Coverage Report

Created: 2025-09-05 19:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/sgelsd.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
239
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
240
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
241
#define sig_die(s, kill) { exit(1); }
242
#define s_stop(s, n) {exit(0);}
243
#define z_abs(z) (cabs(Cd(z)))
244
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
245
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
246
#define myexit_() break;
247
#define mycycle() continue;
248
#define myceiling(w) {ceil(w)}
249
#define myhuge(w) {HUGE_VAL}
250
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
251
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
252
253
/*  -- translated by f2c (version 20000121).
254
   You must link the resulting object file with the libraries:
255
  -lf2c -lm   (in that order)
256
*/
257
258
259
260
261
/* Table of constant values */
262
263
static integer c__9 = 9;
264
static integer c__0 = 0;
265
static integer c__6 = 6;
266
static integer c_n1 = -1;
267
static integer c__1 = 1;
268
static real c_b81 = 0.f;
269
270
/* > \brief <b> SGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
271
> */
272
273
/*  =========== DOCUMENTATION =========== */
274
275
/* Online html documentation available at */
276
/*            http://www.netlib.org/lapack/explore-html/ */
277
278
/* > \htmlonly */
279
/* > Download SGELSD + dependencies */
280
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsd.
281
f"> */
282
/* > [TGZ]</a> */
283
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsd.
284
f"> */
285
/* > [ZIP]</a> */
286
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsd.
287
f"> */
288
/* > [TXT]</a> */
289
/* > \endhtmlonly */
290
291
/*  Definition: */
292
/*  =========== */
293
294
/*       SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, */
295
/*                          RANK, WORK, LWORK, IWORK, INFO ) */
296
297
/*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
298
/*       REAL               RCOND */
299
/*       INTEGER            IWORK( * ) */
300
/*       REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
301
302
303
/* > \par Purpose: */
304
/*  ============= */
305
/* > */
306
/* > \verbatim */
307
/* > */
308
/* > SGELSD computes the minimum-norm solution to a real linear least */
309
/* > squares problem: */
310
/* >     minimize 2-norm(| b - A*x |) */
311
/* > using the singular value decomposition (SVD) of A. A is an M-by-N */
312
/* > matrix which may be rank-deficient. */
313
/* > */
314
/* > Several right hand side vectors b and solution vectors x can be */
315
/* > handled in a single call; they are stored as the columns of the */
316
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
317
/* > matrix X. */
318
/* > */
319
/* > The problem is solved in three steps: */
320
/* > (1) Reduce the coefficient matrix A to bidiagonal form with */
321
/* >     Householder transformations, reducing the original problem */
322
/* >     into a "bidiagonal least squares problem" (BLS) */
323
/* > (2) Solve the BLS using a divide and conquer approach. */
324
/* > (3) Apply back all the Householder transformations to solve */
325
/* >     the original least squares problem. */
326
/* > */
327
/* > The effective rank of A is determined by treating as zero those */
328
/* > singular values which are less than RCOND times the largest singular */
329
/* > value. */
330
/* > */
331
/* > The divide and conquer algorithm makes very mild assumptions about */
332
/* > floating point arithmetic. It will work on machines with a guard */
333
/* > digit in add/subtract, or on those binary machines without guard */
334
/* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
335
/* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
336
/* > without guard digits, but we know of none. */
337
/* > \endverbatim */
338
339
/*  Arguments: */
340
/*  ========== */
341
342
/* > \param[in] M */
343
/* > \verbatim */
344
/* >          M is INTEGER */
345
/* >          The number of rows of A. M >= 0. */
346
/* > \endverbatim */
347
/* > */
348
/* > \param[in] N */
349
/* > \verbatim */
350
/* >          N is INTEGER */
351
/* >          The number of columns of A. N >= 0. */
352
/* > \endverbatim */
353
/* > */
354
/* > \param[in] NRHS */
355
/* > \verbatim */
356
