/root/doris/contrib/faiss/faiss/utils/utils.cpp
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | | * |
4 | | * This source code is licensed under the MIT license found in the |
5 | | * LICENSE file in the root directory of this source tree. |
6 | | */ |
7 | | |
8 | | // -*- c++ -*- |
9 | | |
10 | | #include <faiss/Index.h> |
11 | | #include <faiss/utils/utils.h> |
12 | | |
13 | | #include <cassert> |
14 | | #include <cmath> |
15 | | #include <cstdio> |
16 | | #include <cstring> |
17 | | |
18 | | #include <sys/types.h> |
19 | | |
20 | | #ifdef _MSC_VER |
21 | | #define NOMINMAX |
22 | | #include <windows.h> |
23 | | #undef NOMINMAX |
24 | | #else |
25 | | #include <sys/time.h> |
26 | | #include <unistd.h> |
27 | | #endif // !_MSC_VER |
28 | | |
29 | | #include <omp.h> |
30 | | |
31 | | #include <algorithm> |
32 | | #include <set> |
33 | | #include <type_traits> |
34 | | #include <vector> |
35 | | |
36 | | #include <faiss/impl/AuxIndexStructures.h> |
37 | | #include <faiss/impl/FaissAssert.h> |
38 | | #include <faiss/impl/platform_macros.h> |
39 | | #include <faiss/utils/random.h> |
40 | | |
41 | | #ifndef FINTEGER |
42 | | #define FINTEGER long |
43 | | #endif |
44 | | |
45 | | extern "C" { |
46 | | |
47 | | /* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */ |
48 | | |
49 | | int sgemm_( |
50 | | const char* transa, |
51 | | const char* transb, |
52 | | FINTEGER* m, |
53 | | FINTEGER* n, |
54 | | FINTEGER* k, |
55 | | const float* alpha, |
56 | | const float* a, |
57 | | FINTEGER* lda, |
58 | | const float* b, |
59 | | FINTEGER* ldb, |
60 | | float* beta, |
61 | | float* c, |
62 | | FINTEGER* ldc); |
63 | | |
64 | | /* Lapack functions, see http://www.netlib.org/clapack/old/single/sgeqrf.c */ |
65 | | |
66 | | int sgeqrf_( |
67 | | FINTEGER* m, |
68 | | FINTEGER* n, |
69 | | float* a, |
70 | | FINTEGER* lda, |
71 | | float* tau, |
72 | | float* work, |
73 | | FINTEGER* lwork, |
74 | | FINTEGER* info); |
75 | | |
76 | | int sorgqr_( |
77 | | FINTEGER* m, |
78 | | FINTEGER* n, |
79 | | FINTEGER* k, |
80 | | float* a, |
81 | | FINTEGER* lda, |
82 | | float* tau, |
83 | | float* work, |
84 | | FINTEGER* lwork, |
85 | | FINTEGER* info); |
86 | | |
87 | | int sgemv_( |
88 | | const char* trans, |
89 | | FINTEGER* m, |
90 | | FINTEGER* n, |
91 | | float* alpha, |
92 | | const float* a, |
93 | | FINTEGER* lda, |
94 | | const float* x, |
95 | | FINTEGER* incx, |
96 | | float* beta, |
97 | | float* y, |
98 | | FINTEGER* incy); |
99 | | } |
100 | | |
101 | | /************************************************** |
102 | | * Get some stats about the system |
103 | | **************************************************/ |
104 | | |
105 | | namespace faiss { |
106 | | |
107 | | // this will be set at load time from GPU Faiss |
108 | | std::string gpu_compile_options; |
109 | | |
110 | 0 | std::string get_compile_options() { |
111 | 0 | std::string options; |
