/root/doris/contrib/openblas/lapack-netlib/SRC/slascl.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | 0 | #define TRUE_ (1) |
61 | 0 | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | 0 | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* > \brief \b SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. */ |
514 | | |
515 | | /* =========== DOCUMENTATION =========== */ |
516 | | |
517 | | /* Online html documentation available at */ |
518 | | /* http://www.netlib.org/lapack/explore-html/ */ |
519 | | |
520 | | /* > \htmlonly */ |
521 | | /* > Download SLASCL + dependencies */ |
522 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slascl. |
523 | | f"> */ |
524 | | /* > [TGZ]</a> */ |
525 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slascl. |
526 | | f"> */ |
527 | | /* > [ZIP]</a> */ |
528 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slascl. |
529 | | f"> */ |
530 | | /* > [TXT]</a> */ |
531 | | /* > \endhtmlonly */ |
532 | | |
533 | | /* Definition: */ |
534 | | /* =========== */ |
535 | | |
536 | | /* SUBROUTINE SLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) */ |
537 | | |
538 | | /* CHARACTER TYPE */ |
539 | | /* INTEGER INFO, KL, KU, LDA, M, N */ |
540 | | /* REAL CFROM, CTO */ |
541 | | /* REAL A( LDA, * ) */ |
542 | | |
543 | | |
544 | | /* > \par Purpose: */ |
545 | | /* ============= */ |
546 | | /* > */ |
547 | | /* > \verbatim */ |
548 | | /* > */ |
549 | | /* > SLASCL multiplies the M by N real matrix A by the real scalar */ |
550 | | /* > CTO/CFROM. This is done without over/underflow as long as the final */ |
551 | | /* > result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */ |
552 | | /* > A may be full, upper triangular, lower triangular, upper Hessenberg, */ |
553 | | /* > or banded. */ |
554 | | /* > \endverbatim */ |
555 | | |
556 | | /* Arguments: */ |
557 | | /* ========== */ |
558 | | |
559 | | /* > \param[in] TYPE */ |
560 | | /* > \verbatim */ |
561 | | /* > TYPE is CHARACTER*1 */ |
562 | | /* > TYPE indices the storage type of the input matrix. */ |
563 | | /* > = 'G': A is a full matrix. */ |
564 | | /* > = 'L': A is a lower triangular matrix. */ |
565 | | /* > = 'U': A is an upper triangular matrix. */ |
566 | | /* > = 'H': A is an upper Hessenberg matrix. */ |
567 | | /* > = 'B': A is a symmetric band matrix with lower bandwidth KL */ |
568 | | /* > and upper bandwidth KU and with the only the lower */ |
569 | | /* > half stored. */ |
570 | | /* > = 'Q': A is a symmetric band matrix with lower bandwidth KL */ |
571 | | /* > and upper bandwidth KU and with the only the upper */ |
572 | | /* > half stored. */ |
573 | | /* > = 'Z': A is a band matrix with lower bandwidth KL and upper */ |
574 | | /* > bandwidth KU. See SGBTRF for storage details. */ |
575 | | /* > \endverbatim */ |
576 | | /* > */ |
577 | | /* > \param[in] KL */ |
578 | | /* > \verbatim */ |
579 | | /* > KL is INTEGER */ |
580 | | /* > The lower bandwidth of A. Referenced only if TYPE = 'B', */ |
581 | | /* > 'Q' or 'Z'. */ |
582 | | /* > \endverbatim */ |
583 | | /* > */ |
584 | | /* > \param[in] KU */ |
585 | | /* > \verbatim */ |
586 | | /* > KU is INTEGER */ |
587 | | /* > The upper bandwidth of A. Referenced only if TYPE = 'B', */ |
588 | | /* > 'Q' or 'Z'. */ |
589 | | /* > \endverbatim */ |
590 | | /* > */ |
591 | | /* > \param[in] CFROM */ |
