Coverage Report

Created: 2025-09-05 19:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dsytd2.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
static doublereal c_b8 = 0.;
517
static doublereal c_b14 = -1.;
518
519
/* > \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarit
520
y transformation (unblocked algorithm). */
521
522
/*  =========== DOCUMENTATION =========== */
523
524
/* Online html documentation available at */
525
/*            http://www.netlib.org/lapack/explore-html/ */
526
527
/* > \htmlonly */
528
/* > Download DSYTD2 + dependencies */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.
530
f"> */
531
/* > [TGZ]</a> */
532
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.
533
f"> */
534
/* > [ZIP]</a> */
535
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.
536
f"> */
537
/* > [TXT]</a> */
538
/* > \endhtmlonly */
539
540
/*  Definition: */
541
/*  =========== */
542
543
/*       SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO ) */
544
545
/*       CHARACTER          UPLO */
546
/*       INTEGER            INFO, LDA, N */
547
/*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * ) */
548
549
550
/* > \par Purpose: */
551
/*  ============= */
552
/* > */
553
/* > \verbatim */
554
/* > */
555
/* > DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */
556
/* > form T by an orthogonal similarity transformation: Q**T * A * Q = T. */
557
/* > \endverbatim */
558
559
/*  Arguments: */
560
/*  ========== */
561
562
/* > \param[in] UPLO */
563
/* > \verbatim */
564
/* >          UPLO is CHARACTER*1 */
565
/* >          Specifies whether the upper or lower triangular part of the */
566
/* >          symmetric matrix A is stored: */
567
/* >          = 'U':  Upper triangular */
568
/* >          = 'L':  Lower triangular */
569
/* > \endverbatim */
570
/* > */
571
/* > \param[in] N */
572
/* > \verbatim */
573
/* >          N is INTEGER */
574
/* >          The order of the matrix A.  N >= 0. */
575
/* > \endverbatim */
576
/* > */
577
/* > \param[in,out] A */
578
/* > \verbatim */
579
/* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
580
/* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
581
/* >          n-by-n upper triangular part of A contains the upper */
582
/* >          triangular part of the matrix A, and the strictly lower */
583
/* >          triangular part of A is not referenced.  If UPLO = 'L', the */
584
/* >          leading n-by-n lower triangular part of A contains the lower */
585
/* >          triangular part of the matrix A, and the strictly upper */
586
/* >          triangular part of A is not referenced. */
587
/* >          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
588
/* >          of A are overwritten by the corresponding elements of the */
589
/* >          tridiagonal matrix T, and the elements above the first */
590
/* >          superdiagonal, with the array TAU, represent the orthogonal */
591
/* >          matrix Q as a product of elementary reflectors; if UPLO */
592
/* >          = 'L', the diagonal and first subdiagonal of A are over- */
593
/* >          written by the corresponding elements of the tridiagonal */
594
/* >          matrix T, and the elements below the first subdiagonal, with */
595
/* >          the array TAU, represent the orthogonal matrix Q as a product */
596
/* >          of elementary reflectors. See Further Details. */
597
/* > \endverbatim */
598
/* > */
599
/* > \param[in] LDA */
600
/* > \verbatim */
601
/* >          LDA is INTEGER */
602
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
603
/* > \endverbatim */
604
/* > */
605
/* > \param[out] D */
606
/* > \verbatim */
607
/* >          D is DOUBLE PRECISION array, dimension (N) */
608
/* >          The diagonal elements of the tridiagonal matrix T: */
609
/* >          D(i) = A(i,i). */
610
/* > \endverbatim */
611
/* > */
612
/* > \param[out] E */
613
/* > \verbatim */
614
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
615
/* >          The off-diagonal elements of the tridiagonal matrix T: */
616
/* >          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
617
