/root/doris/contrib/openblas/lapack-netlib/SRC/dlabrd.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static doublereal c_b4 = -1.; |
516 | | static doublereal c_b5 = 1.; |
517 | | static integer c__1 = 1; |
518 | | static doublereal c_b16 = 0.; |
519 | | |
520 | | /* > \brief \b DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */ |
521 | | |
522 | | /* =========== DOCUMENTATION =========== */ |
523 | | |
524 | | /* Online html documentation available at */ |
525 | | /* http://www.netlib.org/lapack/explore-html/ */ |
526 | | |
527 | | /* > \htmlonly */ |
528 | | /* > Download DLABRD + dependencies */ |
529 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlabrd. |
530 | | f"> */ |
531 | | /* > [TGZ]</a> */ |
532 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlabrd. |
533 | | f"> */ |
534 | | /* > [ZIP]</a> */ |
535 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlabrd. |
536 | | f"> */ |
537 | | /* > [TXT]</a> */ |
538 | | /* > \endhtmlonly */ |
539 | | |
540 | | /* Definition: */ |
541 | | /* =========== */ |
542 | | |
543 | | /* SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */ |
544 | | /* LDY ) */ |
545 | | |
546 | | /* INTEGER LDA, LDX, LDY, M, N, NB */ |
547 | | /* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), */ |
548 | | /* $ TAUQ( * ), X( LDX, * ), Y( LDY, * ) */ |
549 | | |
550 | | |
551 | | /* > \par Purpose: */ |
552 | | /* ============= */ |
553 | | /* > */ |
554 | | /* > \verbatim */ |
555 | | /* > */ |
556 | | /* > DLABRD reduces the first NB rows and columns of a real general */ |
557 | | /* > m by n matrix A to upper or lower bidiagonal form by an orthogonal */ |
558 | | /* > transformation Q**T * A * P, and returns the matrices X and Y which */ |
559 | | /* > are needed to apply the transformation to the unreduced part of A. */ |
560 | | /* > */ |
561 | | /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */ |
562 | | /* > bidiagonal form. */ |
563 | | /* > */ |
564 | | /* > This is an auxiliary routine called by DGEBRD */ |
565 | | /* > \endverbatim */ |
566 | | |
567 | | /* Arguments: */ |
568 | | /* ========== */ |
569 | | |
570 | | /* > \param[in] M */ |
571 | | /* > \verbatim */ |
572 | | /* > M is INTEGER */ |
573 | | /* > The number of rows in the matrix A. */ |
574 | | /* > \endverbatim */ |
575 | | /* > */ |
576 | | /* > \param[in] N */ |
577 | | /* > \verbatim */ |
578 | | /* > N is INTEGER */ |
579 | | /* > The number of columns in the matrix A. */ |
580 | | /* > \endverbatim */ |
581 | | /* > */ |
582 | | /* > \param[in] NB */ |
583 | | /* > \verbatim */ |
584 | | /* > NB is INTEGER */ |
585 | | /* > The number of leading rows and columns of A to be reduced. */ |
586 | | /* > \endverbatim */ |
587 | | /* > */ |
588 | | /* > \param[in,out] A */ |
589 | | /* > \verbatim */ |
590 | | /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ |
591 | | /* > On entry, the m by n general matrix to be reduced. */ |
592 | | /* > On exit, the first NB rows and columns of the matrix are */ |
593 | | /* > overwritten; the rest of the array is unchanged. */ |
594 | | /* > If m >= n, elements on and below the diagonal in the first NB */ |
595 | | /* > columns, with the array TAUQ, represent the orthogonal */ |
596 | | /* > matrix Q as a product of elementary reflectors; and */ |
597 | | /* > elements above the diagonal in the first NB rows, with the */ |
598 | | /* > array TAUP, represent the orthogonal matrix P as a product */ |
599 | | /* > of elementary reflectors. */ |
600 | | /* > If m < n, elements below the diagonal in the first NB */ |
601 | | /* > columns, with the array TAUQ, represent the orthogonal */ |
602 | | /* > matrix Q as a product of elementary reflectors, and */ |
603 | | /* > elements on and above the diagonal in the first NB rows, */ |
604 | | /* > with the array TAUP, represent the orthogonal matrix P as */ |
605 | | /* > a product of elementary reflectors. */ |
606 | | /* > See Further Details. */ |
607 | | /* > \endverbatim */ |
608 | | /* > */ |
609 | | /* > \param[in] LDA */ |
