
0
  if (w <= 0.f) {
781
0
      temp1 = sqrt(d__[*n] * d__[*n] + *rho);
782
0
      temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
783
0
        n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * 
784
0
        z__[*n] / *rho;
785
786
/*           The following TAU2 is to approximate */
787
/*           SIGMA_n^2 - D( N )*D( N ) */
788
789
0
      if (c__ <= temp) {
790
0
    tau = *rho;
791
0
      } else {
792
0
    delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
793
0
    a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
794
0
      n];
795
0
    b = z__[*n] * z__[*n] * delsq;
796
0
    if (a < 0.f) {
797
0
        tau2 = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
798
0
    } else {
799
0
        tau2 = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
800
0
    }
801
0
    tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
802
0
      }
803
804
/*           It can be proved that */
805
/*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO */
806
807
0
  } else {
808
0
      delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
809
0
      a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
810
0
      b = z__[*n] * z__[*n] * delsq;
811
812
/*           The following TAU2 is to approximate */
813
/*           SIGMA_n^2 - D( N )*D( N ) */
814
815
0
      if (a < 0.f) {
816
0
    tau2 = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
817
0
      } else {
818
0
    tau2 = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
819
0
      }
820
0
      tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
821
822
/*           It can be proved that */
823
/*           D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2 */
824
825
0
  }
826
827
/*        The following TAU is to approximate SIGMA_n - D( N ) */
828
829
/*         TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) ) */
830
831
0
  *sigma = d__[*n] + tau;
832
0
  i__1 = *n;
833
0
  for (j = 1; j <= i__1; ++j) {
834
0
      delta[j] = d__[j] - d__[*n] - tau;
835
0
      work[j] = d__[j] + d__[*n] + tau;
836
/* L30: */
837
0
  }
838
839
/*        Evaluate PSI and the derivative DPSI */
840
841
0
  dpsi = 0.f;
842
0
  psi = 0.f;
843
0
  erretm = 0.f;
844
0
  i__1 = ii;
845
0
  for (j = 1; j <= i__1; ++j) {
846
0
      temp = z__[j] / (delta[j] * work[j]);
847
0
      psi += z__[j] * temp;
848
0
      dpsi += temp * temp;
849
0
      erretm += psi;
850
/* L40: */
851
0
  }
852
0
  erretm = abs(erretm);
853
854
/*        Evaluate PHI and the derivative DPHI */
855
856
0
  temp = z__[*n] / (delta[*n] * work[*n]);
857
0
  phi = z__[*n] * temp;
858
0
  dphi = temp * temp;
859
0
  erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
860
/*    $          + ABS( TAU2 )*( DPSI+DPHI ) */
861
862
0
  w = rhoinv + phi + psi;
863
864
/*        Test for convergence */
865
866
0
  if (abs(w) <= eps * erretm) {
867
0
      goto L240;
868
0
  }
869
870
/*        Calculate the new step */
871
872
0
  ++niter;
873
0
  dtnsq1 = work[*n - 1] * delta[*n - 1];
874
0
  dtnsq = work[*n] * delta[*n];
875
0
  c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
876
0
  a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
877
0
  b = dtnsq * dtnsq1 * w;
878
0
  if (c__ < 0.f) {
879
0
      c__ = abs(c__);
880
0
  }
881
0
  if (c__ == 0.f) {
882
0
      eta = *rho - *sigma * *sigma;
883
0
  } else if (a >= 0.f) {
884
0
      eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
885
0
        c__ * 2.f);
886
0
