/root/doris/be/src/util/threadpool.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Licensed to the Apache Software Foundation (ASF) under one |
2 | | // or more contributor license agreements. See the NOTICE file |
3 | | // distributed with this work for additional information |
4 | | // regarding copyright ownership. The ASF licenses this file |
5 | | // to you under the Apache License, Version 2.0 (the |
6 | | // "License"); you may not use this file except in compliance |
7 | | // with the License. You may obtain a copy of the License at |
8 | | // |
9 | | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | | // |
11 | | // Unless required by applicable law or agreed to in writing, |
12 | | // software distributed under the License is distributed on an |
13 | | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
14 | | // KIND, either express or implied. See the License for the |
15 | | // specific language governing permissions and limitations |
16 | | // under the License. |
17 | | // This file is copied from |
18 | | // https://github.com/apache/impala/blob/branch-2.9.0/be/src/util/threadpool.cc |
19 | | // and modified by Doris |
20 | | |
21 | | #include "util/threadpool.h" |
22 | | |
23 | | #include <algorithm> |
24 | | #include <cstdint> |
25 | | #include <limits> |
26 | | #include <ostream> |
27 | | #include <thread> |
28 | | #include <utility> |
29 | | |
30 | | #include "common/logging.h" |
31 | | #include "gutil/map-util.h" |
32 | | #include "gutil/port.h" |
33 | | #include "gutil/strings/substitute.h" |
34 | | #include "util/debug/sanitizer_scopes.h" |
35 | | #include "util/doris_metrics.h" |
36 | | #include "util/metrics.h" |
37 | | #include "util/scoped_cleanup.h" |
38 | | #include "util/stopwatch.hpp" |
39 | | #include "util/thread.h" |
40 | | |
41 | | namespace doris { |
42 | | // The name of these varialbs will be useds as metric name in prometheus. |
43 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_active_threads, MetricUnit::NOUNIT); |
44 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_queue_size, MetricUnit::NOUNIT); |
45 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_queue_size, MetricUnit::NOUNIT); |
46 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_threads, MetricUnit::NOUNIT); |
47 | | DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_submit_failed, MetricUnit::NOUNIT); |
48 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(task_execution_time_ns_avg_in_last_1000_times, |
49 | | MetricUnit::NANOSECONDS); |
50 | | DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(task_wait_worker_ns_avg_in_last_1000_times, |
51 | | MetricUnit::NANOSECONDS); |
52 | | using namespace ErrorCode; |
53 | | |
54 | | using std::string; |
55 | | using strings::Substitute; |
56 | | |
57 | | class FunctionRunnable : public Runnable { |
58 | | public: |
59 | 7.37k | explicit FunctionRunnable(std::function<void()> func) : _func(std::move(func)) {} |
60 | | |
61 | 4.27k | void run() override { _func(); } |
62 | | |
63 | | private: |
64 | | std::function<void()> _func; |
65 | | }; |
66 | | |
67 | | ThreadPoolBuilder::ThreadPoolBuilder(string name, string workload_group) |
68 | | : _name(std::move(name)), |
69 | | _workload_group(std::move(workload_group)), |
70 | | _min_threads(0), |
71 | | _max_threads(std::thread::hardware_concurrency()), |
72 | | _max_queue_size(std::numeric_limits<int>::max()), |
73 | 245 | _idle_timeout(std::chrono::milliseconds(500)) {} |
74 | | |
75 | 209 | ThreadPoolBuilder& ThreadPoolBuilder::set_min_threads(int min_threads) { |
76 | 209 | CHECK_GE(min_threads, 0); |
77 | 209 | _min_threads = min_threads; |
78 | 209 | return *this; |
79 | 209 | } |
80 | | |
81 | 217 | ThreadPoolBuilder& ThreadPoolBuilder::set_max_threads(int max_threads) { |
82 | 217 | CHECK_GT(max_threads, 0); |
83 | 217 | _max_threads = max_threads; |
84 | 217 | return *this; |
85 | 217 | } |
86 | | |
87 | 17 | ThreadPoolBuilder& ThreadPoolBuilder::set_max_queue_size(int max_queue_size) { |
88 | 17 | _max_queue_size = max_queue_size; |
89 | 17 | return *this; |
90 | 17 | } |
91 | | |
92 | 0 | ThreadPoolBuilder& ThreadPoolBuilder::set_cgroup_cpu_ctl(CgroupCpuCtl* cgroup_cpu_ctl) { |
93 | 0 | _cgroup_cpu_ctl = cgroup_cpu_ctl; |
94 | 0 | return *this; |