/* >          NRHS is INTEGER */
357
/* >          The number of right hand sides, i.e., the number of columns */
358
/* >          of the matrices B and X. NRHS >= 0. */
359
/* > \endverbatim */
360
/* > */
361
/* > \param[in,out] A */
362
/* > \verbatim */
363
/* >          A is REAL array, dimension (LDA,N) */
364
/* >          On entry, the M-by-N matrix A. */
365
/* >          On exit, A has been destroyed. */
366
/* > \endverbatim */
367
/* > */
368
/* > \param[in] LDA */
369
/* > \verbatim */
370
/* >          LDA is INTEGER */
371
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
372
/* > \endverbatim */
373
/* > */
374
/* > \param[in,out] B */
375
/* > \verbatim */
376
/* >          B is REAL array, dimension (LDB,NRHS) */
377
/* >          On entry, the M-by-NRHS right hand side matrix B. */
378
/* >          On exit, B is overwritten by the N-by-NRHS solution */
379
/* >          matrix X.  If m >= n and RANK = n, the residual */
380
/* >          sum-of-squares for the solution in the i-th column is given */
381
/* >          by the sum of squares of elements n+1:m in that column. */
382
/* > \endverbatim */
383
/* > */
384
/* > \param[in] LDB */
385
/* > \verbatim */
386
/* >          LDB is INTEGER */
387
/* >          The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
388
/* > \endverbatim */
389
/* > */
390
/* > \param[out] S */
391
/* > \verbatim */
392
/* >          S is REAL array, dimension (f2cmin(M,N)) */
393
/* >          The singular values of A in decreasing order. */
394
/* >          The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
395
/* > \endverbatim */
396
/* > */
397
/* > \param[in] RCOND */
398
/* > \verbatim */
399
/* >          RCOND is REAL */
400
/* >          RCOND is used to determine the effective rank of A. */
401
/* >          Singular values S(i) <= RCOND*S(1) are treated as zero. */
402
/* >          If RCOND < 0, machine precision is used instead. */
403
/* > \endverbatim */
404
/* > */
405
/* > \param[out] RANK */
406
/* > \verbatim */
407
/* >          RANK is INTEGER */
408
/* >          The effective rank of A, i.e., the number of singular values */
409
/* >          which are greater than RCOND*S(1). */
410
/* > \endverbatim */
411
/* > */
412
/* > \param[out] WORK */
413
/* > \verbatim */
414
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
415
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
416
/* > \endverbatim */
417
/* > */
418
/* > \param[in] LWORK */
419
/* > \verbatim */
420
/* >          LWORK is INTEGER */
421
/* >          The dimension of the array WORK. LWORK must be at least 1. */
422
/* >          The exact minimum amount of workspace needed depends on M, */
423
/* >          N and NRHS. As long as LWORK is at least */
424
/* >              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, */
425
/* >          if M is greater than or equal to N or */
426
/* >              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, */
427
/* >          if M is less than N, the code will execute correctly. */
428
/* >          SMLSIZ is returned by ILAENV and is equal to the maximum */
429
/* >          size of the subproblems at the bottom of the computation */
430
/* >          tree (usually about 25), and */
431
/* >             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
432
/* >          For good performance, LWORK should generally be larger. */
433
/* > */
434
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
435
/* >          only calculates the optimal size of the array WORK and the */
436
/* >          minimum size of the array IWORK, and returns these values as */
437
/* >          the first entries of the WORK and IWORK arrays, and no error */
438
/* >          message related to LWORK is issued by XERBLA. */
439
/* > \endverbatim */
440
/* > */
441
/* > \param[out] IWORK */
442
/* > \verbatim */
443
/* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
444
/* >          LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
445
/* >          where MINMN = MIN( M,N ). */
446
/* >          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
447
/* > \endverbatim */
448
/* > */
449
/* > \param[out] INFO */
450
/* > \verbatim */
451
/* >          INFO is INTEGER */
452
/* >          = 0:  successful exit */
453
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
454