  } else {
887
0
      eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)
888
0
        )));
889
0
  }
890
891
/*        Note, eta should be positive if w is negative, and */
892
/*        eta should be negative otherwise. However, */
893
/*        if for some reason caused by roundoff, eta*w > 0, */
894
/*        we simply use one Newton step instead. This way */
895
/*        will guarantee eta*w < 0. */
896
897
0
  if (w * eta > 0.f) {
898
0
      eta = -w / (dpsi + dphi);
899
0
  }
900
0
  temp = eta - dtnsq;
901
0
  if (temp > *rho) {
902
0
      eta = *rho + dtnsq;
903
0
  }
904
905
0
  eta /= *sigma + sqrt(eta + *sigma * *sigma);
906
0
  tau += eta;
907
0
  *sigma += eta;
908
909
0
  i__1 = *n;
910
0
  for (j = 1; j <= i__1; ++j) {
911
0
      delta[j] -= eta;
912
0
      work[j] += eta;
913
/* L50: */
914
0
  }
915
916
/*        Evaluate PSI and the derivative DPSI */
917
918
0
  dpsi = 0.f;
919
0
  psi = 0.f;
920
0
  erretm = 0.f;
921
0
  i__1 = ii;
922
0
  for (j = 1; j <= i__1; ++j) {
923
0
      temp = z__[j] / (work[j] * delta[j]);
924
0
      psi += z__[j] * temp;
925
0
      dpsi += temp * temp;
926
0
      erretm += psi;
927
/* L60: */
928
0
  }
929
0
  erretm = abs(erretm);
930
931
/*        Evaluate PHI and the derivative DPHI */
932
933
0
  tau2 = work[*n] * delta[*n];
934
0
  temp = z__[*n] / tau2;
935
0
  phi = z__[*n] * temp;
936
0
  dphi = temp * temp;
937
0
  erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
938
/*    $          + ABS( TAU2 )*( DPSI+DPHI ) */
939
940
0
  w = rhoinv + phi + psi;
941
942
/*        Main loop to update the values of the array   DELTA */
943
944
0
  iter = niter + 1;
945
946
0
  for (niter = iter; niter <= 400; ++niter) {
947
948
/*           Test for convergence */
949
950
0
      if (abs(w) <= eps * erretm) {
951
0
    goto L240;
952
0
      }
953
954
/*           Calculate the new step */
955
956
0
      dtnsq1 = work[*n - 1] * delta[*n - 1];
957
0
      dtnsq = work[*n] * delta[*n];
958
0
      c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
959
0
      a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
960
0
      b = dtnsq1 * dtnsq * w;
961
0
      if (a >= 0.f) {
962
0
    eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / 
963
0
      (c__ * 2.f);
964
0
      } else {
965
0
    eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
966
0
      r__1))));
967
0
      }
968
969
/*           Note, eta should be positive if w is negative, and */
970
/*           eta should be negative otherwise. However, */
971
/*           if for some reason caused by roundoff, eta*w > 0, */
972
/*           we simply use one Newton step instead. This way */
973
/*           will guarantee eta*w < 0. */
974
975
0
      if (w * eta > 0.f) {
976
0
    eta = -w / (dpsi + dphi);
977
0
      }
978
0
      temp = eta - dtnsq;
979
0
      if (temp <= 0.f) {
980
0
    eta /= 2.f;
981
0
      }
982
983
0
      eta /= *sigma + sqrt(eta + *sigma * *sigma);
984
0
      tau += eta;
985
0
      *sigma += eta;
986
987
0
      i__1 = *n;
988
0
      for (j = 1; j <= i__1; ++j) {
989
0
    delta[j] -= eta;
990
0
    work[j] += eta;
991
/* L70: */
992
0
      }
993
994
/*           Evaluate PSI and the derivative DPSI */
995
996
0
      dpsi = 0.f;
997
0
      psi = 0.f;
998
0
      erretm = 0.f;
999
0
      i__1 = ii;
1000
0
      for (j = 1; j <= i__1; ++j) {
1001
0
    temp = z__[j] / (work[j] * delta[j]);
1002
0
    psi += z__[j] * temp;
1003
0
    dpsi += temp * temp;