/* > \endverbatim */
618
/* > */
619
/* > \param[out] TAU */
620
/* > \verbatim */
621
/* >          TAU is DOUBLE PRECISION array, dimension (N-1) */
622
/* >          The scalar factors of the elementary reflectors (see Further */
623
/* >          Details). */
624
/* > \endverbatim */
625
/* > */
626
/* > \param[out] INFO */
627
/* > \verbatim */
628
/* >          INFO is INTEGER */
629
/* >          = 0:  successful exit */
630
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
631
/* > \endverbatim */
632
633
/*  Authors: */
634
/*  ======== */
635
636
/* > \author Univ. of Tennessee */
637
/* > \author Univ. of California Berkeley */
638
/* > \author Univ. of Colorado Denver */
639
/* > \author NAG Ltd. */
640
641
/* > \date December 2016 */
642
643
/* > \ingroup doubleSYcomputational */
644
645
/* > \par Further Details: */
646
/*  ===================== */
647
/* > */
648
/* > \verbatim */
649
/* > */
650
/* >  If UPLO = 'U', the matrix Q is represented as a product of elementary */
651
/* >  reflectors */
652
/* > */
653
/* >     Q = H(n-1) . . . H(2) H(1). */
654
/* > */
655
/* >  Each H(i) has the form */
656
/* > */
657
/* >     H(i) = I - tau * v * v**T */
658
/* > */
659
/* >  where tau is a real scalar, and v is a real vector with */
660
/* >  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
661
/* >  A(1:i-1,i+1), and tau in TAU(i). */
662
/* > */
663
/* >  If UPLO = 'L', the matrix Q is represented as a product of elementary */
664
/* >  reflectors */
665
/* > */
666
/* >     Q = H(1) H(2) . . . H(n-1). */
667
/* > */
668
/* >  Each H(i) has the form */
669
/* > */
670
/* >     H(i) = I - tau * v * v**T */
671
/* > */
672
/* >  where tau is a real scalar, and v is a real vector with */
673
/* >  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
674
/* >  and tau in TAU(i). */
675
/* > */
676
/* >  The contents of A on exit are illustrated by the following examples */
677
/* >  with n = 5: */
678
/* > */
679
/* >  if UPLO = 'U':                       if UPLO = 'L': */
680
/* > */
681
/* >    (  d   e   v2  v3  v4 )              (  d                  ) */
682
/* >    (      d   e   v3  v4 )              (  e   d              ) */
683
/* >    (          d   e   v4 )              (  v1  e   d          ) */
684
/* >    (              d   e  )              (  v1  v2  e   d      ) */
685
/* >    (                  d  )              (  v1  v2  v3  e   d  ) */
686
/* > */
687
/* >  where d and e denote diagonal and off-diagonal elements of T, and vi */
688
/* >  denotes an element of the vector defining H(i). */
689
/* > \endverbatim */
690
/* > */
691
/*  ===================================================================== */
692
/* Subroutine */ void dsytd2_(char *uplo, integer *n, doublereal *a, integer *
693
  lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
694
0
{
695
    /* System generated locals */
696
0
    integer a_dim1, a_offset, i__1, i__2, i__3;
697
698
    /* Local variables */
699
0
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
700
0
      integer *);
701
0
    doublereal taui;
702
0
    extern /* Subroutine */ void dsyr2_(char *, integer *, doublereal *, 
703
0
      doublereal *, integer *, doublereal *, integer *, doublereal *, 
704
0
      integer *);
705
0
    integer i__;
706
0
    doublereal alpha;
707
0
    extern logical lsame_(char *, char *);
708
0
    extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
709
0
      integer *, doublereal *, integer *);
710
0
    logical upper;
711
0
    extern /* Subroutine */ void dsymv_(char *, integer *, doublereal *, 
712
0
      doublereal *, integer *, doublereal *, integer *, doublereal *, 
713
0
      doublereal *, integer *), dlarfg_(integer *, doublereal *,
714
0
       doublereal *, integer *, doublereal *);
715
0
    extern int xerbla_(char *, integer *, ftnlen
716
0
      );
717
718
719
/*  -- LAPACK computational routine (version 3.7.0) -- */
720
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
721
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
722
/*     December 2016 */
723
724
725
/*  ===================================================================== */