592 | | /* > \verbatim */ |
593 | | /* > CFROM is REAL */ |
594 | | /* > \endverbatim */ |
595 | | /* > */ |
596 | | /* > \param[in] CTO */ |
597 | | /* > \verbatim */ |
598 | | /* > CTO is REAL */ |
599 | | /* > */ |
600 | | /* > The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */ |
601 | | /* > without over/underflow if the final result CTO*A(I,J)/CFROM */ |
602 | | /* > can be represented without over/underflow. CFROM must be */ |
603 | | /* > nonzero. */ |
604 | | /* > \endverbatim */ |
605 | | /* > */ |
606 | | /* > \param[in] M */ |
607 | | /* > \verbatim */ |
608 | | /* > M is INTEGER */ |
609 | | /* > The number of rows of the matrix A. M >= 0. */ |
610 | | /* > \endverbatim */ |
611 | | /* > */ |
612 | | /* > \param[in] N */ |
613 | | /* > \verbatim */ |
614 | | /* > N is INTEGER */ |
615 | | /* > The number of columns of the matrix A. N >= 0. */ |
616 | | /* > \endverbatim */ |
617 | | /* > */ |
618 | | /* > \param[in,out] A */ |
619 | | /* > \verbatim */ |
620 | | /* > A is REAL array, dimension (LDA,N) */ |
621 | | /* > The matrix to be multiplied by CTO/CFROM. See TYPE for the */ |
622 | | /* > storage type. */ |
623 | | /* > \endverbatim */ |
624 | | /* > */ |
625 | | /* > \param[in] LDA */ |
626 | | /* > \verbatim */ |
627 | | /* > LDA is INTEGER */ |
628 | | /* > The leading dimension of the array A. */ |
629 | | /* > If TYPE = 'G', 'L', 'U', 'H', LDA >= f2cmax(1,M); */ |
630 | | /* > TYPE = 'B', LDA >= KL+1; */ |
631 | | /* > TYPE = 'Q', LDA >= KU+1; */ |
632 | | /* > TYPE = 'Z', LDA >= 2*KL+KU+1. */ |
633 | | /* > \endverbatim */ |
634 | | /* > */ |
635 | | /* > \param[out] INFO */ |
636 | | /* > \verbatim */ |
637 | | /* > INFO is INTEGER */ |
638 | | /* > 0 - successful exit */ |
639 | | /* > <0 - if INFO = -i, the i-th argument had an illegal value. */ |
640 | | /* > \endverbatim */ |
641 | | |
642 | | /* Authors: */ |
643 | | /* ======== */ |
644 | | |
645 | | /* > \author Univ. of Tennessee */ |
646 | | /* > \author Univ. of California Berkeley */ |
647 | | /* > \author Univ. of Colorado Denver */ |
648 | | /* > \author NAG Ltd. */ |
649 | | |
650 | | /* > \date June 2016 */ |
651 | | |
652 | | /* > \ingroup OTHERauxiliary */ |
653 | | |
654 | | /* ===================================================================== */ |
655 | | /* Subroutine */ void slascl_(char *type__, integer *kl, integer *ku, real * |
656 | | cfrom, real *cto, integer *m, integer *n, real *a, integer *lda, |
657 | | integer *info) |
658 | 0 | { |
659 | | /* System generated locals */ |
660 | 0 | integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; |
661 | | |
662 | | /* Local variables */ |
663 | 0 | logical done; |
664 | 0 | real ctoc; |
665 | 0 | integer i__, j; |
666 | 0 | extern logical lsame_(char *, char *); |
667 | 0 | integer itype, k1, k2, k3, k4; |
668 | 0 | real cfrom1; |
669 | 0 | extern real slamch_(char *); |
670 | 0 | real cfromc; |
671 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
672 | 0 | real bignum; |
673 | 0 | extern logical sisnan_(real *); |
674 | 0 | real smlnum, mul, cto1; |
675 | | |
676 | | |
677 | | /* -- LAPACK auxiliary routine (version 3.7.0) -- */ |
678 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
679 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
680 | | /* June 2016 */ |
681 | | |
682 | | |
683 | | /* ===================================================================== */ |