/* >          > 0:  the algorithm for computing the SVD failed to converge; */
455
/* >                if INFO = i, i off-diagonal elements of an intermediate */
456
/* >                bidiagonal form did not converge to zero. */
457
/* > \endverbatim */
458
459
/*  Authors: */
460
/*  ======== */
461
462
/* > \author Univ. of Tennessee */
463
/* > \author Univ. of California Berkeley */
464
/* > \author Univ. of Colorado Denver */
465
/* > \author NAG Ltd. */
466
467
/* > \date June 2017 */
468
469
/* > \ingroup realGEsolve */
470
471
/* > \par Contributors: */
472
/*  ================== */
473
/* > */
474
/* >     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
475
/* >       California at Berkeley, USA \n */
476
/* >     Osni Marques, LBNL/NERSC, USA \n */
477
478
/*  ===================================================================== */
479
/* Subroutine */ void sgelsd_(integer *m, integer *n, integer *nrhs, real *a, 
480
  integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
481
  rank, real *work, integer *lwork, integer *iwork, integer *info)
482
0
{
483
    /* System generated locals */
484
0
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
485
486
    /* Local variables */
487
0
    real anrm, bnrm;
488
0
    integer itau, nlvl, iascl, ibscl;
489
0
    real sfmin;
490
0
    integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
491
0
    extern /* Subroutine */ void slabad_(real *, real *);
492
0
    integer mm;
493
0
    extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer 
494
0
      *, real *, real *, real *, real *, real *, integer *, integer *);
495
0
    extern real slamch_(char *), slange_(char *, integer *, integer *,
496
0
       real *, integer *, real *);
497
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
498
0
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
499
0
      integer *, integer *, ftnlen, ftnlen);
500
0
    real bignum;
501
0
    extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer 
502
0
      *, real *, real *, integer *, integer *), slalsd_(char *, integer 
503
0
      *, integer *, integer *, real *, real *, real *, integer *, real *
504
0
      , integer *, real *, integer *, integer *), slascl_(char *
505
0
      , integer *, integer *, real *, real *, integer *, integer *, 
506
0
      real *, integer *, integer *);
507
0
    integer wlalsd;
508
0
    extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer 
509
0
      *, real *, real *, integer *, integer *), slacpy_(char *, integer 
510
0
      *, integer *, real *, integer *, real *, integer *), 
511
0
      slaset_(char *, integer *, integer *, real *, real *, real *, 
512
0
      integer *);
513
0
    integer ldwork;
514
0
    extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *, 
515
0
      integer *, integer *, real *, integer *, real *, real *, integer *
516
0
      , real *, integer *, integer *);
517
0
    integer liwork, minwrk, maxwrk;
518
0
    real smlnum;
519
0
    extern /* Subroutine */ void sormlq_(char *, char *, integer *, integer *, 
520
0
      integer *, real *, integer *, real *, real *, integer *, real *, 
521
0
      integer *, integer *);
522
0
    logical lquery;
523
0
    integer smlsiz;
524
0
    extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
525
0
      integer *, real *, integer *, real *, real *, integer *, real *, 
526
0
      integer *, integer *);
527
0
    real eps;
528
529
530
/*  -- LAPACK driver routine (version 3.7.1) -- */
531
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
532
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
533
/*     June 2017 */
534
535
536
/*  ===================================================================== */
537
538
539
/*     Test the input arguments. */
540
541
    /* Parameter adjustments */
542
0
    a_dim1 = *lda;
543
0
    a_offset = 1 + a_dim1;
544
0
    a -= a_offset;
545
0
    b_dim1 = *ldb;
546
0
    b_offset = 1 + b_dim1;
547
0
    b -= b_offset;
548
0
    --s;
549
0
    --work;
550
0
    --iwork;
551
0
fprintf(stdout,"start of SGELSD\n");
552
    /* Function Body */
553
0
    *info = 0;
554
0
    minmn = f2cmin(*m,*n);
555
0
    maxmn = f2cmax(*m,*n);
556
0
    lquery = *lwork == -1;
557
0
    if (*m < 0) {
558
0
  *info = -1;
559
0
    } else if (*n < 0) {
560
0
  *info = -2;
561
0
    } else if (*nrhs < 0) {
562
0
  *info = -3;
563
0
    } else if (*lda < f2cmax(1,*m)) {