95 | 0 | } |
96 | | |
97 | | ThreadPoolToken::ThreadPoolToken(ThreadPool* pool, ThreadPool::ExecutionMode mode, |
98 | | int max_concurrency) |
99 | | : _mode(mode), |
100 | | _pool(pool), |
101 | | _state(State::IDLE), |
102 | | _active_threads(0), |
103 | | _max_concurrency(max_concurrency), |
104 | | _num_submitted_tasks(0), |
105 | 2.11k | _num_unsubmitted_tasks(0) { |
106 | 2.11k | if (max_concurrency == 1 && mode != ThreadPool::ExecutionMode::SERIAL) { |
107 | 1 | _mode = ThreadPool::ExecutionMode::SERIAL; |
108 | 1 | } |
109 | 2.11k | } |
110 | | |
111 | 2.11k | ThreadPoolToken::~ThreadPoolToken() { |
112 | 2.11k | shutdown(); |
113 | 2.11k | _pool->release_token(this); |
114 | 2.11k | } |
115 | | |
116 | 5.98k | Status ThreadPoolToken::submit(std::shared_ptr<Runnable> r) { |
117 | 5.98k | return _pool->do_submit(std::move(r), this); |
118 | 5.98k | } |
119 | | |
120 | 6.17k | Status ThreadPoolToken::submit_func(std::function<void()> f) { |
121 | 6.17k | return submit(std::make_shared<FunctionRunnable>(std::move(f))); |
122 | 6.17k | } |
123 | | |
124 | 3.26k | void ThreadPoolToken::shutdown() { |
125 | 3.26k | std::unique_lock<std::mutex> l(_pool->_lock); |
126 | 3.26k | _pool->check_not_pool_thread_unlocked(); |
127 | | |
128 | | // Clear the queue under the lock, but defer the releasing of the tasks |
129 | | // outside the lock, in case there are concurrent threads wanting to access |
130 | | // the ThreadPool. The task's destructors may acquire locks, etc, so this |
131 | | // also prevents lock inversions. |
132 | 3.26k | std::deque<ThreadPool::Task> to_release = std::move(_entries); |
133 | 3.26k | _pool->_total_queued_tasks -= to_release.size(); |
134 | | |
135 | 3.26k | switch (state()) { |
136 | 1.04k | case State::IDLE: |
137 | | // There were no tasks outstanding; we can quiesce the token immediately. |
138 | 1.04k | transition(State::QUIESCED); |
139 | 1.04k | break; |
140 | 779 | case State::RUNNING: |
141 | | // There were outstanding tasks. If any are still running, switch to |
142 | | // QUIESCING and wait for them to finish (the worker thread executing |
143 | | // the token's last task will switch the token to QUIESCED). Otherwise, |
144 | | // we can quiesce the token immediately. |
145 | | |
146 | | // Note: this is an O(n) operation, but it's expected to be infrequent. |
147 | | // Plus doing it this way (rather than switching to QUIESCING and waiting |
148 | | // for a worker thread to process the queue entry) helps retain state |
149 | | // transition symmetry with ThreadPool::shutdown. |
150 | 5.12k | for (auto it = _pool->_queue.begin(); it != _pool->_queue.end();) { |
151 | 4.34k | if (*it == this) { |
152 | 506 | it = _pool->_queue.erase(it); |
153 | 3.83k | } else { |
154 | 3.83k | it++; |
155 | 3.83k | } |
156 | 4.34k | } |
157 | | |
158 | 779 | if (_active_threads == 0) { |
159 | 259 | transition(State::QUIESCED); |
160 | 259 | break; |
161 | 259 | } |
162 | 520 | transition(State::QUIESCING); |
163 | 520 | [[fallthrough]]; |
164 | 531 | case State::QUIESCING: |
165 | | // The token is already quiescing. Just wait for a worker thread to |
166 | | // switch it to QUIESCED. |
167 | 1.06k | _not_running_cond.wait(l, [this]() { return state() == State::QUIESCED; }); |
168 | 531 | break; |
169 | 1.43k | default: |
170 | 1.43k | break; |
171 | 3.26k | } |
172 | 3.26k | } |
173 | | |
174 | 915 | void ThreadPoolToken::wait() { |
175 | 915 | std::unique_lock<std::mutex> l(_pool->_lock); |
176 | 915 | _pool->check_not_pool_thread_unlocked(); |
177 | 1.14k | _not_running_cond.wait(l, [this]() { return !is_active(); }); |
178 | 915 | } |
179 | | |
180 | 7.02k | void ThreadPoolToken::transition(State new_state) { |
181 | 7.02k | #ifndef NDEBUG |
182 | 7.02k | CHECK_NE(_state, new_state); |
183 | | |
184 | 7.02k | switch (_state) { |
185 | 3.90k | case State::IDLE: |
186 | 3.90k | CHECK(new_state == State::RUNNING || new_state == State::QUIESCED); |
187 | 3.90k | if (new_state == State::RUNNING) { |
188 | 2.59k | CHECK(!_entries.empty()); |
189 | 2.59k | } else { |
190 | 1.31k | CHECK(_entries.empty()); |
191 | 1.31k | CHECK_EQ(_active_threads, 0); |
192 | 1.31k | } |
193 | 3.90k | break; |
194 | 2.59k | case State::RUNNING: |