684 | | |
685 | | |
686 | | /* Test the input arguments */ |
687 | | |
688 | | /* Parameter adjustments */ |
689 | 0 | a_dim1 = *lda; |
690 | 0 | a_offset = 1 + a_dim1 * 1; |
691 | 0 | a -= a_offset; |
692 | | |
693 | | /* Function Body */ |
694 | 0 | *info = 0; |
695 | |
|
696 | 0 | if (lsame_(type__, "G")) { |
697 | 0 | itype = 0; |
698 | 0 | } else if (lsame_(type__, "L")) { |
699 | 0 | itype = 1; |
700 | 0 | } else if (lsame_(type__, "U")) { |
701 | 0 | itype = 2; |
702 | 0 | } else if (lsame_(type__, "H")) { |
703 | 0 | itype = 3; |
704 | 0 | } else if (lsame_(type__, "B")) { |
705 | 0 | itype = 4; |
706 | 0 | } else if (lsame_(type__, "Q")) { |
707 | 0 | itype = 5; |
708 | 0 | } else if (lsame_(type__, "Z")) { |
709 | 0 | itype = 6; |
710 | 0 | } else { |
711 | 0 | itype = -1; |
712 | 0 | } |
713 | |
|
714 | 0 | if (itype == -1) { |
715 | 0 | *info = -1; |
716 | 0 | } else if (*cfrom == 0.f || sisnan_(cfrom)) { |
717 | 0 | *info = -4; |
718 | 0 | } else if (sisnan_(cto)) { |
719 | 0 | *info = -5; |
720 | 0 | } else if (*m < 0) { |
721 | 0 | *info = -6; |
722 | 0 | } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { |
723 | 0 | *info = -7; |
724 | 0 | } else if (itype <= 3 && *lda < f2cmax(1,*m)) { |
725 | 0 | *info = -9; |
726 | 0 | } else if (itype >= 4) { |
727 | | /* Computing MAX */ |
728 | 0 | i__1 = *m - 1; |
729 | 0 | if (*kl < 0 || *kl > f2cmax(i__1,0)) { |
730 | 0 | *info = -2; |
731 | 0 | } else /* if(complicated condition) */ { |
732 | | /* Computing MAX */ |
733 | 0 | i__1 = *n - 1; |
734 | 0 | if (*ku < 0 || *ku > f2cmax(i__1,0) || (itype == 4 || itype == 5) && |
735 | 0 | *kl != *ku) { |
736 | 0 | *info = -3; |
737 | 0 | } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * |
738 | 0 | ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { |
739 | 0 | *info = -9; |
740 | 0 | } |
741 | 0 | } |
742 | 0 | } |
743 | |
|
744 | 0 | if (*info != 0) { |
745 | 0 | i__1 = -(*info); |
746 | 0 | xerbla_("SLASCL", &i__1, (ftnlen)6); |
747 | 0 | return; |
748 | 0 | } |
749 | | |
750 | | /* Quick return if possible */ |
751 | | |
752 | 0 | if (*n == 0 || *m == 0) { |
753 | 0 | return; |
754 | 0 | } |
755 | | |
756 | | /* Get machine parameters */ |
757 | | |
758 | 0 | smlnum = slamch_("S"); |
759 | 0 | bignum = 1.f / smlnum; |
760 | |
|
761 | 0 | cfromc = *cfrom; |
762 | 0 | ctoc = *cto; |
763 | |
|
764 | 0 | L10: |
765 | 0 | cfrom1 = cfromc * smlnum; |
766 | 0 | if (cfrom1 == cfromc) { |
767 | | /* CFROMC is an inf. Multiply by a correctly signed zero for */ |
768 | | /* finite CTOC, or a NaN if CTOC is infinite. */ |
769 | 0 | mul = ctoc / cfromc; |
770 | 0 | done = TRUE_; |
771 | 0 | cto1 = ctoc; |
772 | 0 | } else { |
773 | 0 | cto1 = ctoc / bignum; |
774 | 0 | if (cto1 == ctoc) { |
775 | | /* CTOC is either 0 or an inf. In both cases, CTOC itself */ |
776 | | /* serves as the correct multiplication factor. */ |
777 | 0 | mul = ctoc; |
778 | 0 | done = TRUE_; |
779 | 0 | cfromc = 1.f; |
780 | 0 | } else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.f) { |
781 | 0 | mul = smlnum; |
782 | 0 | done = FALSE_; |
783 | 0 | cfromc = cfrom1; |
784 | 0 | } else if (abs(cto1) > abs(cfromc)) { |
785 | 0 | mul = bignum; |
786 | 0 | done = FALSE_; |
787 | 0 | ctoc = cto1; |
788 | 0 | } else { |
789 | 0 | mul = ctoc / cfromc; |
790 | 0 | done = TRUE_; |
791 | 0 | } |
792 | 0 | } |