564
0
  *info = -5;
565
0
    } else if (*ldb < f2cmax(1,maxmn)) {
566
0
  *info = -7;
567
0
    }
568
569
/*     Compute workspace. */
570
/*     (Note: Comments in the code beginning "Workspace:" describe the */
571
/*     minimal amount of workspace needed at that point in the code, */
572
/*     as well as the preferred amount for good performance. */
573
/*     NB refers to the optimal block size for the immediately */
574
/*     following subroutine, as returned by ILAENV.) */
575
576
0
    if (*info == 0) {
577
0
  minwrk = 1;
578
0
  maxwrk = 1;
579
0
  liwork = 1;
580
0
  if (minmn > 0) {
581
0
      smlsiz = ilaenv_(&c__9, "SGELSD", " ", &c__0, &c__0, &c__0, &c__0,
582
0
         (ftnlen)6, (ftnlen)1);
583
0
      mnthr = ilaenv_(&c__6, "SGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
584
0
        6, (ftnlen)1);
585
/* Computing MAX */
586
0
      i__1 = (integer) (logf((real) minmn / (real) (smlsiz + 1)) / logf(
587
0
        2.f)) + 1;
588
0
      nlvl = f2cmax(i__1,0);
589
0
      liwork = minmn * 3 * nlvl + minmn * 11;
590
0
      mm = *m;
591
0
      if (*m >= *n && *m >= mnthr) {
592
593
/*              Path 1a - overdetermined, with many more rows than */
594
/*                        columns. */
595
596
0
    mm = *n;
597
/* Computing MAX */
598
0
    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", 
599
0
      " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
600
0
    maxwrk = f2cmax(i__1,i__2);
601
/* Computing MAX */
602
0
    i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "SORMQR", 
603
0
      "LT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
604
0
    maxwrk = f2cmax(i__1,i__2);
605
0
      }
606
0
      if (*m >= *n) {
607
608
/*              Path 1 - overdetermined or exactly determined. */
609
610
/* Computing MAX */
611
0
    i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, 
612
0
      "SGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
613
0
      ftnlen)1);
614
0
    maxwrk = f2cmax(i__1,i__2);
615
/* Computing MAX */
616
0
    i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "SORMBR"
617
0
      , "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
618
0
    maxwrk = f2cmax(i__1,i__2);
619
/* Computing MAX */
620
0
    i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, 
621
0
      "SORMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
622
0
      ftnlen)3);
623
0
    maxwrk = f2cmax(i__1,i__2);
624
/* Computing 2nd power */
625
0
    i__1 = smlsiz + 1;
626
0
    wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n *
627
0
       *nrhs + i__1 * i__1;
628
/* Computing MAX */
629
0
    i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
630
0
    maxwrk = f2cmax(i__1,i__2);
631
/* Computing MAX */
632
0
    i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,
633
0
      i__2), i__2 = *n * 3 + wlalsd;
634
0
    minwrk = f2cmax(i__1,i__2);
635
0
      }
636
0
      if (*n > *m) {
637
/* Computing 2nd power */
638
0
    i__1 = smlsiz + 1;
639
0
    wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m *
640
0
       *nrhs + i__1 * i__1;
641
0
    if (*n >= mnthr) {
642
643
/*                 Path 2a - underdetermined, with many more columns */
644
/*                           than rows. */
645
646
0
        maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &
647
0
          c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
648
/* Computing MAX */
649
0
        i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
650
0
          ilaenv_(&c__1, "SGEBRD", " ", m, m, &c_n1, &c_n1, 
651
0
          (ftnlen)6, (ftnlen)1);
652
0
        maxwrk = f2cmax(i__1,i__2);
653
/* Computing MAX */
654
0
        i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * 
655
0
          ilaenv_(&c__1, "SORMBR", "QLT", m, nrhs, m, &c_n1,
656
0
           (ftnlen)6, (ftnlen)3);
657
0
        maxwrk = f2cmax(i__1,i__2);
658
/* Computing MAX */
659
0
        i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
660
0
          ilaenv_(&c__1, "SORMBR", "PLN", m, nrhs, m, &c_n1,
661
0
           (ftnlen)6, (ftnlen)3);
662
0
        maxwrk = f2cmax(i__1,i__2);
663
0
        if (*nrhs > 1) {
664
/* Computing MAX */
665
0
      i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
666
0
      maxwrk = f2cmax(i__1,i__2);
667
0
        } else {
668
/* Computing MAX */
669
0