1004
0
    erretm += psi;
1005
/* L80: */
1006
0
      }
1007
0
      erretm = abs(erretm);
1008
1009
/*           Evaluate PHI and the derivative DPHI */
1010
1011
0
      tau2 = work[*n] * delta[*n];
1012
0
      temp = z__[*n] / tau2;
1013
0
      phi = z__[*n] * temp;
1014
0
      dphi = temp * temp;
1015
0
      erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
1016
/*    $             + ABS( TAU2 )*( DPSI+DPHI ) */
1017
1018
0
      w = rhoinv + phi + psi;
1019
/* L90: */
1020
0
  }
1021
1022
/*        Return with INFO = 1, NITER = MAXIT and not converged */
1023
1024
0
  *info = 1;
1025
0
  goto L240;
1026
1027
/*        End for the case I = N */
1028
1029
0
    } else {
1030
1031
/*        The case for I < N */
1032
1033
0
  niter = 1;
1034
0
  ip1 = *i__ + 1;
1035
1036
/*        Calculate initial guess */
1037
1038
0
  delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
1039
0
  delsq2 = delsq / 2.f;
1040
0
  sq2 = sqrt((d__[*i__] * d__[*i__] + d__[ip1] * d__[ip1]) / 2.f);
1041
0
  temp = delsq2 / (d__[*i__] + sq2);
1042
0
  i__1 = *n;
1043
0
  for (j = 1; j <= i__1; ++j) {
1044
0
      work[j] = d__[j] + d__[*i__] + temp;
1045
0
      delta[j] = d__[j] - d__[*i__] - temp;
1046
/* L100: */
1047
0
  }
1048
1049
0
  psi = 0.f;
1050
0
  i__1 = *i__ - 1;
1051
0
  for (j = 1; j <= i__1; ++j) {
1052
0
      psi += z__[j] * z__[j] / (work[j] * delta[j]);
1053
/* L110: */
1054
0
  }
1055
1056
0
  phi = 0.f;
1057
0
  i__1 = *i__ + 2;
1058
0
  for (j = *n; j >= i__1; --j) {
1059
0
      phi += z__[j] * z__[j] / (work[j] * delta[j]);
1060
/* L120: */
1061
0
  }
1062
0
  c__ = rhoinv + psi + phi;
1063
0
  w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
1064
0
    ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
1065
1066
0
  geomavg = FALSE_;
1067
0
  if (w > 0.f) {
1068
1069
/*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
1070
1071
/*           We choose d(i) as origin. */
1072
1073
0
      orgati = TRUE_;
1074
0
      ii = *i__;
1075
0
      sglb = 0.f;
1076
0
      sgub = delsq2 / (d__[*i__] + sq2);
1077
0
      a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
1078
0
      b = z__[*i__] * z__[*i__] * delsq;
1079
0
      if (a > 0.f) {
1080
0
    tau2 = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
1081
0
      r__1))));
1082
0
      } else {
1083
0
    tau2 = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
1084
0
       (c__ * 2.f);
1085
0
      }
1086
1087
/*           TAU2 now is an estimation of SIGMA^2 - D( I )^2. The */
1088
/*           following, however, is the corresponding estimation of */
1089
/*           SIGMA - D( I ). */
1090
1091
0
      tau = tau2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau2));
1092
0
      temp = sqrt(eps);
1093
0
      if (d__[*i__] <= temp * d__[ip1] && (r__1 = z__[*i__], abs(r__1)) 
1094
0
        <= temp && d__[*i__] > 0.f) {
1095
/* Computing MIN */
1096
0
    r__1 = d__[*i__] * 10.f;
1097
0
    tau = f2cmin(r__1,sgub);
1098
0
    geomavg = TRUE_;
1099
0
      }
1100
0
  } else {
1101
1102
/*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
1103
1104
/*           We choose d(i+1) as origin. */
1105
1106
0
      orgati = FALSE_;
1107
0
      ii = ip1;
1108
0
      sglb = -delsq2 / (d__[ii] + sq2);
1109
0
      sgub = 0.f;
1110
0
      a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
1111
0
      b = z__[ip1] * z__[ip1] * delsq;
1112
0
      if (a < 0.f) {
1113
0
    tau2 = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, abs(