112 | | |
113 | | // this flag is set by GCC and Clang |
114 | | #ifdef __OPTIMIZE__ |
115 | | options += "OPTIMIZE "; |
116 | | #endif |
117 | |
|
118 | | #ifdef __AVX512F__ |
119 | | options += "AVX512 "; |
120 | | #elif defined(__AVX2__) |
121 | | options += "AVX2 "; |
122 | | #elif defined(__ARM_FEATURE_SVE) |
123 | | options += "SVE NEON "; |
124 | | #elif defined(__aarch64__) |
125 | | options += "NEON "; |
126 | | #else |
127 | | options += "GENERIC "; |
128 | | #endif |
129 | |
|
130 | 0 | options += gpu_compile_options; |
131 | |
|
132 | 0 | return options; |
133 | 0 | } |
134 | | |
135 | 0 | std::string get_version() { |
136 | 0 | return VERSION_STRING; |
137 | 0 | } |
138 | | |
139 | | #ifdef _MSC_VER |
140 | | double getmillisecs() { |
141 | | LARGE_INTEGER ts; |
142 | | LARGE_INTEGER freq; |
143 | | QueryPerformanceFrequency(&freq); |
144 | | QueryPerformanceCounter(&ts); |
145 | | |
146 | | return (ts.QuadPart * 1e3) / freq.QuadPart; |
147 | | } |
148 | | #else // _MSC_VER |
149 | 16.9k | double getmillisecs() { |
150 | 16.9k | struct timeval tv; |
151 | 16.9k | gettimeofday(&tv, nullptr); |
152 | 16.9k | return tv.tv_sec * 1e3 + tv.tv_usec * 1e-3; |
153 | 16.9k | } |
154 | | #endif // _MSC_VER |
155 | | |
156 | 0 | uint64_t get_cycles() { |
157 | 0 | #ifdef __x86_64__ |
158 | 0 | uint32_t high, low; |
159 | 0 | asm volatile("rdtsc \n\t" : "=a"(low), "=d"(high)); |
160 | 0 | return ((uint64_t)high << 32) | (low); |
161 | | #else |
162 | | return 0; |
163 | | #endif |
164 | 0 | } |
165 | | |
166 | | #ifdef __linux__ |
167 | | |
168 | 0 | size_t get_mem_usage_kb() { |
169 | 0 | int pid = getpid(); |
170 | 0 | char fname[256]; |
171 | 0 | snprintf(fname, 256, "/proc/%d/status", pid); |
172 | 0 | FILE* f = fopen(fname, "r"); |
173 | 0 | FAISS_THROW_IF_NOT_MSG(f, "cannot open proc status file"); |
174 | 0 | size_t sz = 0; |
175 | 0 | for (;;) { |
176 | 0 | char buf[256]; |
177 | 0 | if (!fgets(buf, 256, f)) |
178 | 0 | break; |
179 | 0 | if (sscanf(buf, "VmRSS: %ld kB", &sz) == 1) |
180 | 0 | break; |
181 | 0 | } |
182 | 0 | fclose(f); |
183 | 0 | return sz; |
184 | 0 | } |
185 | | |
186 | | #else |
187 | | |
188 | | size_t get_mem_usage_kb() { |
189 | | fprintf(stderr, |
190 | | "WARN: get_mem_usage_kb not implemented on current architecture\n"); |
191 | | return 0; |
192 | | } |
193 | | |
194 | | #endif |
195 | | |
196 | | void reflection( |
197 | | const float* __restrict u, |
198 | | float* __restrict x, |
199 | | size_t n, |
200 | | size_t d, |
201 | 0 | size_t nu) { |
202 | 0 | size_t i, j, l; |
203 | 0 | for (i = 0; i < n; i++) { |
204 | 0 | const float* up = u; |
205 | 0 | for (l = 0; l < nu; l++) { |
206 | 0 | float ip1 = 0, ip2 = 0; |
207 | |
|
208 | 0 | for (j = 0; j < d; j += 2) { |
209 | 0 | ip1 += up[j] * x[j]; |
210 | 0 | ip2 += up[j + 1] * x[j + 1]; |
211 | 0 | } |
212 | 0 | float ip = 2 * (ip1 + ip2); |
213 | |
|
214 | 0 | for (j = 0; j < d; j++) |