      i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
670
0
      maxwrk = f2cmax(i__1,i__2);
671
0
        }
672
/* Computing MAX */
673
0
        i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "SORMLQ"
674
0
          , "LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
675
0
        maxwrk = f2cmax(i__1,i__2);
676
/* Computing MAX */
677
0
        i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;
678
0
        maxwrk = f2cmax(i__1,i__2);
679
/*     XXX: Ensure the Path 2a case below is triggered.  The workspace */
680
/*     calculation should use queries for all routines eventually. */
681
/* Computing MAX */
682
/* Computing MAX */
683
0
        i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), 
684
0
          i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
685
0
        i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
686
0
          ;
687
0
        maxwrk = f2cmax(i__1,i__2);
688
0
    } else {
689
690
/*                 Path 2 - remaining underdetermined cases. */
691
692
0
        maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD", 
693
0
          " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
694
/* Computing MAX */
695
0
        i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, 
696
0
          "SORMBR", "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (
697
0
          ftnlen)3);
698
0
        maxwrk = f2cmax(i__1,i__2);
699
/* Computing MAX */
700
0
        i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORM"
701
0
          "BR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)
702
0
          3);
703
0
        maxwrk = f2cmax(i__1,i__2);
704
/* Computing MAX */
705
0
        i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
706
0
        maxwrk = f2cmax(i__1,i__2);
707
0
    }
708
/* Computing MAX */
709
0
    i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = f2cmax(i__1,
710
0
      i__2), i__2 = *m * 3 + wlalsd;
711
0
    minwrk = f2cmax(i__1,i__2);
712
0
      }
713
0
  }
714
0
  minwrk = f2cmin(minwrk,maxwrk);
715
0
  work[1] = (real) maxwrk;
716
0
  iwork[1] = liwork;
717
718
0
  if (*lwork < minwrk && ! lquery) {
719
0
      *info = -12;
720
0
  }
721
0
    }
722
723
0
    if (*info != 0) {
724
0
  i__1 = -(*info);
725
0
  xerbla_("SGELSD", &i__1, (ftnlen)6);
726
0
  return;
727
0
    } else if (lquery) {
728
0
  return;
729
0
    }
730
731
/*     Quick return if possible. */
732
733
0
    if (*m == 0 || *n == 0) {
734
0
      fprintf(stdout,"SGELSD quickreturn rank=0\n");
735
0
  *rank = 0;
736
0
  return;
737
0
    }
738
739
/*     Get machine parameters. */
740
741
0
    eps = slamch_("P");
742
0
    sfmin = slamch_("S");
743
0
    smlnum = sfmin / eps;
744
0
    bignum = 1.f / smlnum;
745
//    FILE *bla=fopen("/tmp/bla","w");
746
//fprintf(bla,"SGELSD eps=%g sfmin=%g smlnum=%g bignum=%g\n",eps,sfmin,smlnum,bignum);
747
//fclose(bla);
748
0
    slabad_(&smlnum, &bignum);
749
750
/*     Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
751
752
0
    anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
753
0
    iascl = 0;
754
0
    if (anrm > 0.f && anrm < smlnum) {
755
756
/*        Scale matrix norm up to SMLNUM. */
757
0
fprintf(stdout,"scaling A up to SML\n");
758
0
  slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
759
0
    info);
760
0
  iascl = 1;
761
0
    } else if (anrm > bignum) {
762
763
/*        Scale matrix norm down to BIGNUM. */
764
765
0
fprintf(stdout,"scaling A down to BIG\n");
766
0
  slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
767
0
    info);
768
0
  iascl = 2;
769
0
    } else if (anrm == 0.f) {
770
771
/*        Matrix all zero. Return zero solution. */
772
773
0
fprintf(stdout,"A is zero soln\n");
774
0
  i__1 = f2cmax(*m,*n);
775
0
  slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[b_offset], ldb);
776
0
  slaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1);
777
0
  *rank = 0;
778
0
  goto L10;
779
0
    }
780
781
/*     Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
782
783
0
    bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
784
0
    ibscl = 0;
785
0
    if (bnrm > 0.f && bnrm < smlnum) {
786
787
/*        Scale matrix norm up to SMLNUM. */
788
0
fprintf(stdout,"scaling B up to SML\n");
789
790
0
  slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
791
0
     info);
792
0
  ibscl = 1;
793
0