1114
0
      r__1))));
1115
0
      } else {
1116
0
    tau2 = -(a + sqrt((r__1 = a * a + b * 4.f * c__, abs(r__1)))) 
1117
0
      / (c__ * 2.f);
1118
0
      }
1119
1120
/*           TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The */
1121
/*           following, however, is the corresponding estimation of */
1122
/*           SIGMA - D( IP1 ). */
1123
1124
0
      tau = tau2 / (d__[ip1] + sqrt((r__1 = d__[ip1] * d__[ip1] + tau2, 
1125
0
        abs(r__1))));
1126
0
  }
1127
1128
0
  *sigma = d__[ii] + tau;
1129
0
  i__1 = *n;
1130
0
  for (j = 1; j <= i__1; ++j) {
1131
0
      work[j] = d__[j] + d__[ii] + tau;
1132
0
      delta[j] = d__[j] - d__[ii] - tau;
1133
/* L130: */
1134
0
  }
1135
0
  iim1 = ii - 1;
1136
0
  iip1 = ii + 1;
1137
1138
/*        Evaluate PSI and the derivative DPSI */
1139
1140
0
  dpsi = 0.f;
1141
0
  psi = 0.f;
1142
0
  erretm = 0.f;
1143
0
  i__1 = iim1;
1144
0
  for (j = 1; j <= i__1; ++j) {
1145
0
      temp = z__[j] / (work[j] * delta[j]);
1146
0
      psi += z__[j] * temp;
1147
0
      dpsi += temp * temp;
1148
0
      erretm += psi;
1149
/* L150: */
1150
0
  }
1151
0
  erretm = abs(erretm);
1152
1153
/*        Evaluate PHI and the derivative DPHI */
1154
1155
0
  dphi = 0.f;
1156
0
  phi = 0.f;
1157
0
  i__1 = iip1;
1158
0
  for (j = *n; j >= i__1; --j) {
1159
0
      temp = z__[j] / (work[j] * delta[j]);
1160
0
      phi += z__[j] * temp;
1161
0
      dphi += temp * temp;
1162
0
      erretm += phi;
1163
/* L160: */
1164
0
  }
1165
1166
0
  w = rhoinv + phi + psi;
1167
1168
/*        W is the value of the secular function with */
1169
/*        its ii-th element removed. */
1170
1171
0
  swtch3 = FALSE_;
1172
0
  if (orgati) {
1173
0
      if (w < 0.f) {
1174
0
    swtch3 = TRUE_;
1175
0
      }
1176
0
  } else {
1177
0
      if (w > 0.f) {
1178
0
    swtch3 = TRUE_;
1179
0
      }
1180
0
  }
1181
0
  if (ii == 1 || ii == *n) {
1182
0
      swtch3 = FALSE_;
1183
0
  }
1184
1185
0
  temp = z__[ii] / (work[ii] * delta[ii]);
1186
0
  dw = dpsi + dphi + temp * temp;
1187
0
  temp = z__[ii] * temp;
1188
0
  w += temp;
1189
0
  erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f;
1190
/*    $          + ABS( TAU2 )*DW */
1191
1192
/*        Test for convergence */
1193
1194
0
  if (abs(w) <= eps * erretm) {
1195
0
      goto L240;
1196
0
  }
1197
1198
0
  if (w <= 0.f) {
1199
0
      sglb = f2cmax(sglb,tau);
1200
0
  } else {
1201
0
      sgub = f2cmin(sgub,tau);
1202
0
  }
1203
1204
/*        Calculate the new step */
1205
1206
0
  ++niter;
1207
0
  if (! swtch3) {
1208
0
      dtipsq = work[ip1] * delta[ip1];
1209
0
      dtisq = work[*i__] * delta[*i__];
1210
0
      if (orgati) {
1211
/* Computing 2nd power */
1212
0
    r__1 = z__[*i__] / dtisq;
1213
0
    c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
1214
0
      } else {
1215
/* Computing 2nd power */
1216
0
    r__1 = z__[ip1] / dtipsq;
1217
0
    c__ = w - dtisq * dw - delsq * (r__1 * r__1);
1218
0
      }
1219
0
      a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
1220
0
      b = dtipsq * dtisq * w;
1221
0
      if (c__ == 0.f) {
1222
0
    if (a == 0.f) {
1223
0
        if (orgati) {
1224
0
      a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + 
1225
0
        dphi);
1226
0
        } else {
1227
0
      a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 
1228
0
        dphi);
1229
0
        }
1230
0
    }
1231
0
    eta = b / a;
1232
0
      } else if (a <= 0.f) {