195 | 2.59k | CHECK(new_state == State::IDLE || new_state == State::QUIESCING || |
196 | 2.59k | new_state == State::QUIESCED); |
197 | 2.59k | CHECK(_entries.empty()); |
198 | 2.59k | if (new_state == State::QUIESCING) { |
199 | 529 | CHECK_GT(_active_threads, 0); |
200 | 529 | } |
201 | 2.59k | break; |
202 | 529 | case State::QUIESCING: |
203 | 529 | CHECK(new_state == State::QUIESCED); |
204 | 529 | CHECK_EQ(_active_threads, 0); |
205 | 529 | break; |
206 | 0 | case State::QUIESCED: |
207 | 0 | CHECK(false); // QUIESCED is a terminal state |
208 | 0 | break; |
209 | 0 | default: |
210 | 0 | LOG(FATAL) << "Unknown token state: " << _state; |
211 | 7.02k | } |
212 | 7.02k | #endif |
213 | | |
214 | | // Take actions based on the state we're entering. |
215 | 7.02k | switch (new_state) { |
216 | 1.79k | case State::IDLE: |
217 | 3.90k | case State::QUIESCED: |
218 | 3.90k | _not_running_cond.notify_all(); |
219 | 3.90k | break; |
220 | 3.12k | default: |
221 | 3.12k | break; |
222 | 7.02k | } |
223 | | |
224 | 7.02k | _state = new_state; |
225 | 7.02k | } |
226 | | |
227 | 0 | const char* ThreadPoolToken::state_to_string(State s) { |
228 | 0 | switch (s) { |
229 | 0 | case State::IDLE: |
230 | 0 | return "IDLE"; |
231 | 0 | break; |
232 | 0 | case State::RUNNING: |
233 | 0 | return "RUNNING"; |
234 | 0 | break; |
235 | 0 | case State::QUIESCING: |
236 | 0 | return "QUIESCING"; |
237 | 0 | break; |
238 | 0 | case State::QUIESCED: |
239 | 0 | return "QUIESCED"; |
240 | 0 | break; |
241 | 0 | } |
242 | 0 | return "<cannot reach here>"; |
243 | 0 | } |
244 | | |
245 | 5.42k | bool ThreadPoolToken::need_dispatch() { |
246 | 5.42k | return _state == ThreadPoolToken::State::IDLE || |
247 | 5.42k | (_mode == ThreadPool::ExecutionMode::CONCURRENT && |
248 | 2.83k | _num_submitted_tasks < _max_concurrency); |
249 | 5.42k | } |
250 | | |
251 | | ThreadPool::ThreadPool(const ThreadPoolBuilder& builder) |
252 | | : _name(builder._name), |
253 | | _workload_group(builder._workload_group), |
254 | | _min_threads(builder._min_threads), |
255 | | _max_threads(builder._max_threads), |
256 | | _max_queue_size(builder._max_queue_size), |
257 | | _idle_timeout(builder._idle_timeout), |
258 | | _pool_status(Status::Uninitialized("The pool was not initialized.")), |
259 | | _num_threads(0), |
260 | | _num_threads_pending_start(0), |
261 | | _active_threads(0), |
262 | | _total_queued_tasks(0), |
263 | | _cgroup_cpu_ctl(builder._cgroup_cpu_ctl), |
264 | | _tokenless(new_token(ExecutionMode::CONCURRENT)), |
265 | 240 | _id(UniqueId::gen_uid()) {} |
266 | | |
267 | 240 | ThreadPool::~ThreadPool() { |
268 | | // There should only be one live token: the one used in tokenless submission. |
269 | 240 | CHECK_EQ(1, _tokens.size()) << strings::Substitute( |
270 | 0 | "Threadpool $0 destroyed with $1 allocated tokens", _name, _tokens.size()); |
271 | 240 | shutdown(); |
272 | 240 | } |
273 | | |
274 | 240 | Status ThreadPool::init() { |
275 | 240 | if (!_pool_status.is<UNINITIALIZED>()) { |
276 | 0 | return Status::NotSupported("The thread pool {} is already initialized", _name); |
277 | 0 | } |
278 | 240 | _pool_status = Status::OK(); |
279 | 240 | _num_threads_pending_start = _min_threads; |
280 | 1.03k | for (int i = 0; i < _min_threads; i++) { |
281 | 795 | Status status = create_thread(); |
282 | 795 | if (!status.ok()) { |
283 | 0 | shutdown(); |
284 | 0 | return status; |
285 | 0 | } |
286 | 795 | } |
287 | | // _id of thread pool is used to make sure when we create thread pool with same name, we can |
288 | | // get different _metric_entity |
289 | | // If not, we will have problem when we deregister entity and register hook. |
290 | 240 | _metric_entity = DorisMetrics::instance()->metric_registry()->register_entity( |
291 | 240 | fmt::format("thread_pool_{}", _name), {{"thread_pool_name", _name}, |
292 | 240 | {"workload_group", _workload_group}, |
293 | 240 | {"id", _id.to_string()}}); |
294 | | |
295 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_active_threads); |
296 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_threads); |
297 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_queue_size); |
298 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_queue_size); |