    } else if (bnrm > bignum) {
794
795
/*        Scale matrix norm down to BIGNUM. */
796
0
fprintf(stdout,"scaling B down to BIG\n");
797
798
0
  slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
799
0
     info);
800
0
  ibscl = 2;
801
0
    }
802
803
/*     If M < N make sure certain entries of B are zero. */
804
805
0
    if (*m < *n) {
806
0
  i__1 = *n - *m;
807
0
fprintf(stdout,"zeroing parts of B \n");
808
0
  slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1], ldb);
809
0
    }
810
811
/*     Overdetermined case. */
812
813
0
    if (*m >= *n) {
814
0
fprintf(stdout,"overdetermined, path 1 \n");
815
816
/*        Path 1 - overdetermined or exactly determined. */
817
818
0
  mm = *m;
819
0
  if (*m >= mnthr) {
820
821
/*           Path 1a - overdetermined, with many more rows than columns. */
822
0
fprintf(stdout,"overdetermined, path 1a \n");
823
824
0
      mm = *n;
825
0
      itau = 1;
826
0
      nwork = itau + *n;
827
828
/*           Compute A=Q*R. */
829
/*           (Workspace: need 2*N, prefer N+N*NB) */
830
831
0
      i__1 = *lwork - nwork + 1;
832
0
      sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
833
0
         info);
834
835
/*           Multiply B by transpose(Q). */
836
/*           (Workspace: need N+NRHS, prefer N+NRHS*NB) */
837
838
0
      i__1 = *lwork - nwork + 1;
839
0
      sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
840
0
        b_offset], ldb, &work[nwork], &i__1, info);
841
842
/*           Zero out below R. */
843
844
0
      if (*n > 1) {
845
0
    i__1 = *n - 1;
846
0
    i__2 = *n - 1;
847
0
    slaset_("L", &i__1, &i__2, &c_b81, &c_b81, &a[a_dim1 + 2], 
848
0
      lda);
849
0
      }
850
0
  }
851
852
0
  ie = 1;
853
0
  itauq = ie + *n;
854
0
  itaup = itauq + *n;
855
0
  nwork = itaup + *n;
856
857
/*        Bidiagonalize R in A. */
858
/*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
859
860
0
  i__1 = *lwork - nwork + 1;
861
0
  sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
862
0
    work[itaup], &work[nwork], &i__1, info);
863
864
/*        Multiply B by transpose of left bidiagonalizing vectors of R. */
865
/*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
866
867
0
  i__1 = *lwork - nwork + 1;
868
0
  sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
869
0
    &b[b_offset], ldb, &work[nwork], &i__1, info);
870
871
/*        Solve the bidiagonal least squares problem. */
872
873
0
  slalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb, 
874
0
    rcond, rank, &work[nwork], &iwork[1], info);
875
0
  if (*info != 0) {
876
0
    fprintf(stdout,"info !=0 nach slalsd\n");
877
0
      goto L10;
878
0
  }
879
880
/*        Multiply B by right bidiagonalizing vectors of R. */
881
882
0
  i__1 = *lwork - nwork + 1;
883
0
  sormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
884
0
    b[b_offset], ldb, &work[nwork], &i__1, info);
885
886
0
    } else /* if(complicated condition) */ {
887
0
fprintf(stdout,"not overdetermined \n");
888
/* Computing MAX */
889
0
  i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
890
0
    i__1,*nrhs), i__2 = *n - *m * 3, i__1 = f2cmax(i__1,i__2);
891
0
  if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,wlalsd)) {
892
893
/*        Path 2a - underdetermined, with many more columns than rows */
894
/*        and sufficient workspace for an efficient algorithm. */
895
896
0
fprintf(stdout,"not overdetermined, path 2a\n");
897
898
0
      ldwork = *m;
899
/* Computing MAX */
900
/* Computing MAX */
901
0
      i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 = 
902
0
        f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
903
0
      i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda + 
904
0
        *m + *m * *nrhs, i__1 = f2cmax(i__1,i__2), i__2 = (*m << 2) 
905
0
        + *m * *lda + wlalsd;
906
0
      if (*lwork >= f2cmax(i__1,i__2)) {
907
0
    ldwork = *lda;
908
0
      }
909
0
      itau = 1;
910
0
      nwork = *m + 1;
911
912
/*        Compute A=L*Q. */
913
/*        (Workspace: need 2*M, prefer M+M*NB) */
914
915
0
      i__1 = *lwork - nwork + 1;
916
0
      sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
917
0
         info);
918
0
      il = nwork;
919
920
/*        Copy L to WORK(IL), zeroing out above its diagonal. */
921
922
0
      slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
923
0
      i__1 = *m - 1;