1233
0
    eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / 
1234
0
      (c__ * 2.f);
1235
0
      } else {
1236
0
    eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
1237
0
      r__1))));
1238
0
      }
1239
0
  } else {
1240
1241
/*           Interpolation using THREE most relevant poles */
1242
1243
0
      dtiim = work[iim1] * delta[iim1];
1244
0
      dtiip = work[iip1] * delta[iip1];
1245
0
      temp = rhoinv + psi + phi;
1246
0
      if (orgati) {
1247
0
    temp1 = z__[iim1] / dtiim;
1248
0
    temp1 *= temp1;
1249
0
    c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
1250
0
       (d__[iim1] + d__[iip1]) * temp1;
1251
0
    zz[0] = z__[iim1] * z__[iim1];
1252
0
    if (dpsi < temp1) {
1253
0
        zz[2] = dtiip * dtiip * dphi;
1254
0
    } else {
1255
0
        zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
1256
0
    }
1257
0
      } else {
1258
0
    temp1 = z__[iip1] / dtiip;
1259
0
    temp1 *= temp1;
1260
0
    c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
1261
0
       (d__[iim1] + d__[iip1]) * temp1;
1262
0
    if (dphi < temp1) {
1263
0
        zz[0] = dtiim * dtiim * dpsi;
1264
0
    } else {
1265
0
        zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
1266
0
    }
1267
0
    zz[2] = z__[iip1] * z__[iip1];
1268
0
      }
1269
0
      zz[1] = z__[ii] * z__[ii];
1270
0
      dd[0] = dtiim;
1271
0
      dd[1] = delta[ii] * work[ii];
1272
0
      dd[2] = dtiip;
1273
0
      slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
1274
1275
0
      if (*info != 0) {
1276
1277
/*              If INFO is not 0, i.e., SLAED6 failed, switch back */
1278
/*              to 2 pole interpolation. */
1279
1280
0
    swtch3 = FALSE_;
1281
0
    *info = 0;
1282
0
    dtipsq = work[ip1] * delta[ip1];
1283
0
    dtisq = work[*i__] * delta[*i__];
1284
0
    if (orgati) {
1285
/* Computing 2nd power */
1286
0
        r__1 = z__[*i__] / dtisq;
1287
0
        c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
1288
0
    } else {
1289
/* Computing 2nd power */
1290
0
        r__1 = z__[ip1] / dtipsq;
1291
0
        c__ = w - dtisq * dw - delsq * (r__1 * r__1);
1292
0
    }
1293
0
    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
1294
0
    b = dtipsq * dtisq * w;
1295
0
    if (c__ == 0.f) {
1296
0
        if (a == 0.f) {
1297
0
      if (orgati) {
1298
0
          a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (
1299
0
            dpsi + dphi);
1300
0
      } else {
1301
0
          a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 
1302
0
            dphi);
1303
0
      }
1304
0
        }
1305
0
        eta = b / a;
1306
0
    } else if (a <= 0.f) {
1307
0
        eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
1308
0
          ) / (c__ * 2.f);
1309
0
    } else {
1310
0
        eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, 
1311
0
          abs(r__1))));
1312
0
    }
1313
0
      }
1314
0
  }
1315
1316
/*        Note, eta should be positive if w is negative, and */
1317
/*        eta should be negative otherwise. However, */
1318
/*        if for some reason caused by roundoff, eta*w > 0, */
1319
/*        we simply use one Newton step instead. This way */
1320
/*        will guarantee eta*w < 0. */
1321
1322
0
  if (w * eta >= 0.f) {
1323
0
      eta = -w / dw;
1324
0
  }
1325
1326
0
  eta /= *sigma + sqrt(*sigma * *sigma + eta);
1327
0
  temp = tau + eta;
1328
0
  if (temp > sgub || temp < sglb) {
1329
0
      if (w < 0.f) {