610 | | /* > \verbatim */ |
611 | | /* > LDA is INTEGER */ |
612 | | /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ |
613 | | /* > \endverbatim */ |
614 | | /* > */ |
615 | | /* > \param[out] D */ |
616 | | /* > \verbatim */ |
617 | | /* > D is DOUBLE PRECISION array, dimension (NB) */ |
618 | | /* > The diagonal elements of the first NB rows and columns of */ |
619 | | /* > the reduced matrix. D(i) = A(i,i). */ |
620 | | /* > \endverbatim */ |
621 | | /* > */ |
622 | | /* > \param[out] E */ |
623 | | /* > \verbatim */ |
624 | | /* > E is DOUBLE PRECISION array, dimension (NB) */ |
625 | | /* > The off-diagonal elements of the first NB rows and columns of */ |
626 | | /* > the reduced matrix. */ |
627 | | /* > \endverbatim */ |
628 | | /* > */ |
629 | | /* > \param[out] TAUQ */ |
630 | | /* > \verbatim */ |
631 | | /* > TAUQ is DOUBLE PRECISION array, dimension (NB) */ |
632 | | /* > The scalar factors of the elementary reflectors which */ |
633 | | /* > represent the orthogonal matrix Q. See Further Details. */ |
634 | | /* > \endverbatim */ |
635 | | /* > */ |
636 | | /* > \param[out] TAUP */ |
637 | | /* > \verbatim */ |
638 | | /* > TAUP is DOUBLE PRECISION array, dimension (NB) */ |
639 | | /* > The scalar factors of the elementary reflectors which */ |
640 | | /* > represent the orthogonal matrix P. See Further Details. */ |
641 | | /* > \endverbatim */ |
642 | | /* > */ |
643 | | /* > \param[out] X */ |
644 | | /* > \verbatim */ |
645 | | /* > X is DOUBLE PRECISION array, dimension (LDX,NB) */ |
646 | | /* > The m-by-nb matrix X required to update the unreduced part */ |
647 | | /* > of A. */ |
648 | | /* > \endverbatim */ |
649 | | /* > */ |
650 | | /* > \param[in] LDX */ |
651 | | /* > \verbatim */ |
652 | | /* > LDX is INTEGER */ |
653 | | /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */ |
654 | | /* > \endverbatim */ |
655 | | /* > */ |
656 | | /* > \param[out] Y */ |
657 | | /* > \verbatim */ |
658 | | /* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */ |
659 | | /* > The n-by-nb matrix Y required to update the unreduced part */ |
660 | | /* > of A. */ |
661 | | /* > \endverbatim */ |
662 | | /* > */ |
663 | | /* > \param[in] LDY */ |
664 | | /* > \verbatim */ |
665 | | /* > LDY is INTEGER */ |
666 | | /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */ |
667 | | /* > \endverbatim */ |
668 | | |
669 | | /* Authors: */ |
670 | | /* ======== */ |
671 | | |
672 | | /* > \author Univ. of Tennessee */ |
673 | | /* > \author Univ. of California Berkeley */ |
674 | | /* > \author Univ. of Colorado Denver */ |
675 | | /* > \author NAG Ltd. */ |
676 | | |
677 | | /* > \date June 2017 */ |
678 | | |
679 | | /* > \ingroup doubleOTHERauxiliary */ |
680 | | |
681 | | /* > \par Further Details: */ |
682 | | /* ===================== */ |
683 | | /* > */ |
684 | | /* > \verbatim */ |
685 | | /* > */ |
686 | | /* > The matrices Q and P are represented as products of elementary */ |
687 | | /* > reflectors: */ |
688 | | /* > */ |
689 | | /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */ |
690 | | /* > */ |
691 | | /* > Each H(i) and G(i) has the form: */ |
692 | | /* > */ |
693 | | /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */ |
694 | | /* > */ |
695 | | /* > where tauq and taup are real scalars, and v and u are real vectors. */ |
696 | | /* > */ |
697 | | /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */ |
698 | | /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */ |
699 | | /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ |
700 | | /* > */ |
701 | | /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */ |
702 | | /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */ |
703 | | /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ |
704 | | /* > */ |
705 | | /* > The elements of the vectors v and u together form the m-by-nb matrix */ |
706 | | /* > V and the nb-by-n matrix U**T which are needed, with X and Y, to apply */ |
707 | | /* > the transformation to the unreduced part of the matrix, using a block */ |