726
727
728
/*     Test the input parameters */
729
730
    /* Parameter adjustments */
731
0
    a_dim1 = *lda;
732
0
    a_offset = 1 + a_dim1 * 1;
733
0
    a -= a_offset;
734
0
    --d__;
735
0
    --e;
736
0
    --tau;
737
738
    /* Function Body */
739
0
    *info = 0;
740
0
    upper = lsame_(uplo, "U");
741
0
    if (! upper && ! lsame_(uplo, "L")) {
742
0
  *info = -1;
743
0
    } else if (*n < 0) {
744
0
  *info = -2;
745
0
    } else if (*lda < f2cmax(1,*n)) {
746
0
  *info = -4;
747
0
    }
748
0
    if (*info != 0) {
749
0
  i__1 = -(*info);
750
0
  xerbla_("DSYTD2", &i__1, (ftnlen)6);
751
0
  return;
752
0
    }
753
754
/*     Quick return if possible */
755
756
0
    if (*n <= 0) {
757
0
  return;
758
0
    }
759
760
0
    if (upper) {
761
762
/*        Reduce the upper triangle of A */
763
764
0
  for (i__ = *n - 1; i__ >= 1; --i__) {
765
766
/*           Generate elementary reflector H(i) = I - tau * v * v**T */
767
/*           to annihilate A(1:i-1,i+1) */
768
769
0
      dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1 
770
0
        + 1], &c__1, &taui);
771
0
      e[i__] = a[i__ + (i__ + 1) * a_dim1];
772
773
0
      if (taui != 0.) {
774
775
/*              Apply H(i) from both sides to A(1:i,1:i) */
776
777
0
    a[i__ + (i__ + 1) * a_dim1] = 1.;
778
779
/*              Compute  x := tau * A * v  storing x in TAU(1:i) */
780
781
0
    dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * 
782
0
      a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1);
783
784
/*              Compute  w := x - 1/2 * tau * (x**T * v) * v */
785
786
0
    alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1) 
787
0
      * a_dim1 + 1], &c__1);
788
0
    daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
789
0
      1], &c__1);
790
791
/*              Apply the transformation as a rank-2 update: */
792
/*                 A := A - v * w**T - w * v**T */
793
794
0
    dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1, 
795
0
      &tau[1], &c__1, &a[a_offset], lda);
796
797
0
    a[i__ + (i__ + 1) * a_dim1] = e[i__];
798
0
      }
799
0
      d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
800
0
      tau[i__] = taui;
801
/* L10: */
802
0
  }
803
0
  d__[1] = a[a_dim1 + 1];
804
0
    } else {
805
806
/*        Reduce the lower triangle of A */
807
808
0
  i__1 = *n - 1;
809
0
  for (i__ = 1; i__ <= i__1; ++i__) {
810
811
/*           Generate elementary reflector H(i) = I - tau * v * v**T */
812
/*           to annihilate A(i+2:n,i) */
813
814
0
      i__2 = *n - i__;
815
/* Computing MIN */
816
0
      i__3 = i__ + 2;
817
0
      dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
818
0
         a_dim1], &c__1, &taui);
819
0
      e[i__] = a[i__ + 1 + i__ * a_dim1];
820
821
0
      if (taui != 0.) {
822
823
/*              Apply H(i) from both sides to A(i+1:n,i+1:n) */
824
825
0
    a[i__ + 1 + i__ * a_dim1] = 1.;
826
827
/*              Compute  x := tau * A * v  storing y in TAU(i:n-1) */
828
829
0
    i__2 = *n - i__;
830
0
    dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], 
831
0
      lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[
832
0
      i__], &c__1);
833
834
/*              Compute  w := x - 1/2 * tau * (x**T * v) * v */
835
836
0
    i__2 = *n - i__;
837
0
    alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ + 
838
0
      1 + i__ * a_dim1], &c__1);
839
0
    i__2 = *n - i__;
840
0
    daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
841
0
      i__], &c__1);
842
843
/*              Apply the transformation as a rank-2 update: */
844
/*                 A := A - v * w**T - w * v**T */
845
846
0
    i__2 = *n - i__;
847
0
    dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1,
848
0
       &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], 
849
0
      lda);
850
851
0
    a[i__ + 1 + i__ * a_dim1] = e[i__];
852
0
      }
853
0
      d__[i__] = a[i__ + i__ * a_dim1];
854
0
      tau[i__] = taui;
855
/* L20: */
856
0
  }
857
0
  d__[*n] = a[*n + *n * a_dim1];
858
0
    }
859
860
0
    return;
861
862
/*     End of DSYTD2 */
863
864
0
} /* dsytd2_ */
865