793 | |
|
794 | 0 | if (itype == 0) { |
795 | | |
796 | | /* Full matrix */ |
797 | |
|
798 | 0 | i__1 = *n; |
799 | 0 | for (j = 1; j <= i__1; ++j) { |
800 | 0 | i__2 = *m; |
801 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
802 | 0 | a[i__ + j * a_dim1] *= mul; |
803 | | /* L20: */ |
804 | 0 | } |
805 | | /* L30: */ |
806 | 0 | } |
807 | |
|
808 | 0 | } else if (itype == 1) { |
809 | | |
810 | | /* Lower triangular matrix */ |
811 | |
|
812 | 0 | i__1 = *n; |
813 | 0 | for (j = 1; j <= i__1; ++j) { |
814 | 0 | i__2 = *m; |
815 | 0 | for (i__ = j; i__ <= i__2; ++i__) { |
816 | 0 | a[i__ + j * a_dim1] *= mul; |
817 | | /* L40: */ |
818 | 0 | } |
819 | | /* L50: */ |
820 | 0 | } |
821 | |
|
822 | 0 | } else if (itype == 2) { |
823 | | |
824 | | /* Upper triangular matrix */ |
825 | |
|
826 | 0 | i__1 = *n; |
827 | 0 | for (j = 1; j <= i__1; ++j) { |
828 | 0 | i__2 = f2cmin(j,*m); |
829 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
830 | 0 | a[i__ + j * a_dim1] *= mul; |
831 | | /* L60: */ |
832 | 0 | } |
833 | | /* L70: */ |
834 | 0 | } |
835 | |
|
836 | 0 | } else if (itype == 3) { |
837 | | |
838 | | /* Upper Hessenberg matrix */ |
839 | |
|
840 | 0 | i__1 = *n; |
841 | 0 | for (j = 1; j <= i__1; ++j) { |
842 | | /* Computing MIN */ |
843 | 0 | i__3 = j + 1; |
844 | 0 | i__2 = f2cmin(i__3,*m); |
845 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
846 | 0 | a[i__ + j * a_dim1] *= mul; |
847 | | /* L80: */ |
848 | 0 | } |
849 | | /* L90: */ |
850 | 0 | } |
851 | |
|
852 | 0 | } else if (itype == 4) { |
853 | | |
854 | | /* Lower half of a symmetric band matrix */ |
855 | |
|
856 | 0 | k3 = *kl + 1; |
857 | 0 | k4 = *n + 1; |
858 | 0 | i__1 = *n; |
859 | 0 | for (j = 1; j <= i__1; ++j) { |
860 | | /* Computing MIN */ |
861 | 0 | i__3 = k3, i__4 = k4 - j; |
862 | 0 | i__2 = f2cmin(i__3,i__4); |
863 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
864 | 0 | a[i__ + j * a_dim1] *= mul; |
865 | | /* L100: */ |
866 | 0 | } |
867 | | /* L110: */ |
868 | 0 | } |
869 | |
|
870 | 0 | } else if (itype == 5) { |
871 | | |
872 | | /* Upper half of a symmetric band matrix */ |
873 | |
|
874 | 0 | k1 = *ku + 2; |
875 | 0 | k3 = *ku + 1; |
876 | 0 | i__1 = *n; |
877 | 0 | for (j = 1; j <= i__1; ++j) { |
878 | | /* Computing MAX */ |
879 | 0 | i__2 = k1 - j; |
880 | 0 | i__3 = k3; |
881 | 0 | for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) { |
882 | 0 | a[i__ + j * a_dim1] *= mul; |
883 | | /* L120: */ |
884 | 0 | } |
885 | | /* L130: */ |
886 | 0 | } |
887 | |
|
888 | 0 | } else if (itype == 6) { |
889 | | |
890 | | /* Band matrix */ |
891 | |
|
892 | 0 | k1 = *kl + *ku + 2; |
893 | 0 | k2 = *kl + 1; |
894 | 0 | k3 = (*kl << 1) + *ku + 1; |
895 | 0 | k4 = *kl + *ku + 1 + *m; |
896 | 0 | i__1 = *n; |
897 | 0 | for (j = 1; j <= i__1; ++j) { |
898 | | /* Computing MAX */ |
899 | 0 | i__3 = k1 - j; |
900 | | /* Computing MIN */ |
901 | 0 | i__4 = k3, i__5 = k4 - j; |
902 | 0 | i__2 = f2cmin(i__4,i__5); |
903 | 0 | for (i__ = f2cmax(i__3,k2); i__ <= i__2; ++i__) { |
904 | 0 | a[i__ + j * a_dim1] *= mul; |
905 | | /* L140: */ |
906 | 0 | } |
907 | | /* L150: */ |
908 | 0 | } |
909 | |
|
910 | 0 | } |
911 | |
|
912 | 0 | if (! done) { |
913 | 0 | goto L10; |
914 | 0 | } |
915 | | |
916 | 0 | return; |
917 | | |
918 | | /* End of SLASCL */ |
919 | |
|
920 | 0 | } /* slascl_ */ |
921 | | |