215 | 0 | x[j] -= ip * up[j]; |
216 | 0 | up += d; |
217 | 0 | } |
218 | 0 | x += d; |
219 | 0 | } |
220 | 0 | } |
221 | | |
222 | | /* Reference implementation (slower) */ |
223 | 0 | void reflection_ref(const float* u, float* x, size_t n, size_t d, size_t nu) { |
224 | 0 | size_t i, j, l; |
225 | 0 | for (i = 0; i < n; i++) { |
226 | 0 | const float* up = u; |
227 | 0 | for (l = 0; l < nu; l++) { |
228 | 0 | double ip = 0; |
229 | |
|
230 | 0 | for (j = 0; j < d; j++) |
231 | 0 | ip += up[j] * x[j]; |
232 | 0 | ip *= 2; |
233 | |
|
234 | 0 | for (j = 0; j < d; j++) |
235 | 0 | x[j] -= ip * up[j]; |
236 | |
|
237 | 0 | up += d; |
238 | 0 | } |
239 | 0 | x += d; |
240 | 0 | } |
241 | 0 | } |
242 | | |
243 | | /*************************************************************************** |
244 | | * Some matrix manipulation functions |
245 | | ***************************************************************************/ |
246 | | |
247 | 0 | void matrix_qr(int m, int n, float* a) { |
248 | 0 | FAISS_THROW_IF_NOT(m >= n); |
249 | 0 | FINTEGER mi = m, ni = n, ki = mi < ni ? mi : ni; |
250 | 0 | std::vector<float> tau(ki); |
251 | 0 | FINTEGER lwork = -1, info; |
252 | 0 | float work_size; |
253 | |
|
254 | 0 | sgeqrf_(&mi, &ni, a, &mi, tau.data(), &work_size, &lwork, &info); |
255 | 0 | lwork = size_t(work_size); |
256 | 0 | std::vector<float> work(lwork); |
257 | |
|
258 | 0 | sgeqrf_(&mi, &ni, a, &mi, tau.data(), work.data(), &lwork, &info); |
259 | |
|
260 | 0 | sorgqr_(&mi, &ni, &ki, a, &mi, tau.data(), work.data(), &lwork, &info); |
261 | 0 | } |
262 | | |
263 | | /*************************************************************************** |
264 | | * Result list routines |
265 | | ***************************************************************************/ |
266 | | |
267 | 0 | void ranklist_handle_ties(int k, int64_t* idx, const float* dis) { |
268 | 0 | float prev_dis = -1e38; |
269 | 0 | int prev_i = -1; |
270 | 0 | for (int i = 0; i < k; i++) { |
271 | 0 | if (dis[i] != prev_dis) { |
272 | 0 | if (i > prev_i + 1) { |
273 | | // sort between prev_i and i - 1 |
274 | 0 | std::sort(idx + prev_i, idx + i); |
275 | 0 | } |
276 | 0 | prev_i = i; |
277 | 0 | prev_dis = dis[i]; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | } |
281 | | |
282 | | size_t merge_result_table_with( |
283 | | size_t n, |
284 | | size_t k, |
285 | | int64_t* I0, |
286 | | float* D0, |
287 | | const int64_t* I1, |
288 | | const float* D1, |
289 | | bool keep_min, |
290 | 0 | int64_t translation) { |
291 | 0 | size_t n1 = 0; |
292 | |
|
293 | 0 | #pragma omp parallel reduction(+ : n1) |
294 | 0 | { |
295 | 0 | std::vector<int64_t> tmpI(k); |
296 | 0 | std::vector<float> tmpD(k); |
297 | |
|
298 | 0 | #pragma omp for |
299 | 0 | for (int64_t i = 0; i < n; i++) { |
300 | 0 | int64_t* lI0 = I0 + i * k; |
301 | 0 | float* lD0 = D0 + i * k; |
302 | 0 | const int64_t* lI1 = I1 + i * k; |
