Coverage Report

Created: 2025-09-05 19:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slascl.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
0
#define TRUE_ (1)
61
0
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. */
514
515
/*  =========== DOCUMENTATION =========== */
516
517
/* Online html documentation available at */
518
/*            http://www.netlib.org/lapack/explore-html/ */
519
520
/* > \htmlonly */
521
/* > Download SLASCL + dependencies */
522
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slascl.
523
f"> */
524
/* > [TGZ]</a> */
525
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slascl.
526
f"> */
527
/* > [ZIP]</a> */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slascl.
529
f"> */
530
/* > [TXT]</a> */
531
/* > \endhtmlonly */
532
533
/*  Definition: */
534
/*  =========== */
535
536
/*       SUBROUTINE SLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) */
537
538
/*       CHARACTER          TYPE */
539
/*       INTEGER            INFO, KL, KU, LDA, M, N */
540
/*       REAL               CFROM, CTO */
541
/*       REAL               A( LDA, * ) */
542
543
544
/* > \par Purpose: */
545
/*  ============= */
546
/* > */
547
/* > \verbatim */
548
/* > */
549
/* > SLASCL multiplies the M by N real matrix A by the real scalar */
550
/* > CTO/CFROM.  This is done without over/underflow as long as the final */
551
/* > result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
552
/* > A may be full, upper triangular, lower triangular, upper Hessenberg, */
553
/* > or banded. */
554
/* > \endverbatim */
555
556
/*  Arguments: */
557
/*  ========== */
558
559
/* > \param[in] TYPE */
560
/* > \verbatim */
561
/* >          TYPE is CHARACTER*1 */
562
/* >          TYPE indices the storage type of the input matrix. */
563
/* >          = 'G':  A is a full matrix. */
564
/* >          = 'L':  A is a lower triangular matrix. */
565
/* >          = 'U':  A is an upper triangular matrix. */
566
/* >          = 'H':  A is an upper Hessenberg matrix. */
567
/* >          = 'B':  A is a symmetric band matrix with lower bandwidth KL */
568
/* >                  and upper bandwidth KU and with the only the lower */
569
/* >                  half stored. */
570
/* >          = 'Q':  A is a symmetric band matrix with lower bandwidth KL */
571
/* >                  and upper bandwidth KU and with the only the upper */
572
/* >                  half stored. */
573
/* >          = 'Z':  A is a band matrix with lower bandwidth KL and upper */
574
/* >                  bandwidth KU. See SGBTRF for storage details. */
575
/* > \endverbatim */
576
/* > */
577
/* > \param[in] KL */
578
/* > \verbatim */
579
/* >          KL is INTEGER */
580
/* >          The lower bandwidth of A.  Referenced only if TYPE = 'B', */
581
/* >          'Q' or 'Z'. */
582
/* > \endverbatim */
583
/* > */
584
/* > \param[in] KU */
585
/* > \verbatim */
586
/* >          KU is INTEGER */
587
/* >          The upper bandwidth of A.  Referenced only if TYPE = 'B', */
588
/* >          'Q' or 'Z'. */
589
/* > \endverbatim */
590
/* > */
591
/* > \param[in] CFROM */
592
/* > \verbatim */
593
/* >          CFROM is REAL */
594
/* > \endverbatim */
595
/* > */
596
/* > \param[in] CTO */
597
/* > \verbatim */
598
/* >          CTO is REAL */
599
/* > */
600
/* >          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
601
/* >          without over/underflow if the final result CTO*A(I,J)/CFROM */
602
/* >          can be represented without over/underflow.  CFROM must be */
603
/* >          nonzero. */
604
/* > \endverbatim */
605
/* > */
606
/* > \param[in] M */
607
/* > \verbatim */
608
/* >          M is INTEGER */
609
/* >          The number of rows of the matrix A.  M >= 0. */
610
/* > \endverbatim */
611
/* > */
612
/* > \param[in] N */
613
/* > \verbatim */
614
/* >          N is INTEGER */
615
/* >          The number of columns of the matrix A.  N >= 0. */
616
/* > \endverbatim */
617
/* > */
618
/* > \param[in,out] A */
619
/* > \verbatim */
620
/* >          A is REAL array, dimension (LDA,N) */