299 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, task_execution_time_ns_avg_in_last_1000_times); |
300 | 240 | INT_GAUGE_METRIC_REGISTER(_metric_entity, task_wait_worker_ns_avg_in_last_1000_times); |
301 | 240 | INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_submit_failed); |
302 | | |
303 | 240 | _metric_entity->register_hook("update", [this]() { |
304 | 0 | { |
305 | 0 | std::lock_guard<std::mutex> l(_lock); |
306 | 0 | if (!_pool_status.ok()) { |
307 | 0 | return; |
308 | 0 | } |
309 | 0 | } |
310 | | |
311 | 0 | thread_pool_active_threads->set_value(num_active_threads()); |
312 | 0 | thread_pool_queue_size->set_value(get_queue_size()); |
313 | 0 | thread_pool_max_queue_size->set_value(get_max_queue_size()); |
314 | 0 | thread_pool_max_threads->set_value(max_threads()); |
315 | 0 | task_execution_time_ns_avg_in_last_1000_times->set_value( |
316 | 0 | _task_execution_time_ns_statistic.mean()); |
317 | 0 | task_wait_worker_ns_avg_in_last_1000_times->set_value( |
318 | 0 | _task_wait_worker_time_ns_statistic.mean()); |
319 | 0 | }); |
320 | 240 | return Status::OK(); |
321 | 240 | } |
322 | | |
323 | 394 | void ThreadPool::shutdown() { |
324 | | // Why access to doris_metrics is safe here? |
325 | | // Since DorisMetrics is a singleton, it will be destroyed only after doris_main is exited. |
326 | | // The shutdown/destroy of ThreadPool is guaranteed to take place before doris_main exits by |
327 | | // ExecEnv::destroy(). |
328 | 394 | DorisMetrics::instance()->metric_registry()->deregister_entity(_metric_entity); |
329 | 394 | debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan; |
330 | 394 | std::unique_lock<std::mutex> l(_lock); |
331 | 394 | check_not_pool_thread_unlocked(); |
332 | | |
333 | | // Note: this is the same error seen at submission if the pool is at |
334 | | // capacity, so clients can't tell them apart. This isn't really a practical |
335 | | // concern though because shutting down a pool typically requires clients to |
336 | | // be quiesced first, so there's no danger of a client getting confused. |
337 | | // Not print stack trace here |
338 | 394 | _pool_status = Status::Error<SERVICE_UNAVAILABLE, false>( |
339 | 394 | "The thread pool {} has been shut down.", _name); |
340 | | |
341 | | // Clear the various queues under the lock, but defer the releasing |
342 | | // of the tasks outside the lock, in case there are concurrent threads |
343 | | // wanting to access the ThreadPool. The task's destructors may acquire |
344 | | // locks, etc, so this also prevents lock inversions. |
345 | 394 | _queue.clear(); |
346 | | |
347 | 394 | std::deque<std::deque<Task>> to_release; |
348 | 474 | for (auto* t : _tokens) { |
349 | 474 | if (!t->_entries.empty()) { |
350 | 13 | to_release.emplace_back(std::move(t->_entries)); |
351 | 13 | } |
352 | 474 | switch (t->state()) { |
353 | 272 | case ThreadPoolToken::State::IDLE: |
354 | | // The token is idle; we can quiesce it immediately. |
355 | 272 | t->transition(ThreadPoolToken::State::QUIESCED); |
356 | 272 | break; |
357 | 19 | case ThreadPoolToken::State::RUNNING: |
358 | | // The token has tasks associated with it. If they're merely queued |
359 | | // (i.e. there are no active threads), the tasks will have been removed |
360 | | // above and we can quiesce immediately. Otherwise, we need to wait for |
361 | | // the threads to finish. |
362 | 19 | t->transition(t->_active_threads > 0 ? ThreadPoolToken::State::QUIESCING |
363 | 19 | : ThreadPoolToken::State::QUIESCED); |
364 | 19 | break; |
365 | 183 | default: |
366 | 183 | break; |
367 | 474 | } |
368 | 474 | } |
369 | | |
370 | | // The queues are empty. Wake any sleeping worker threads and wait for all |
371 | | // of them to exit. Some worker threads will exit immediately upon waking, |
372 | | // while others will exit after they finish executing an outstanding task. |
373 | 394 | _total_queued_tasks = 0; |
374 | 1.28k | while (!_idle_threads.empty()) { |
375 | 887 | _idle_threads.front().not_empty.notify_one(); |
376 | 887 | _idle_threads.pop_front(); |
377 | 887 | } |
378 | | |
379 | 612 | _no_threads_cond.wait(l, [this]() { return _num_threads + _num_threads_pending_start == 0; }); |
380 | | |
381 | | // All the threads have exited. Check the state of each token. |