303 | 0 | const float* lD1 = D1 + i * k; |
304 | 0 | size_t r0 = 0; |
305 | 0 | size_t r1 = 0; |
306 | |
|
307 | 0 | if (keep_min) { |
308 | 0 | for (size_t j = 0; j < k; j++) { |
309 | 0 | if (lI0[r0] >= 0 && lD0[r0] < lD1[r1]) { |
310 | 0 | tmpD[j] = lD0[r0]; |
311 | 0 | tmpI[j] = lI0[r0]; |
312 | 0 | r0++; |
313 | 0 | } else if (lD1[r1] >= 0) { |
314 | 0 | tmpD[j] = lD1[r1]; |
315 | 0 | tmpI[j] = lI1[r1] + translation; |
316 | 0 | r1++; |
317 | 0 | } else { // both are NaNs |
318 | 0 | tmpD[j] = NAN; |
319 | 0 | tmpI[j] = -1; |
320 | 0 | } |
321 | 0 | } |
322 | 0 | } else { |
323 | 0 | for (size_t j = 0; j < k; j++) { |
324 | 0 | if (lI0[r0] >= 0 && lD0[r0] > lD1[r1]) { |
325 | 0 | tmpD[j] = lD0[r0]; |
326 | 0 | tmpI[j] = lI0[r0]; |
327 | 0 | r0++; |
328 | 0 | } else if (lD1[r1] >= 0) { |
329 | 0 | tmpD[j] = lD1[r1]; |
330 | 0 | tmpI[j] = lI1[r1] + translation; |
331 | 0 | r1++; |
332 | 0 | } else { // both are NaNs |
333 | 0 | tmpD[j] = NAN; |
334 | 0 | tmpI[j] = -1; |
335 | 0 | } |
336 | 0 | } |
337 | 0 | } |
338 | 0 | n1 += r1; |
339 | 0 | memcpy(lD0, tmpD.data(), sizeof(lD0[0]) * k); |
340 | 0 | memcpy(lI0, tmpI.data(), sizeof(lI0[0]) * k); |
341 | 0 | } |
342 | 0 | } |
343 | |
|
344 | 0 | return n1; |
345 | 0 | } |
346 | | |
347 | | size_t ranklist_intersection_size( |
348 | | size_t k1, |
349 | | const int64_t* v1, |
350 | | size_t k2, |
351 | 0 | const int64_t* v2_in) { |
352 | 0 | if (k2 > k1) |
353 | 0 | return ranklist_intersection_size(k2, v2_in, k1, v1); |
354 | 0 | int64_t* v2 = new int64_t[k2]; |
355 | 0 | memcpy(v2, v2_in, sizeof(int64_t) * k2); |
356 | 0 | std::sort(v2, v2 + k2); |
357 | 0 | { // de-dup v2 |
358 | 0 | int64_t prev = -1; |
359 | 0 | size_t wp = 0; |
360 | 0 | for (size_t i = 0; i < k2; i++) { |
361 | 0 | if (v2[i] != prev) { |
362 | 0 | v2[wp++] = prev = v2[i]; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | k2 = wp; |
366 | 0 | } |
367 | 0 | const int64_t seen_flag = int64_t{1} << 60; |
368 | 0 | size_t count = 0; |
369 | 0 | for (size_t i = 0; i < k1; i++) { |
370 | 0 | int64_t q = v1[i]; |
371 | 0 | size_t i0 = 0, i1 = k2; |
372 | 0 | while (i0 + 1 < i1) { |
373 | 0 | size_t imed = (i1 + i0) / 2; |
374 | 0 | int64_t piv = v2[imed] & ~seen_flag; |
375 | 0 | if (piv <= q) |
376 | 0 | i0 = imed; |
377 | 0 | else |
378 | 0 | i1 = imed; |
379 | 0 | } |
380 | 0 | if (v2[i0] == q) { |
381 | 0 | count++; |
382 | 0 | v2[i0] |= seen_flag; |
383 | 0 | } |
384 | 0 | } |
385 | 0 | delete[] v2; |
386 | |
|
387 | 0 | return count; |
388 | 0 | } |
389 | | |
390 | 270 | double imbalance_factor(int k, const int64_t* hist) { |
391 | 270 | double tot = 0, uf = 0; |
392 | | |
393 | 1.35k | for (int i = 0; i < k; i++) { |
394 | 1.08k | tot += hist[i]; |
395 | 1.08k | uf += hist[i] * (double)hist[i]; |
396 | 1.08k | } |
397 | 270 | uf = uf * k / (tot * tot); |
398 | | |
399 | 270 | return uf; |
400 | 270 | } |
401 | | |