924
0
      i__2 = *m - 1;
925
0
      slaset_("U", &i__1, &i__2, &c_b81, &c_b81, &work[il + ldwork], &
926
0
        ldwork);
927
0
      ie = il + ldwork * *m;
928
0
      itauq = ie + *m;
929
0
      itaup = itauq + *m;
930
0
      nwork = itaup + *m;
931
932
/*        Bidiagonalize L in WORK(IL). */
933
/*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
934
935
0
      i__1 = *lwork - nwork + 1;
936
0
      sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], 
937
0
        &work[itaup], &work[nwork], &i__1, info);
938
939
/*        Multiply B by transpose of left bidiagonalizing vectors of L. */
940
/*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
941
942
0
      i__1 = *lwork - nwork + 1;
943
0
      sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
944
0
        itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
945
946
/*        Solve the bidiagonal least squares problem. */
947
948
0
      slalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
949
0
        ldb, rcond, rank, &work[nwork], &iwork[1], info);
950
0
      if (*info != 0) {
951
0
    goto L10;
952
0
      }
953
954
/*        Multiply B by right bidiagonalizing vectors of L. */
955
956
0
      i__1 = *lwork - nwork + 1;
957
0
      sormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
958
0
        itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
959
960
/*        Zero out below first M rows of B. */
961
962
0
      i__1 = *n - *m;
963
0
      slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1], 
964
0
        ldb);
965
0
      nwork = itau + *m;
966
967
/*        Multiply transpose(Q) by B. */
968
/*        (Workspace: need M+NRHS, prefer M+NRHS*NB) */
969
970
0
      i__1 = *lwork - nwork + 1;
971
0
      sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
972
0
        b_offset], ldb, &work[nwork], &i__1, info);
973
974
0
  } else {
975
976
/*        Path 2 - remaining underdetermined cases. */
977
0
fprintf(stdout,"other underdetermined, path 2");
978
979
0
      ie = 1;
980
0
      itauq = ie + *m;
981
0
      itaup = itauq + *m;
982
0
      nwork = itaup + *m;
983
984
/*        Bidiagonalize A. */
985
/*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
986
987
0
      i__1 = *lwork - nwork + 1;
988
0
      sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
989
0
        work[itaup], &work[nwork], &i__1, info);
990
991
/*        Multiply B by transpose of left bidiagonalizing vectors. */
992
/*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
993
994
0
      i__1 = *lwork - nwork + 1;
995
0
      sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
996
0
        , &b[b_offset], ldb, &work[nwork], &i__1, info);
997
998
/*        Solve the bidiagonal least squares problem. */
999
1000
0
      slalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
1001
0
        ldb, rcond, rank, &work[nwork], &iwork[1], info);
1002
0
      if (*info != 0) {
1003
0
    goto L10;
1004
0
      }
1005
1006
/*        Multiply B by right bidiagonalizing vectors of A. */
1007
1008
0
      i__1 = *lwork - nwork + 1;
1009
0
      sormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
1010
0
        , &b[b_offset], ldb, &work[nwork], &i__1, info);
1011
1012
0
  }
1013
0
    }
1014
1015
/*     Undo scaling. */
1016
1017
0
    if (iascl == 1) {
1018
0
      fprintf(stdout," unscaling a1\n");
1019
0
  slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
1020
0
     info);
1021
0
  slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
1022
0
    minmn, info);
1023
0
    } else if (iascl == 2) {
1024
0
      fprintf(stdout," unscaling a2\n");
1025
0
  slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
1026
0
     info);
1027
0
  slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
1028
0
    minmn, info);
1029
0
    }
1030
0
    if (ibscl == 1) {
1031
0
      fprintf(stdout," unscaling b1\n");
1032
0
  slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
1033
0
     info);
1034
0
    } else if (ibscl == 2) {
1035
0
      fprintf(stdout," unscaling b2\n");
1036
0
  slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
1037
0
     info);
1038
0
    }
1039
1040
0
L10:
1041
0
    work[1] = (real) maxwrk;
1042
0
    iwork[1] = liwork;
1043
0
fprintf(stdout, "end of SGELSD\n");
1044
0
    return;
1045
1046
/*     End of SGELSD */
1047
1048
0
} /* sgelsd_ */
1049