708 | | /* > update of the form: A := A - V*Y**T - X*U**T. */ |
709 | | /* > */ |
710 | | /* > The contents of A on exit are illustrated by the following examples */ |
711 | | /* > with nb = 2: */ |
712 | | /* > */ |
713 | | /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ |
714 | | /* > */ |
715 | | /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */ |
716 | | /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */ |
717 | | /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */ |
718 | | /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */ |
719 | | /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */ |
720 | | /* > ( v1 v2 a a a ) */ |
721 | | /* > */ |
722 | | /* > where a denotes an element of the original matrix which is unchanged, */ |
723 | | /* > vi denotes an element of the vector defining H(i), and ui an element */ |
724 | | /* > of the vector defining G(i). */ |
725 | | /* > \endverbatim */ |
726 | | /* > */ |
727 | | /* ===================================================================== */ |
728 | | /* Subroutine */ void dlabrd_(integer *m, integer *n, integer *nb, doublereal * |
729 | | a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq, |
730 | | doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer |
731 | | *ldy) |
732 | 0 | { |
733 | | /* System generated locals */ |
734 | 0 | integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, |
735 | 0 | i__3; |
736 | | |
737 | | /* Local variables */ |
738 | 0 | integer i__; |
739 | 0 | extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, |
740 | 0 | integer *), dgemv_(char *, integer *, integer *, doublereal *, |
741 | 0 | doublereal *, integer *, doublereal *, integer *, doublereal *, |
742 | 0 | doublereal *, integer *), dlarfg_(integer *, doublereal *, |
743 | 0 | doublereal *, integer *, doublereal *); |
744 | | |
745 | | |
746 | | /* -- LAPACK auxiliary routine (version 3.7.1) -- */ |
747 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
748 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
749 | | /* June 2017 */ |
750 | | |
751 | | |
752 | | /* ===================================================================== */ |
753 | | |
754 | | |
755 | | /* Quick return if possible */ |
756 | | |
757 | | /* Parameter adjustments */ |
758 | 0 | a_dim1 = *lda; |
759 | 0 | a_offset = 1 + a_dim1 * 1; |
760 | 0 | a -= a_offset; |
761 | 0 | --d__; |
762 | 0 | --e; |
763 | 0 | --tauq; |
764 | 0 | --taup; |
765 | 0 | x_dim1 = *ldx; |
766 | 0 | x_offset = 1 + x_dim1 * 1; |
767 | 0 | x -= x_offset; |
768 | 0 | y_dim1 = *ldy; |
769 | 0 | y_offset = 1 + y_dim1 * 1; |
770 | 0 | y -= y_offset; |
771 | | |
772 | | /* Function Body */ |
773 | 0 | if (*m <= 0 || *n <= 0) { |
774 | 0 | return; |
775 | 0 | } |
776 | | |
777 | 0 | if (*m >= *n) { |
778 | | |
779 | | /* Reduce to upper bidiagonal form */ |
780 | |
|
781 | 0 | i__1 = *nb; |
782 | 0 | for (i__ = 1; i__ <= i__1; ++i__) { |
783 | | |
784 | | /* Update A(i:m,i) */ |
785 | |
|
786 | 0 | i__2 = *m - i__ + 1; |
787 | 0 | i__3 = i__ - 1; |
788 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda, |
789 | 0 | &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], & |
790 | 0 | c__1); |
791 | 0 | i__2 = *m - i__ + 1; |
792 | 0 | i__3 = i__ - 1; |
793 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx, |
794 | 0 | &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * |
795 | 0 | a_dim1], &c__1); |
796 | | |
797 | | /* Generate reflection Q(i) to annihilate A(i+1:m,i) */ |
798 | |
|
799 | 0 | i__2 = *m - i__ + 1; |
800 | | /* Computing MIN */ |
801 | 0 | i__3 = i__ + 1; |
802 | 0 | dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ * |
803 | 0 | a_dim1], &c__1, &tauq[i__]); |
804 | 0 | d__[i__] = a[i__ + i__ * a_dim1]; |
805 | 0 | if (i__ < *n) { |
806 | 0 | a[i__ + i__ * a_dim1] = 1.; |
807 | | |
808 | | /* Compute Y(i+1:n,i) */ |
809 | |
|
810 | 0 | i__2 = *m - i__ + 1; |
811 | 0 | i__3 = *n - i__; |
812 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * |
813 | 0 | a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, & |
814 | 0 | y[i__ + 1 + i__ * y_dim1], &c__1); |
815 | 0 | i__2 = *m - i__ + 1; |
816 | 0 | i__3 = i__ - 1; |
817 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], |
818 | 0 | lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * |
819 | 0 | y_dim1 + 1], &c__1); |
820 | 0 | i__2 = *n - i__; |
821 | 0 | i__3 = i__ - 1; |
822 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + |
823 | 0 | y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ |
824 | 0 | i__ + 1 + i__ * y_dim1], &c__1); |
825 | 0 | i__2 = *m - i__ + 1; |
826 | 0 | i__3 = i__ - 1; |
827 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], |
828 | 0 | ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * |
829 | 0 | y_dim1 + 1], &c__1); |
830 | 0 | i__2 = i__ - 1; |
831 | 0 | i__3 = *n - i__; |
832 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * |
833 | 0 | a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, |
834 | 0 | &y[i__ + 1 + i__ * y_dim1], &c__1); |
835 | 0 | i__2 = *n - i__; |
836 | 0 | dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); |
837 | | |
838 | | /* Update A(i,i+1:n) */ |
839 | |
|
840 | 0 | i__2 = *n - i__; |
841 | 0 | dgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + |
842 | 0 | y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + ( |
843 | 0 | i__ + 1) * a_dim1], lda); |
844 | 0 | i__2 = i__ - 1; |
845 | 0 | i__3 = *n - i__; |
846 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * |
847 | 0 | a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[ |
848 | 0 | i__ + (i__ + 1) * a_dim1], lda); |
849 | | |
850 | | /* Generate reflection P(i) to annihilate A(i,i+2:n) */ |
851 | |
|
852 | 0 | i__2 = *n - i__; |
853 | | /* Computing MIN */ |
854 | 0 | i__3 = i__ + 2; |
855 | 0 | dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + f2cmin( |
856 | 0 | i__3,*n) * a_dim1], lda, &taup[i__]); |
857 | 0 | e[i__] = a[i__ + (i__ + 1) * a_dim1]; |
858 | 0 | a[i__ + (i__ + 1) * a_dim1] = 1.; |
859 | | |
860 | | /* Compute X(i+1:m,i) */ |
861 | |
|
862 | 0 | i__2 = *m - i__; |
863 | 0 | i__3 = *n - i__; |
864 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ |
865 | 0 | + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], |
866 | 0 | lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1); |
867 | 0 | i__2 = *n - i__; |
868 | 0 | dgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], |
869 | 0 | ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[ |
870 | 0 | i__ * x_dim1 + 1], &c__1); |
871 | 0 | i__2 = *m - i__; |
872 | 0 | dgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + |
873 | 0 | a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
874 | 0 | i__ + 1 + i__ * x_dim1], &c__1); |
875 | 0 | i__2 = i__ - 1; |
876 | 0 | i__3 = *n - i__; |
877 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * |
878 | 0 | a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & |
879 | 0 | c_b16, &x[i__ * x_dim1 + 1], &c__1); |
880 | 0 | i__2 = *m - i__; |
881 | 0 | i__3 = i__ - 1; |
882 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + |
883 | 0 | x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
884 | 0 | i__ + 1 + i__ * x_dim1], &c__1); |
885 | 0 | i__2 = *m - i__; |
886 | 0 | dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); |
887 | 0 | } |
888 | | /* L10: */ |
889 | 0 | } |
890 | 0 | } else { |
891 | | |
892 | | /* Reduce to lower bidiagonal form */ |
893 | |
|
894 | 0 | i__1 = *nb; |
895 | 0 | for (i__ = 1; i__ <= i__1; ++i__) { |
896 | | |
897 | | /* Update A(i,i:n) */ |
898 | |
|
899 | 0 | i__2 = *n - i__ + 1; |
900 | 0 | i__3 = i__ - 1; |
901 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy, |
902 | 0 | &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], |
903 | 0 | lda); |
904 | 0 | i__2 = i__ - 1; |
905 | 0 | i__3 = *n - i__ + 1; |
906 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], |
907 | 0 | lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1], |
908 | 0 | lda); |
909 | | |