1330
0
    eta = (sgub - tau) / 2.f;
1331
0
      } else {
1332
0
    eta = (sglb - tau) / 2.f;
1333
0
      }
1334
0
      if (geomavg) {
1335
0
    if (w < 0.f) {
1336
0
        if (tau > 0.f) {
1337
0
      eta = sqrt(sgub * tau) - tau;
1338
0
        }
1339
0
    } else {
1340
0
        if (sglb > 0.f) {
1341
0
      eta = sqrt(sglb * tau) - tau;
1342
0
        }
1343
0
    }
1344
0
      }
1345
0
  }
1346
1347
0
  prew = w;
1348
1349
0
  tau += eta;
1350
0
  *sigma += eta;
1351
1352
0
  i__1 = *n;
1353
0
  for (j = 1; j <= i__1; ++j) {
1354
0
      work[j] += eta;
1355
0
      delta[j] -= eta;
1356
/* L170: */
1357
0
  }
1358
1359
/*        Evaluate PSI and the derivative DPSI */
1360
1361
0
  dpsi = 0.f;
1362
0
  psi = 0.f;
1363
0
  erretm = 0.f;
1364
0
  i__1 = iim1;
1365
0
  for (j = 1; j <= i__1; ++j) {
1366
0
      temp = z__[j] / (work[j] * delta[j]);
1367
0
      psi += z__[j] * temp;
1368
0
      dpsi += temp * temp;
1369
0
      erretm += psi;
1370
/* L180: */
1371
0
  }
1372
0
  erretm = abs(erretm);
1373
1374
/*        Evaluate PHI and the derivative DPHI */
1375
1376
0
  dphi = 0.f;
1377
0
  phi = 0.f;
1378
0
  i__1 = iip1;
1379
0
  for (j = *n; j >= i__1; --j) {
1380
0
      temp = z__[j] / (work[j] * delta[j]);
1381
0
      phi += z__[j] * temp;
1382
0
      dphi += temp * temp;
1383
0
      erretm += phi;
1384
/* L190: */
1385
0
  }
1386
1387
0
  tau2 = work[ii] * delta[ii];
1388
0
  temp = z__[ii] / tau2;
1389
0
  dw = dpsi + dphi + temp * temp;
1390
0
  temp = z__[ii] * temp;
1391
0
  w = rhoinv + phi + psi + temp;
1392
0
  erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f;
1393
/*    $          + ABS( TAU2 )*DW */
1394
1395
0
  swtch = FALSE_;
1396
0
  if (orgati) {
1397
0
      if (-w > abs(prew) / 10.f) {
1398
0
    swtch = TRUE_;
1399
0
      }
1400
0
  } else {
1401
0
      if (w > abs(prew) / 10.f) {
1402
0
    swtch = TRUE_;
1403
0
      }
1404
0
  }
1405
1406
/*        Main loop to update the values of the array   DELTA and WORK */
1407
1408
0
  iter = niter + 1;
1409
1410
0
  for (niter = iter; niter <= 400; ++niter) {
1411
1412
/*           Test for convergence */
1413
1414
0
      if (abs(w) <= eps * erretm) {
1415
/*     $          .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN */
1416
0
    goto L240;
1417
0
      }
1418
1419
0
      if (w <= 0.f) {
1420
0
    sglb = f2cmax(sglb,tau);
1421
0
      } else {
1422
0
    sgub = f2cmin(sgub,tau);
1423
0
      }
1424
1425
/*           Calculate the new step */
1426
1427
0
      if (! swtch3) {
1428
0
    dtipsq = work[ip1] * delta[ip1];
1429
0
    dtisq = work[*i__] * delta[*i__];
1430
0
    if (! swtch) {
1431
0
        if (orgati) {
1432
/* Computing 2nd power */
1433
0
      r__1 = z__[*i__] / dtisq;
1434
0
      c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
1435
0
        } else {
1436
/* Computing 2nd power */
1437
0
      r__1 = z__[ip1] / dtipsq;
1438
0
      c__ = w - dtisq * dw - delsq * (r__1 * r__1);
1439
0
        }
1440
0
    } else {
1441
0
        temp = z__[ii] / (work[ii] * delta[ii]);
1442
0
        if (orgati) {
1443
0
      dpsi += temp * temp;
1444
0
        } else {
1445
0
      dphi += temp * temp;
1446
0
        }
1447
0
        c__ = w - dtisq * dpsi - dtipsq * dphi;
1448
0
    }
1449
0
    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
1450
0
    b = dtipsq * dtisq * w;
1451
0
    if (c__ == 0.f) {
1452
0
        if (a == 0.f) {
1453
0
      if (! swtch) {
1454
0
          if (orgati) {