621
/* >          The matrix to be multiplied by CTO/CFROM.  See TYPE for the */
622
/* >          storage type. */
623
/* > \endverbatim */
624
/* > */
625
/* > \param[in] LDA */
626
/* > \verbatim */
627
/* >          LDA is INTEGER */
628
/* >          The leading dimension of the array A. */
629
/* >          If TYPE = 'G', 'L', 'U', 'H', LDA >= f2cmax(1,M); */
630
/* >             TYPE = 'B', LDA >= KL+1; */
631
/* >             TYPE = 'Q', LDA >= KU+1; */
632
/* >             TYPE = 'Z', LDA >= 2*KL+KU+1. */
633
/* > \endverbatim */
634
/* > */
635
/* > \param[out] INFO */
636
/* > \verbatim */
637
/* >          INFO is INTEGER */
638
/* >          0  - successful exit */
639
/* >          <0 - if INFO = -i, the i-th argument had an illegal value. */
640
/* > \endverbatim */
641
642
/*  Authors: */
643
/*  ======== */
644
645
/* > \author Univ. of Tennessee */
646
/* > \author Univ. of California Berkeley */
647
/* > \author Univ. of Colorado Denver */
648
/* > \author NAG Ltd. */
649
650
/* > \date June 2016 */
651
652
/* > \ingroup OTHERauxiliary */
653
654
/*  ===================================================================== */
655
/* Subroutine */ void slascl_(char *type__, integer *kl, integer *ku, real *
656
  cfrom, real *cto, integer *m, integer *n, real *a, integer *lda, 
657
  integer *info)
658
0
{
659
    /* System generated locals */
660
0
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
661
662
    /* Local variables */
663
0
    logical done;
664
0
    real ctoc;
665
0
    integer i__, j;
666
0
    extern logical lsame_(char *, char *);
667
0
    integer itype, k1, k2, k3, k4;
668
0
    real cfrom1;
669
0
    extern real slamch_(char *);
670
0
    real cfromc;
671
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
672
0
    real bignum;
673
0
    extern logical sisnan_(real *);
674
0
    real smlnum, mul, cto1;
675
676
677
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
678
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
679
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
680
/*     June 2016 */
681
682
683
/*  ===================================================================== */
684
685
686
/*     Test the input arguments */
687
688
    /* Parameter adjustments */
689
0
    a_dim1 = *lda;
690
0
    a_offset = 1 + a_dim1 * 1;
691
0
    a -= a_offset;
692
693
    /* Function Body */
694
0
    *info = 0;
695
696
0
    if (lsame_(type__, "G")) {
697
0
  itype = 0;
698
0
    } else if (lsame_(type__, "L")) {
699
0
  itype = 1;
700
0
    } else if (lsame_(type__, "U")) {
701
0
  itype = 2;
702
0
    } else if (lsame_(type__, "H")) {
703
0
  itype = 3;
704
0
    } else if (lsame_(type__, "B")) {
705
0
  itype = 4;
706
0
    } else if (lsame_(type__, "Q")) {
707
0
  itype = 5;
708
0
    } else if (lsame_(type__, "Z")) {
709
0
  itype = 6;
710
0
    } else {
711
0
  itype = -1;
712
0
    }
713
714
0
    if (itype == -1) {
715
0
  *info = -1;
716
0
    } else if (*cfrom == 0.f || sisnan_(cfrom)) {
717
0
  *info = -4;
718
0
    } else if (sisnan_(cto)) {
719
0
  *info = -5;
720
0
    } else if (*m < 0) {
721
0
  *info = -6;
722
0
    } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
723
0
  *info = -7;
724
0
    } else if (itype <= 3 && *lda < f2cmax(1,*m)) {
725
0
  *info = -9;
726
0
    } else if (itype >= 4) {
727
/* Computing MAX */
728
0
  i__1 = *m - 1;
729
0
  if (*kl < 0 || *kl > f2cmax(i__1,0)) {
730
0
      *info = -2;
731
0
  } else /* if(complicated condition) */ {
732
/* Computing MAX */
733
0
      i__1 = *n - 1;
734
0
      if (*ku < 0 || *ku > f2cmax(i__1,0) || (itype == 4 || itype == 5) && 
735
0
        *kl != *ku) {
736
0
    *info = -3;
737
0
      } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
738
0
        ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
739
0
    *info = -9;
740
0
      }
741
0
  }
742
0
    }
743
744
0
    if (*info != 0) {
745
0
  i__1 = -(*info);
746
0
  xerbla_("SLASCL", &i__1, (ftnlen)6);
747
0
  return;
748
0
    }
749
750
/*     Quick return if possible */
751
752
0