402 | 270 | double imbalance_factor(int64_t n, int k, const int64_t* assign) { |
403 | 270 | std::vector<int64_t> hist(k, 0); |
404 | 39.3k | for (int64_t i = 0; i < n; i++) { |
405 | 39.0k | hist[assign[i]]++; |
406 | 39.0k | } |
407 | | |
408 | 270 | return imbalance_factor(k, hist.data()); |
409 | 270 | } |
410 | | |
411 | 0 | int ivec_hist(size_t n, const int* v, int vmax, int* hist) { |
412 | 0 | memset(hist, 0, sizeof(hist[0]) * vmax); |
413 | 0 | int nout = 0; |
414 | 0 | while (n--) { |
415 | 0 | if (v[n] < 0 || v[n] >= vmax) |
416 | 0 | nout++; |
417 | 0 | else |
418 | 0 | hist[v[n]]++; |
419 | 0 | } |
420 | 0 | return nout; |
421 | 0 | } |
422 | | |
423 | 0 | void bincode_hist(size_t n, size_t nbits, const uint8_t* codes, int* hist) { |
424 | 0 | FAISS_THROW_IF_NOT(nbits % 8 == 0); |
425 | 0 | size_t d = nbits / 8; |
426 | 0 | std::vector<int> accu(d * 256); |
427 | 0 | const uint8_t* c = codes; |
428 | 0 | for (size_t i = 0; i < n; i++) |
429 | 0 | for (int j = 0; j < d; j++) |
430 | 0 | accu[j * 256 + *c++]++; |
431 | 0 | memset(hist, 0, sizeof(*hist) * nbits); |
432 | 0 | for (int i = 0; i < d; i++) { |
433 | 0 | const int* ai = accu.data() + i * 256; |
434 | 0 | int* hi = hist + i * 8; |
435 | 0 | for (int j = 0; j < 256; j++) |
436 | 0 | for (int k = 0; k < 8; k++) |
437 | 0 | if ((j >> k) & 1) |
438 | 0 | hi[k] += ai[j]; |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | 0 | uint64_t ivec_checksum(size_t n, const int32_t* assigned) { |
443 | 0 | const uint32_t* a = reinterpret_cast<const uint32_t*>(assigned); |
444 | 0 | uint64_t cs = 112909; |
445 | 0 | while (n--) { |
446 | 0 | cs = cs * 65713 + a[n] * 1686049; |
447 | 0 | } |
448 | 0 | return cs; |
449 | 0 | } |
450 | | |
451 | 0 | uint64_t bvec_checksum(size_t n, const uint8_t* a) { |
452 | 0 | uint64_t cs = ivec_checksum(n / 4, (const int32_t*)a); |
453 | 0 | for (size_t i = n / 4 * 4; i < n; i++) { |
454 | 0 | cs = cs * 65713 + a[n] * 1686049; |
455 | 0 | } |
456 | 0 | return cs; |
457 | 0 | } |
458 | | |
459 | 0 | void bvecs_checksum(size_t n, size_t d, const uint8_t* a, uint64_t* cs) { |
460 | | // MSVC can't accept unsigned index for #pragma omp parallel for |
461 | | // so below codes only accept n <= std::numeric_limits<ssize_t>::max() |
462 | 0 | using ssize_t = std::make_signed<std::size_t>::type; |
463 | 0 | const ssize_t size = n; |
464 | 0 | #pragma omp parallel for if (size > 1000) |
465 | 0 | for (ssize_t i_ = 0; i_ < size; i_++) { |
466 | 0 | const auto i = static_cast<std::size_t>(i_); |
467 | 0 | cs[i] = bvec_checksum(d, a + i * d); |
468 | 0 | } |
469 | 0 | } |
470 | | |
471 | | const float* fvecs_maybe_subsample( |
472 | | size_t d, |
473 | | size_t* n, |
474 | | size_t nmax, |
475 | | const float* x, |
476 | | bool verbose, |
477 | 27 | int64_t seed) { |
478 | 27 | if (*n <= nmax) |
479 | 27 | return x; // nothing to do |
480 | | |
481 | 0 | size_t n2 = nmax; |