382 | 474 | for (auto* t : _tokens) { |
383 | 474 | DCHECK(t->state() == ThreadPoolToken::State::IDLE || |
384 | 474 | t->state() == ThreadPoolToken::State::QUIESCED); |
385 | 474 | } |
386 | 394 | } |
387 | | |
388 | 2.11k | std::unique_ptr<ThreadPoolToken> ThreadPool::new_token(ExecutionMode mode, int max_concurrency) { |
389 | 2.11k | std::lock_guard<std::mutex> l(_lock); |
390 | 2.11k | std::unique_ptr<ThreadPoolToken> t(new ThreadPoolToken(this, mode, max_concurrency)); |
391 | 2.11k | InsertOrDie(&_tokens, t.get()); |
392 | 2.11k | return t; |
393 | 2.11k | } |
394 | | |
395 | 2.11k | void ThreadPool::release_token(ThreadPoolToken* t) { |
396 | 2.11k | std::lock_guard<std::mutex> l(_lock); |
397 | 2.11k | CHECK(!t->is_active()) << strings::Substitute("Token with state $0 may not be released", |
398 | 0 | ThreadPoolToken::state_to_string(t->state())); |
399 | 2.11k | CHECK_EQ(1, _tokens.erase(t)); |
400 | 2.11k | } |
401 | | |
402 | 1.46k | Status ThreadPool::submit(std::shared_ptr<Runnable> r) { |
403 | 1.46k | return do_submit(std::move(r), _tokenless.get()); |
404 | 1.46k | } |
405 | | |
406 | 1.30k | Status ThreadPool::submit_func(std::function<void()> f) { |
407 | 1.30k | return submit(std::make_shared<FunctionRunnable>(std::move(f))); |
408 | 1.30k | } |
409 | | |
410 | 7.66k | Status ThreadPool::do_submit(std::shared_ptr<Runnable> r, ThreadPoolToken* token) { |
411 | 7.66k | DCHECK(token); |
412 | | |
413 | 7.66k | std::unique_lock<std::mutex> l(_lock); |
414 | 7.66k | if (PREDICT_FALSE(!_pool_status.ok())) { |
415 | 1 | return _pool_status; |
416 | 1 | } |
417 | | |
418 | 7.66k | if (PREDICT_FALSE(!token->may_submit_new_tasks())) { |
419 | 2.28k | return Status::Error<SERVICE_UNAVAILABLE>("Thread pool({}) token was shut down", _name); |
420 | 2.28k | } |
421 | | |
422 | | // Size limit check. |
423 | 5.37k | int64_t capacity_remaining = static_cast<int64_t>(_max_threads) - _active_threads + |
424 | 5.37k | static_cast<int64_t>(_max_queue_size) - _total_queued_tasks; |
425 | 5.37k | if (capacity_remaining < 1) { |
426 | 4 | thread_pool_submit_failed->increment(1); |
427 | 4 | return Status::Error<SERVICE_UNAVAILABLE>( |
428 | 4 | "Thread pool {} is at capacity ({}/{} tasks running, {}/{} tasks queued)", _name, |
429 | 4 | _num_threads + _num_threads_pending_start, _max_threads, _total_queued_tasks, |
430 | 4 | _max_queue_size); |
431 | 4 | } |
432 | | |
433 | | // Should we create another thread? |
434 | | |
435 | | // We assume that each current inactive thread will grab one item from the |
436 | | // queue. If it seems like we'll need another thread, we create one. |
437 | | // |
438 | | // Rather than creating the thread here, while holding the lock, we defer |
439 | | // it to down below. This is because thread creation can be rather slow |
440 | | // (hundreds of milliseconds in some cases) and we'd like to allow the |
441 | | // existing threads to continue to process tasks while we do so. |
442 | | // |
443 | | // In theory, a currently active thread could finish immediately after this |
444 | | // calculation but before our new worker starts running. This would mean we |
445 | | // created a thread we didn't really need. However, this race is unavoidable |
446 | | // and harmless. |
447 | | // |
448 | | // Of course, we never create more than _max_threads threads no matter what. |
449 | 5.37k | int threads_from_this_submit = |
450 | 5.37k | token->is_active() && token->mode() == ExecutionMode::SERIAL ? 0 : 1; |
451 | 5.37k | int inactive_threads = _num_threads + _num_threads_pending_start - _active_threads; |
452 | 5.37k | int additional_threads = |
453 | 5.37k | static_cast<int>(_queue.size()) + threads_from_this_submit - inactive_threads; |
454 | 5.37k | bool need_a_thread = false; |
455 | 5.37k | if (additional_threads > 0 && _num_threads + _num_threads_pending_start < _max_threads) { |
456 | 623 | need_a_thread = true; |
457 | 623 | _num_threads_pending_start++; |
458 | 623 | } |
459 | | |
460 | 5.37k | Task task; |
461 | 5.37k | task.runnable = std::move(r); |
462 | 5.37k | task.submit_time_wather.start(); |
463 | | |
464 | | // Add the task to the token's queue. |
465 | 5.37k | ThreadPoolToken::State state = token->state(); |