1455
0
        a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * 
1456
0
          (dpsi + dphi);
1457
0
          } else {
1458
0
        a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
1459
0
          dpsi + dphi);
1460
0
          }
1461
0
      } else {
1462
0
          a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
1463
0
      }
1464
0
        }
1465
0
        eta = b / a;
1466
0
    } else if (a <= 0.f) {
1467
0
        eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
1468
0
          ) / (c__ * 2.f);
1469
0
    } else {
1470
0
        eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, 
1471
0
          abs(r__1))));
1472
0
    }
1473
0
      } else {
1474
1475
/*              Interpolation using THREE most relevant poles */
1476
1477
0
    dtiim = work[iim1] * delta[iim1];
1478
0
    dtiip = work[iip1] * delta[iip1];
1479
0
    temp = rhoinv + psi + phi;
1480
0
    if (swtch) {
1481
0
        c__ = temp - dtiim * dpsi - dtiip * dphi;
1482
0
        zz[0] = dtiim * dtiim * dpsi;
1483
0
        zz[2] = dtiip * dtiip * dphi;
1484
0
    } else {
1485
0
        if (orgati) {
1486
0
      temp1 = z__[iim1] / dtiim;
1487
0
      temp1 *= temp1;
1488
0
      temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
1489
0
        iip1]) * temp1;
1490
0
      c__ = temp - dtiip * (dpsi + dphi) - temp2;
1491
0
      zz[0] = z__[iim1] * z__[iim1];
1492
0
      if (dpsi < temp1) {
1493
0
          zz[2] = dtiip * dtiip * dphi;
1494
0
      } else {
1495
0
          zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
1496
0
      }
1497
0
        } else {
1498
0
      temp1 = z__[iip1] / dtiip;
1499
0
      temp1 *= temp1;
1500
0
      temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
1501
0
        iip1]) * temp1;
1502
0
      c__ = temp - dtiim * (dpsi + dphi) - temp2;
1503
0
      if (dphi < temp1) {
1504
0
          zz[0] = dtiim * dtiim * dpsi;
1505
0
      } else {
1506
0
          zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
1507
0
      }
1508
0
      zz[2] = z__[iip1] * z__[iip1];
1509
0
        }
1510
0
    }
1511
0
    dd[0] = dtiim;
1512
0
    dd[1] = delta[ii] * work[ii];
1513
0
    dd[2] = dtiip;
1514
0
    slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
1515
1516
0
    if (*info != 0) {
1517
1518
/*                 If INFO is not 0, i.e., SLAED6 failed, switch */
1519
/*                 back to two pole interpolation */
1520
1521
0
        swtch3 = FALSE_;
1522
0
        *info = 0;
1523
0
        dtipsq = work[ip1] * delta[ip1];
1524
0
        dtisq = work[*i__] * delta[*i__];
1525
0
        if (! swtch) {
1526
0
      if (orgati) {
1527
/* Computing 2nd power */
1528
0
          r__1 = z__[*i__] / dtisq;
1529
0
          c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
1530
0
      } else {
1531
/* Computing 2nd power */
1532
0
          r__1 = z__[ip1] / dtipsq;
1533
0
          c__ = w - dtisq * dw - delsq * (r__1 * r__1);
1534
0
      }
1535
0
        } else {
1536
0
      temp = z__[ii] / (work[ii] * delta[ii]);
1537
0
      if (orgati) {
1538
0
          dpsi += temp * temp;
1539
0
      } else {
1540
0
          dphi += temp * temp;
1541
0
      }
1542
0
      c__ = w - dtisq * dpsi - dtipsq * dphi;
1543
0
        }
1544
0
        a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
1545
0
        b = dtipsq * dtisq * w;
1546
0
        if (c__ == 0.f) {
1547
0
      if (a == 0.f) {
1548
0
          if (! swtch) {
1549
0