482 | 0 | if (verbose) { |
483 | 0 | printf(" Input training set too big (max size is %zd), sampling " |
484 | 0 | "%zd / %zd vectors\n", |
485 | 0 | nmax, |
486 | 0 | n2, |
487 | 0 | *n); |
488 | 0 | } |
489 | 0 | std::vector<int> subset(*n); |
490 | 0 | rand_perm(subset.data(), *n, seed); |
491 | 0 | float* x_subset = new float[n2 * d]; |
492 | 0 | for (int64_t i = 0; i < n2; i++) |
493 | 0 | memcpy(&x_subset[i * d], &x[subset[i] * size_t(d)], sizeof(x[0]) * d); |
494 | 0 | *n = n2; |
495 | 0 | return x_subset; |
496 | 27 | } |
497 | | |
498 | 0 | void binary_to_real(size_t d, const uint8_t* x_in, float* x_out) { |
499 | 0 | for (size_t i = 0; i < d; ++i) { |
500 | 0 | x_out[i] = 2 * ((x_in[i >> 3] >> (i & 7)) & 1) - 1; |
501 | 0 | } |
502 | 0 | } |
503 | | |
504 | 0 | void real_to_binary(size_t d, const float* x_in, uint8_t* x_out) { |
505 | 0 | for (size_t i = 0; i < d / 8; ++i) { |
506 | 0 | uint8_t b = 0; |
507 | 0 | for (int j = 0; j < 8; ++j) { |
508 | 0 | if (x_in[8 * i + j] > 0) { |
509 | 0 | b |= (1 << j); |
510 | 0 | } |
511 | 0 | } |
512 | 0 | x_out[i] = b; |
513 | 0 | } |
514 | 0 | } |
515 | | |
516 | | // from Python's stringobject.c |
517 | 0 | uint64_t hash_bytes(const uint8_t* bytes, int64_t n) { |
518 | 0 | const uint8_t* p = bytes; |
519 | 0 | uint64_t x = (uint64_t)(*p) << 7; |
520 | 0 | int64_t len = n; |
521 | 0 | while (--len >= 0) { |
522 | 0 | x = (1000003 * x) ^ *p++; |
523 | 0 | } |
524 | 0 | x ^= n; |
525 | 0 | return x; |
526 | 0 | } |
527 | | |
528 | 0 | bool check_openmp() { |
529 | 0 | omp_set_num_threads(10); |
530 | |
|
531 | 0 | if (omp_get_max_threads() != 10) { |
532 | 0 | return false; |
533 | 0 | } |
534 | | |
535 | 0 | std::vector<int> nt_per_thread(10); |
536 | 0 | size_t sum = 0; |
537 | 0 | bool in_parallel = true; |
538 | 0 | #pragma omp parallel reduction(+ : sum) |
539 | 0 | { |
540 | 0 | if (!omp_in_parallel()) { |
541 | 0 | in_parallel = false; |
542 | 0 | } |
543 | |
|
544 | 0 | int nt = omp_get_num_threads(); |
545 | 0 | int rank = omp_get_thread_num(); |
546 | |
|
547 | 0 | nt_per_thread[rank] = nt; |
548 | 0 | #pragma omp for |
549 | 0 | for (int i = 0; i < 1000 * 1000 * 10; i++) { |
550 | 0 | sum += i; |
551 | 0 | } |
552 | 0 | } |
553 | |
|
554 | 0 | if (!in_parallel) { |
555 | 0 | return false; |
556 | 0 | } |
557 | 0 | if (nt_per_thread[0] != 10) { |
558 | 0 | return false; |
559 | 0 | } |
560 | 0 | if (sum == 0) { |
561 | 0 | return false; |
562 | 0 | } |
563 | | |
564 | 0 | return true; |
565 | 0 | } |
566 | | |
567 | | namespace { |
568 | | |
569 | | template <typename T> |
570 | 0 | int64_t count_lt(int64_t n, const T* row, T threshold) { |
571 | 0 | for (int64_t i = 0; i < n; i++) { |
572 | 0 | if (!(row[i] < threshold)) { |
573 | 0 | return i; |
574 | 0 | } |
575 | 0 | } |
576 | 0 | return n; |
577 | 0 | } Unexecuted instantiation: utils.cpp:_ZN5faiss12_GLOBAL__N_18count_ltIfEEllPKT_S2_ Unexecuted instantiation: utils.cpp:_ZN5faiss12_GLOBAL__N_18count_ltIsEEllPKT_S2_ |