466 | 5.37k | DCHECK(state == ThreadPoolToken::State::IDLE || state == ThreadPoolToken::State::RUNNING); |
467 | 5.37k | token->_entries.emplace_back(std::move(task)); |
468 | | // When we need to execute the task in the token, we submit the token object to the queue. |
469 | | // There are currently two places where tokens will be submitted to the queue: |
470 | | // 1. When submitting a new task, if the token is still in the IDLE state, |
471 | | // or the concurrency of the token has not reached the online level, it will be added to the queue. |
472 | | // 2. When the dispatch thread finishes executing a task: |
473 | | // 1. If it is a SERIAL token, and there are unsubmitted tasks, submit them to the queue. |
474 | | // 2. If it is a CONCURRENT token, and there are still unsubmitted tasks, and the upper limit of concurrency is not reached, |
475 | | // then submitted to the queue. |
476 | 5.37k | if (token->need_dispatch()) { |
477 | 4.38k | _queue.emplace_back(token); |
478 | 4.38k | ++token->_num_submitted_tasks; |
479 | 4.38k | if (state == ThreadPoolToken::State::IDLE) { |
480 | 2.59k | token->transition(ThreadPoolToken::State::RUNNING); |
481 | 2.59k | } |
482 | 4.38k | } else { |
483 | 990 | ++token->_num_unsubmitted_tasks; |
484 | 990 | } |
485 | 5.37k | _total_queued_tasks++; |
486 | | |
487 | | // Wake up an idle thread for this task. Choosing the thread at the front of |
488 | | // the list ensures LIFO semantics as idling threads are also added to the front. |
489 | | // |
490 | | // If there are no idle threads, the new task remains on the queue and is |
491 | | // processed by an active thread (or a thread we're about to create) at some |
492 | | // point in the future. |
493 | 5.37k | if (!_idle_threads.empty()) { |
494 | 1.84k | _idle_threads.front().not_empty.notify_one(); |
495 | 1.84k | _idle_threads.pop_front(); |
496 | 1.84k | } |
497 | 5.37k | l.unlock(); |
498 | | |
499 | 5.37k | if (need_a_thread) { |
500 | 623 | Status status = create_thread(); |
501 | 623 | if (!status.ok()) { |
502 | 0 | l.lock(); |
503 | 0 | _num_threads_pending_start--; |
504 | 0 | if (_num_threads + _num_threads_pending_start == 0) { |
505 | | // If we have no threads, we can't do any work. |
506 | 0 | return status; |
507 | 0 | } |
508 | | // If we failed to create a thread, but there are still some other |
509 | | // worker threads, log a warning message and continue. |
510 | 0 | LOG(WARNING) << "Thread pool " << _name |
511 | 0 | << " failed to create thread: " << status.to_string(); |
512 | 0 | } |
513 | 623 | } |
514 | | |
515 | 5.37k | return Status::OK(); |
516 | 5.37k | } |
517 | | |
518 | 61 | void ThreadPool::wait() { |
519 | 61 | std::unique_lock<std::mutex> l(_lock); |
520 | 61 | check_not_pool_thread_unlocked(); |
521 | 127 | _idle_cond.wait(l, [this]() { return _total_queued_tasks == 0 && _active_threads == 0; }); |
522 | 61 | } |
523 | | |
524 | 1.42k | void ThreadPool::dispatch_thread() { |
525 | 1.42k | std::unique_lock<std::mutex> l(_lock); |
526 | 1.42k | debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan; |
527 | 1.42k | InsertOrDie(&_threads, Thread::current_thread()); |
528 | 1.42k | DCHECK_GT(_num_threads_pending_start, 0); |
529 | 1.42k | _num_threads++; |
530 | 1.42k | _num_threads_pending_start--; |
531 | | |
532 | 1.42k | if (_cgroup_cpu_ctl != nullptr) { |
533 | 0 | static_cast<void>(_cgroup_cpu_ctl->add_thread_to_cgroup()); |
534 | 0 | } |
535 | | |
536 | | // Owned by this worker thread and added/removed from _idle_threads as needed. |
537 | 1.42k | IdleThread me; |
538 | | |
539 | 55.0k | while (true) { |
540 | | // Note: Status::Aborted() is used to indicate normal shutdown. |
541 | 55.0k | if (!_pool_status.ok()) { |
542 | 914 | VLOG_CRITICAL << "DispatchThread exiting: " << _pool_status.to_string(); |
543 | 914 | break; |
544 | 914 | } |
545 | | |
546 | 54.1k | if (_num_threads + _num_threads_pending_start > _max_threads) { |
547 | 2 | break; |
548 | 2 | } |
549 | | |
550 | 54.1k | if (_queue.empty()) { |
551 | | // There's no work to do, let's go idle. |
552 | | // |
553 | | // Note: if FIFO behavior is desired, it's as simple as changing this to push_back(). |
554 | 49.7k | _idle_threads.push_front(me); |
555 | 49.7k | SCOPED_CLEANUP({ |