910 | | /* Generate reflection P(i) to annihilate A(i,i+1:n) */ |
911 | |
|
912 | 0 | i__2 = *n - i__ + 1; |
913 | | /* Computing MIN */ |
914 | 0 | i__3 = i__ + 1; |
915 | 0 | dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + f2cmin(i__3,*n) * |
916 | 0 | a_dim1], lda, &taup[i__]); |
917 | 0 | d__[i__] = a[i__ + i__ * a_dim1]; |
918 | 0 | if (i__ < *m) { |
919 | 0 | a[i__ + i__ * a_dim1] = 1.; |
920 | | |
921 | | /* Compute X(i+1:m,i) */ |
922 | |
|
923 | 0 | i__2 = *m - i__; |
924 | 0 | i__3 = *n - i__ + 1; |
925 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ * |
926 | 0 | a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, & |
927 | 0 | x[i__ + 1 + i__ * x_dim1], &c__1); |
928 | 0 | i__2 = *n - i__ + 1; |
929 | 0 | i__3 = i__ - 1; |
930 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], |
931 | 0 | ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * |
932 | 0 | x_dim1 + 1], &c__1); |
933 | 0 | i__2 = *m - i__; |
934 | 0 | i__3 = i__ - 1; |
935 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + |
936 | 0 | a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
937 | 0 | i__ + 1 + i__ * x_dim1], &c__1); |
938 | 0 | i__2 = i__ - 1; |
939 | 0 | i__3 = *n - i__ + 1; |
940 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + |
941 | 0 | 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * |
942 | 0 | x_dim1 + 1], &c__1); |
943 | 0 | i__2 = *m - i__; |
944 | 0 | i__3 = i__ - 1; |
945 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + |
946 | 0 | x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
947 | 0 | i__ + 1 + i__ * x_dim1], &c__1); |
948 | 0 | i__2 = *m - i__; |
949 | 0 | dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); |
950 | | |
951 | | /* Update A(i+1:m,i) */ |
952 | |
|
953 | 0 | i__2 = *m - i__; |
954 | 0 | i__3 = i__ - 1; |
955 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + |
956 | 0 | a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + |
957 | 0 | 1 + i__ * a_dim1], &c__1); |
958 | 0 | i__2 = *m - i__; |
959 | 0 | dgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + |
960 | 0 | x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[ |
961 | 0 | i__ + 1 + i__ * a_dim1], &c__1); |
962 | | |
963 | | /* Generate reflection Q(i) to annihilate A(i+2:m,i) */ |
964 | |
|
965 | 0 | i__2 = *m - i__; |
966 | | /* Computing MIN */ |
967 | 0 | i__3 = i__ + 2; |
968 | 0 | dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*m) + |
969 | 0 | i__ * a_dim1], &c__1, &tauq[i__]); |
970 | 0 | e[i__] = a[i__ + 1 + i__ * a_dim1]; |
971 | 0 | a[i__ + 1 + i__ * a_dim1] = 1.; |
972 | | |
973 | | /* Compute Y(i+1:n,i) */ |
974 | |
|
975 | 0 | i__2 = *m - i__; |
976 | 0 | i__3 = *n - i__; |
977 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + |
978 | 0 | 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, |
979 | 0 | &c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1); |
980 | 0 | i__2 = *m - i__; |
981 | 0 | i__3 = i__ - 1; |
982 | 0 | dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], |
983 | 0 | lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ |
984 | 0 | i__ * y_dim1 + 1], &c__1); |
985 | 0 | i__2 = *n - i__; |
986 | 0 | i__3 = i__ - 1; |
987 | 0 | dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + |
988 | 0 | y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ |
989 | 0 | i__ + 1 + i__ * y_dim1], &c__1); |
990 | 0 | i__2 = *m - i__; |
991 | 0 | dgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], |
992 | 0 | ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ |
993 | 0 | i__ * y_dim1 + 1], &c__1); |
994 | 0 | i__2 = *n - i__; |
995 | 0 | dgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 |
996 | 0 | + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ |
997 | 0 | + 1 + i__ * y_dim1], &c__1); |
998 | 0 | i__2 = *n - i__; |
999 | 0 | dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); |
1000 | 0 | } |
1001 | | /* L20: */ |
1002 | 0 | } |
1003 | 0 | } |
1004 | 0 | return; |
1005 | | |
1006 | | /* End of DLABRD */ |
1007 | |
|
1008 | 0 | } /* dlabrd_ */ |
1009 | | |