578 | | |
579 | | template <typename T> |
580 | 0 | int64_t count_gt(int64_t n, const T* row, T threshold) { |
581 | 0 | for (int64_t i = 0; i < n; i++) { |
582 | 0 | if (!(row[i] > threshold)) { |
583 | 0 | return i; |
584 | 0 | } |
585 | 0 | } |
586 | 0 | return n; |
587 | 0 | } Unexecuted instantiation: utils.cpp:_ZN5faiss12_GLOBAL__N_18count_gtIfEEllPKT_S2_ Unexecuted instantiation: utils.cpp:_ZN5faiss12_GLOBAL__N_18count_gtIsEEllPKT_S2_ |
588 | | |
589 | | } // namespace |
590 | | |
591 | | template <typename T> |
592 | 0 | void CombinerRangeKNN<T>::compute_sizes(int64_t* L_res_init) { |
593 | 0 | this->L_res = L_res_init; |
594 | 0 | L_res_init[0] = 0; |
595 | 0 | int64_t j = 0; |
596 | 0 | for (int64_t i = 0; i < nq; i++) { |
597 | 0 | int64_t n_in; |
598 | 0 | if (!mask || !mask[i]) { |
599 | 0 | const T* row = D + i * k; |
600 | 0 | n_in = keep_max ? count_gt(k, row, r2) : count_lt(k, row, r2); |
601 | 0 | } else { |
602 | 0 | n_in = lim_remain[j + 1] - lim_remain[j]; |
603 | 0 | j++; |
604 | 0 | } |
605 | 0 | L_res_init[i + 1] = n_in; // L_res_init[i] + n_in; |
606 | 0 | } |
607 | | // cumsum |
608 | 0 | for (int64_t i = 0; i < nq; i++) { |
609 | 0 | L_res_init[i + 1] += L_res_init[i]; |
610 | 0 | } |
611 | 0 | } Unexecuted instantiation: _ZN5faiss16CombinerRangeKNNIfE13compute_sizesEPl Unexecuted instantiation: _ZN5faiss16CombinerRangeKNNIsE13compute_sizesEPl |
612 | | |
613 | | template <typename T> |
614 | 0 | void CombinerRangeKNN<T>::write_result(T* D_res, int64_t* I_res) { |
615 | 0 | FAISS_THROW_IF_NOT(L_res); |
616 | 0 | int64_t j = 0; |
617 | 0 | for (int64_t i = 0; i < nq; i++) { |
618 | 0 | int64_t n_in = L_res[i + 1] - L_res[i]; |
619 | 0 | T* D_row = D_res + L_res[i]; |
620 | 0 | int64_t* I_row = I_res + L_res[i]; |
621 | 0 | if (!mask || !mask[i]) { |
622 | 0 | memcpy(D_row, D + i * k, n_in * sizeof(*D_row)); |
623 | 0 | memcpy(I_row, I + i * k, n_in * sizeof(*I_row)); |
624 | 0 | } else { |
625 | 0 | memcpy(D_row, D_remain + lim_remain[j], n_in * sizeof(*D_row)); |
626 | 0 | memcpy(I_row, I_remain + lim_remain[j], n_in * sizeof(*I_row)); |
627 | 0 | j++; |
628 | 0 | } |
629 | 0 | } |
630 | 0 | } Unexecuted instantiation: _ZN5faiss16CombinerRangeKNNIfE12write_resultEPfPl Unexecuted instantiation: _ZN5faiss16CombinerRangeKNNIsE12write_resultEPsPl |
631 | | |
632 | | // explicit template instantiations |
633 | | template struct CombinerRangeKNN<float>; |
634 | | template struct CombinerRangeKNN<int16_t>; |
635 | | |
636 | 0 | void CodeSet::insert(size_t n, const uint8_t* codes, bool* inserted) { |
637 | 0 | for (size_t i = 0; i < n; i++) { |
638 | 0 | auto res = s.insert( |
639 | 0 | std::vector<uint8_t>(codes + i * d, codes + i * d + d)); |
640 | 0 | inserted[i] = res.second; |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | | } // namespace faiss |