556 | | // For some wake ups (i.e. shutdown or do_submit) this thread is |
557 | | // guaranteed to be unlinked after being awakened. In others (i.e. |
558 | | // spurious wake-up or Wait timeout), it'll still be linked. |
559 | 49.7k | if (me.is_linked()) { |
560 | 49.7k | _idle_threads.erase(_idle_threads.iterator_to(me)); |
561 | 49.7k | } |
562 | 49.7k | }); |
563 | 49.7k | if (me.not_empty.wait_for(l, _idle_timeout) == std::cv_status::timeout) { |
564 | | // After much investigation, it appears that pthread condition variables have |
565 | | // a weird behavior in which they can return ETIMEDOUT from timed_wait even if |
566 | | // another thread did in fact signal. Apparently after a timeout there is some |
567 | | // brief period during which another thread may actually grab the internal mutex |
568 | | // protecting the state, signal, and release again before we get the mutex. So, |
569 | | // we'll recheck the empty queue case regardless. |
570 | 47.0k | if (_queue.empty() && _num_threads + _num_threads_pending_start > _min_threads) { |
571 | 505 | VLOG_NOTICE << "Releasing worker thread from pool " << _name << " after " |
572 | 0 | << std::chrono::duration_cast<std::chrono::milliseconds>( |
573 | 0 | _idle_timeout) |
574 | 0 | .count() |
575 | 0 | << "ms of idle time."; |
576 | 505 | break; |
577 | 505 | } |
578 | 47.0k | } |
579 | 49.2k | continue; |
580 | 49.7k | } |
581 | | |
582 | 4.45k | MonotonicStopWatch task_execution_time_watch; |
583 | 4.45k | task_execution_time_watch.start(); |
584 | | // Get the next token and task to execute. |
585 | 4.45k | ThreadPoolToken* token = _queue.front(); |
586 | 4.45k | _queue.pop_front(); |
587 | 4.45k | DCHECK_EQ(ThreadPoolToken::State::RUNNING, token->state()); |
588 | 4.45k | DCHECK(!token->_entries.empty()); |
589 | 4.45k | Task task = std::move(token->_entries.front()); |
590 | 4.45k | _task_wait_worker_time_ns_statistic.add(task.submit_time_wather.elapsed_time()); |
591 | 4.45k | token->_entries.pop_front(); |
592 | 4.45k | token->_active_threads++; |
593 | 4.45k | --_total_queued_tasks; |
594 | 4.45k | ++_active_threads; |
595 | | |
596 | 4.45k | l.unlock(); |
597 | | |
598 | | // Execute the task |
599 | 4.45k | task.runnable->run(); |
600 | | // Destruct the task while we do not hold the lock. |
601 | | // |
602 | | // The task's destructor may be expensive if it has a lot of bound |
603 | | // objects, and we don't want to block submission of the threadpool. |
604 | | // In the worst case, the destructor might even try to do something |
605 | | // with this threadpool, and produce a deadlock. |
606 | 4.45k | task.runnable.reset(); |
607 | 4.45k | l.lock(); |
608 | 4.45k | _task_execution_time_ns_statistic.add(task_execution_time_watch.elapsed_time()); |
609 | | // Possible states: |
610 | | // 1. The token was shut down while we ran its task. Transition to QUIESCED. |
611 | | // 2. The token has no more queued tasks. Transition back to IDLE. |
612 | | // 3. The token has more tasks. Requeue it and transition back to RUNNABLE. |
613 | 4.45k | ThreadPoolToken::State state = token->state(); |
614 | 4.45k | DCHECK(state == ThreadPoolToken::State::RUNNING || |
615 | 4.45k | state == ThreadPoolToken::State::QUIESCING); |
616 | 4.45k | --token->_active_threads; |
617 | 4.45k | --token->_num_submitted_tasks; |
618 | | |
619 | | // handle shutdown && idle |
620 | 4.45k | if (token->_active_threads == 0) { |
621 | 3.08k | if (state == ThreadPoolToken::State::QUIESCING) { |
622 | 529 | DCHECK(token->_entries.empty()); |
623 | 529 | token->transition(ThreadPoolToken::State::QUIESCED); |
624 | 2.55k | } else if (token->_entries.empty()) { |
625 | 1.79k | token->transition(ThreadPoolToken::State::IDLE); |
626 | 1.79k | } |
627 | 3.08k | } |
628 | | |
629 | | // We decrease _num_submitted_tasks holding lock, so the following DCHECK works. |
630 | 4.45k | DCHECK(token->_num_submitted_tasks < token->_max_concurrency); |
631 | | |
632 | | // If token->state is running and there are unsubmitted tasks in the token, we put |
633 | | // the token back. |
634 | 4.45k | if (token->_num_unsubmitted_tasks > 0 && state == ThreadPoolToken::State::RUNNING) { |
635 | | // SERIAL: if _entries is not empty, then num_unsubmitted_tasks must be greater than 0. |