        if (orgati) {
1550
0
            a = z__[*i__] * z__[*i__] + dtipsq * 
1551
0
              dtipsq * (dpsi + dphi);
1552
0
        } else {
1553
0
            a = z__[ip1] * z__[ip1] + dtisq * dtisq * 
1554
0
              (dpsi + dphi);
1555
0
        }
1556
0
          } else {
1557
0
        a = dtisq * dtisq * dpsi + dtipsq * dtipsq * 
1558
0
          dphi;
1559
0
          }
1560
0
      }
1561
0
      eta = b / a;
1562
0
        } else if (a <= 0.f) {
1563
0
      eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
1564
0
        r__1)))) / (c__ * 2.f);
1565
0
        } else {
1566
0
      eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * 
1567
0
        c__, abs(r__1))));
1568
0
        }
1569
0
    }
1570
0
      }
1571
1572
/*           Note, eta should be positive if w is negative, and */
1573
/*           eta should be negative otherwise. However, */
1574
/*           if for some reason caused by roundoff, eta*w > 0, */
1575
/*           we simply use one Newton step instead. This way */
1576
/*           will guarantee eta*w < 0. */
1577
1578
0
      if (w * eta >= 0.f) {
1579
0
    eta = -w / dw;
1580
0
      }
1581
1582
0
      eta /= *sigma + sqrt(*sigma * *sigma + eta);
1583
0
      temp = tau + eta;
1584
0
      if (temp > sgub || temp < sglb) {
1585
0
    if (w < 0.f) {
1586
0
        eta = (sgub - tau) / 2.f;
1587
0
    } else {
1588
0
        eta = (sglb - tau) / 2.f;
1589
0
    }
1590
0
    if (geomavg) {
1591
0
        if (w < 0.f) {
1592
0
      if (tau > 0.f) {
1593
0
          eta = sqrt(sgub * tau) - tau;
1594
0
      }
1595
0
        } else {
1596
0
      if (sglb > 0.f) {
1597
0
          eta = sqrt(sglb * tau) - tau;
1598
0
      }
1599
0
        }
1600
0
    }
1601
0
      }
1602
1603
0
      prew = w;
1604
1605
0
      tau += eta;
1606
0
      *sigma += eta;
1607
1608
0
      i__1 = *n;
1609
0
      for (j = 1; j <= i__1; ++j) {
1610
0
    work[j] += eta;
1611
0
    delta[j] -= eta;
1612
/* L200: */
1613
0
      }
1614
1615
/*           Evaluate PSI and the derivative DPSI */
1616
1617
0
      dpsi = 0.f;
1618
0
      psi = 0.f;
1619
0
      erretm = 0.f;
1620
0
      i__1 = iim1;
1621
0
      for (j = 1; j <= i__1; ++j) {
1622
0
    temp = z__[j] / (work[j] * delta[j]);
1623
0
    psi += z__[j] * temp;
1624
0
    dpsi += temp * temp;
1625
0
    erretm += psi;
1626
/* L210: */
1627
0
      }
1628
0
      erretm = abs(erretm);
1629
1630
/*           Evaluate PHI and the derivative DPHI */
1631
1632
0
      dphi = 0.f;
1633
0
      phi = 0.f;
1634
0
      i__1 = iip1;
1635
0
      for (j = *n; j >= i__1; --j) {
1636
0
    temp = z__[j] / (work[j] * delta[j]);
1637
0
    phi += z__[j] * temp;
1638
0
    dphi += temp * temp;
1639
0
    erretm += phi;
1640
/* L220: */
1641
0
      }
1642
1643
0
      tau2 = work[ii] * delta[ii];
1644
0
      temp = z__[ii] / tau2;
1645
0
      dw = dpsi + dphi + temp * temp;
1646
0
      temp = z__[ii] * temp;
1647
0
      w = rhoinv + phi + psi + temp;
1648
0
      erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 
1649
0
        3.f;
1650
/*    $             + ABS( TAU2 )*DW */
1651
1652
0
      if (w * prew > 0.f && abs(w) > abs(prew) / 10.f) {
1653
0
    swtch = ! swtch;
1654
0
      }
1655
1656
/* L230: */
1657
0
  }
1658
1659
/*        Return with INFO = 1, NITER = MAXIT and not converged */
1660
1661
0
  *info = 1;
1662
1663
0
    }
1664
1665
0
L240:
1666
0
    return;
1667
1668
/*     End of SLASD4 */
1669
1670
0
} /* slasd4_ */
1671