    if (*n == 0 || *m == 0) {
753
0
  return;
754
0
    }
755
756
/*     Get machine parameters */
757
758
0
    smlnum = slamch_("S");
759
0
    bignum = 1.f / smlnum;
760
761
0
    cfromc = *cfrom;
762
0
    ctoc = *cto;
763
764
0
L10:
765
0
    cfrom1 = cfromc * smlnum;
766
0
    if (cfrom1 == cfromc) {
767
/*        CFROMC is an inf.  Multiply by a correctly signed zero for */
768
/*        finite CTOC, or a NaN if CTOC is infinite. */
769
0
  mul = ctoc / cfromc;
770
0
  done = TRUE_;
771
0
  cto1 = ctoc;
772
0
    } else {
773
0
  cto1 = ctoc / bignum;
774
0
  if (cto1 == ctoc) {
775
/*           CTOC is either 0 or an inf.  In both cases, CTOC itself */
776
/*           serves as the correct multiplication factor. */
777
0
      mul = ctoc;
778
0
      done = TRUE_;
779
0
      cfromc = 1.f;
780
0
  } else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.f) {
781
0
      mul = smlnum;
782
0
      done = FALSE_;
783
0
      cfromc = cfrom1;
784
0
  } else if (abs(cto1) > abs(cfromc)) {
785
0
      mul = bignum;
786
0
      done = FALSE_;
787
0
      ctoc = cto1;
788
0
  } else {
789
0
      mul = ctoc / cfromc;
790
0
      done = TRUE_;
791
0
  }
792
0
    }
793
794
0
    if (itype == 0) {
795
796
/*        Full matrix */
797
798
0
  i__1 = *n;
799
0
  for (j = 1; j <= i__1; ++j) {
800
0
      i__2 = *m;
801
0
      for (i__ = 1; i__ <= i__2; ++i__) {
802
0
    a[i__ + j * a_dim1] *= mul;
803
/* L20: */
804
0
      }
805
/* L30: */
806
0
  }
807
808
0
    } else if (itype == 1) {
809
810
/*        Lower triangular matrix */
811
812
0
  i__1 = *n;
813
0
  for (j = 1; j <= i__1; ++j) {
814
0
      i__2 = *m;
815
0
      for (i__ = j; i__ <= i__2; ++i__) {
816
0
    a[i__ + j * a_dim1] *= mul;
817
/* L40: */
818
0
      }
819
/* L50: */
820
0
  }
821
822
0
    } else if (itype == 2) {
823
824
/*        Upper triangular matrix */
825
826
0
  i__1 = *n;
827
0
  for (j = 1; j <= i__1; ++j) {
828
0
      i__2 = f2cmin(j,*m);
829
0
      for (i__ = 1; i__ <= i__2; ++i__) {
830
0
    a[i__ + j * a_dim1] *= mul;
831
/* L60: */
832
0
      }
833
/* L70: */
834
0
  }
835
836
0
    } else if (itype == 3) {
837
838
/*        Upper Hessenberg matrix */
839
840
0
  i__1 = *n;
841
0
  for (j = 1; j <= i__1; ++j) {
842
/* Computing MIN */
843
0
      i__3 = j + 1;
844
0
      i__2 = f2cmin(i__3,*m);
845
0
      for (i__ = 1; i__ <= i__2; ++i__) {
846
0
    a[i__ + j * a_dim1] *= mul;
847
/* L80: */
848
0
      }
849
/* L90: */
850
0
  }
851
852
0
    } else if (itype == 4) {
853
854
/*        Lower half of a symmetric band matrix */
855
856
0
  k3 = *kl + 1;
857
0
  k4 = *n + 1;
858
0
  i__1 = *n;
859
0
  for (j = 1; j <= i__1; ++j) {
860
/* Computing MIN */
861
0
      i__3 = k3, i__4 = k4 - j;
862
0
      i__2 = f2cmin(i__3,i__4);
863
0
      for (i__ = 1; i__ <= i__2; ++i__) {
864
0
    a[i__ + j * a_dim1] *= mul;
865
/* L100: */
866
0
      }
867
/* L110: */
868
0
  }
869
870
0
    } else if (itype == 5) {
871
872
/*        Upper half of a symmetric band matrix */
873
874
0
  k1 = *ku + 2;
875
0
  k3 = *ku + 1;
876
0
  i__1 = *n;
877
0
  for (j = 1; j <= i__1; ++j) {
878
/* Computing MAX */
879
0
      i__2 = k1 - j;
880
0
      i__3 = k3;
881
0
      for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
882
0
    a[i__ + j * a_dim1] *= mul;
883
/* L120: */
884
0
      }
885
/* L130: */
886
0
  }
887
888
0
    } else if (itype == 6) {
889
890
/*        Band matrix */
891
892
0
  k1 = *kl + *ku + 2;
893
0
  k2 = *kl + 1;
894
0
  k3 = (*kl << 1) + *ku + 1;
895
0
  k4 = *kl + *ku + 1 + *m;
896
0
  i__1 = *n;
897
0
  for (j = 1; j <= i__1; ++j) {
898
/* Computing MAX */
899
0
      i__3 = k1 - j;
900
/* Computing MIN */
901
0
      i__4 = k3, i__5 = k4 - j;
902
0
      i__2 = f2cmin(i__4,i__5);
903
0
      for (i__ = f2cmax(i__3,k2); i__ <= i__2; ++i__) {
904
0
    a[i__ + j * a_dim1] *= mul;
905
/* L140: */
906
0
      }
907
/* L150: */
908
0
  }
909
910
0
    }
911
912
0
    if (! done) {
913
0
  goto L10;
914
0
    }
915
916
0
    return;
917
918
/*     End of SLASCL */
919
920
0
} /* slascl_ */
921