636 | | // CONCURRENT: we have to check _num_unsubmitted_tasks because there may be at least 2 |
637 | | // threads are running for the token. |
638 | 616 | _queue.emplace_back(token); |
639 | 616 | ++token->_num_submitted_tasks; |
640 | 616 | --token->_num_unsubmitted_tasks; |
641 | 616 | } |
642 | | |
643 | 4.45k | if (--_active_threads == 0) { |
644 | 817 | _idle_cond.notify_all(); |
645 | 817 | } |
646 | 4.45k | } |
647 | | |
648 | | // It's important that we hold the lock between exiting the loop and dropping |
649 | | // _num_threads. Otherwise it's possible someone else could come along here |
650 | | // and add a new task just as the last running thread is about to exit. |
651 | 1.42k | CHECK(l.owns_lock()); |
652 | | |
653 | 1.42k | CHECK_EQ(_threads.erase(Thread::current_thread()), 1); |
654 | 1.42k | _num_threads--; |
655 | 1.42k | if (_num_threads + _num_threads_pending_start == 0) { |
656 | 716 | _no_threads_cond.notify_all(); |
657 | | |
658 | | // Sanity check: if we're the last thread exiting, the queue ought to be |
659 | | // empty. Otherwise it will never get processed. |
660 | 716 | CHECK(_queue.empty()); |
661 | 716 | DCHECK_EQ(0, _total_queued_tasks); |
662 | 716 | } |
663 | 1.42k | } |
664 | | |
665 | 1.42k | Status ThreadPool::create_thread() { |
666 | 1.42k | return Thread::create("thread pool", strings::Substitute("$0 [worker]", _name), |
667 | 1.42k | &ThreadPool::dispatch_thread, this, nullptr); |
668 | 1.42k | } |
669 | | |
670 | 4.63k | void ThreadPool::check_not_pool_thread_unlocked() { |
671 | 4.63k | Thread* current = Thread::current_thread(); |
672 | 4.63k | if (ContainsKey(_threads, current)) { |
673 | 0 | LOG(FATAL) << strings::Substitute( |
674 | 0 | "Thread belonging to thread pool '$0' with " |
675 | 0 | "name '$1' called pool function that would result in deadlock", |
676 | 0 | _name, current->name()); |
677 | 0 | } |
678 | 4.63k | } |
679 | | |
680 | 4 | Status ThreadPool::set_min_threads(int min_threads) { |
681 | 4 | std::lock_guard<std::mutex> l(_lock); |
682 | 4 | if (min_threads > _max_threads) { |
683 | | // min threads can not be set greater than max threads |
684 | 1 | return Status::InternalError("set thread pool {} min_threads failed", _name); |
685 | 1 | } |
686 | 3 | _min_threads = min_threads; |
687 | 3 | if (min_threads > _num_threads + _num_threads_pending_start) { |
688 | 0 | int addition_threads = min_threads - _num_threads - _num_threads_pending_start; |
689 | 0 | _num_threads_pending_start += addition_threads; |
690 | 0 | for (int i = 0; i < addition_threads; i++) { |
691 | 0 | Status status = create_thread(); |
692 | 0 | if (!status.ok()) { |
693 | 0 | _num_threads_pending_start--; |
694 | 0 | LOG(WARNING) << "Thread pool " << _name |
695 | 0 | << " failed to create thread: " << status.to_string(); |
696 | 0 | return status; |
697 | 0 | } |
698 | 0 | } |
699 | 0 | } |
700 | 3 | return Status::OK(); |
701 | 3 | } |
702 | | |
703 | 7 | Status ThreadPool::set_max_threads(int max_threads) { |
704 | 7 | std::lock_guard<std::mutex> l(_lock); |
705 | 7 | if (_min_threads > max_threads) { |
706 | | // max threads can not be set less than min threads |
707 | 1 | return Status::InternalError("set thread pool {} max_threads failed", _name); |
708 | 1 | } |
709 | | |
710 | 6 | _max_threads = max_threads; |
711 | 6 | if (_max_threads > _num_threads + _num_threads_pending_start) { |
712 | 4 | int addition_threads = _max_threads - _num_threads - _num_threads_pending_start; |
713 | 4 | addition_threads = std::min(addition_threads, _total_queued_tasks); |
714 | 4 | _num_threads_pending_start += addition_threads; |
715 | 7 | for (int i = 0; i < addition_threads; i++) { |
716 | 3 | Status status = create_thread(); |
717 | 3 | if (!status.ok()) { |
718 | 0 | _num_threads_pending_start--; |
719 | 0 | LOG(WARNING) << "Thread pool " << _name |
720 | 0 | << " failed to create thread: " << status.to_string(); |
721 | 0 | return status; |
722 | 0 | } |
723 | 3 | } |
724 | 4 | } |
725 | 6 | return Status::OK(); |
726 | 6 | } |
727 | | |
728 | 0 | std::ostream& operator<<(std::ostream& o, ThreadPoolToken::State s) { |
729 | 0 | return o << ThreadPoolToken::state_to_string(s); |
730 | 0 | } |
731 | | |
732 | | } // namespace doris |