Coverage Report

Created: 2025-04-25 18:46

/root/doris/be/src/util/threadpool.cpp
Line
Count
Source (jump to first uncovered line)
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
// This file is copied from
18
// https://github.com/apache/impala/blob/branch-2.9.0/be/src/util/threadpool.cc
19
// and modified by Doris
20
21
#include "util/threadpool.h"
22
23
#include <algorithm>
24
#include <cstdint>
25
#include <limits>
26
#include <ostream>
27
#include <thread>
28
#include <utility>
29
30
#include "absl/strings/substitute.h"
31
#include "common/exception.h"
32
#include "common/logging.h"
33
#include "gutil/port.h"
34
#include "util/debug/sanitizer_scopes.h"
35
#include "util/debug_points.h"
36
#include "util/doris_metrics.h"
37
#include "util/metrics.h"
38
#include "util/scoped_cleanup.h"
39
#include "util/stopwatch.hpp"
40
#include "util/thread.h"
41
42
namespace doris {
43
// The name of these varialbs will be useds as metric name in prometheus.
44
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_active_threads, MetricUnit::NOUNIT);
45
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_queue_size, MetricUnit::NOUNIT);
46
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_queue_size, MetricUnit::NOUNIT);
47
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_threads, MetricUnit::NOUNIT);
48
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_submit_failed, MetricUnit::NOUNIT);
49
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_task_execution_time_ns_total,
50
                                     MetricUnit::NANOSECONDS);
51
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_task_execution_count_total, MetricUnit::NOUNIT);
52
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_task_wait_worker_time_ns_total,
53
                                     MetricUnit::NANOSECONDS);
54
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_task_wait_worker_count_total, MetricUnit::NOUNIT);
55
using namespace ErrorCode;
56
57
using std::string;
58
59
class FunctionRunnable : public Runnable {
60
public:
61
10.5k
    explicit FunctionRunnable(std::function<void()> func) : _func(std::move(func)) {}
62
63
5.17k
    void run() override { _func(); }
64
65
private:
66
    std::function<void()> _func;
67
};
68
69
ThreadPoolBuilder::ThreadPoolBuilder(string name, string workload_group)
70
        : _name(std::move(name)),
71
          _workload_group(std::move(workload_group)),
72
          _min_threads(0),
73
          _max_threads(std::thread::hardware_concurrency()),
74
          _max_queue_size(std::numeric_limits<int>::max()),
75
327
          _idle_timeout(std::chrono::milliseconds(500)) {}
76
77
291
ThreadPoolBuilder& ThreadPoolBuilder::set_min_threads(int min_threads) {
78
291
    CHECK_GE(min_threads, 0);
79
291
    _min_threads = min_threads;
80
291
    return *this;
81
291
}
82
83
299
ThreadPoolBuilder& ThreadPoolBuilder::set_max_threads(int max_threads) {
84
299
    CHECK_GT(max_threads, 0);
85
299
    _max_threads = max_threads;
86
299
    return *this;
87
299
}
88
89
96
ThreadPoolBuilder& ThreadPoolBuilder::set_max_queue_size(int max_queue_size) {
90
96
    _max_queue_size = max_queue_size;
91
96
    return *this;
92
96
}
93
94
ThreadPoolBuilder& ThreadPoolBuilder::set_cgroup_cpu_ctl(
95
1
        std::weak_ptr<CgroupCpuCtl> cgroup_cpu_ctl) {
96
1
    _cgroup_cpu_ctl = cgroup_cpu_ctl;
97
1
    return *this;
98
1
}
99
100
ThreadPoolToken::ThreadPoolToken(ThreadPool* pool, ThreadPool::ExecutionMode mode,
101
                                 int max_concurrency)
102
        : _mode(mode),
103
          _pool(pool),
104
          _state(State::IDLE),
105
          _active_threads(0),
106
          _max_concurrency(max_concurrency),
107
          _num_submitted_tasks(0),
108
2.49k
          _num_unsubmitted_tasks(0) {
109
2.49k
    if (max_concurrency == 1 && mode != ThreadPool::ExecutionMode::SERIAL) {
110
1
        _mode = ThreadPool::ExecutionMode::SERIAL;
111
1
    }
112
2.49k
}
113
114
2.48k
ThreadPoolToken::~ThreadPoolToken() {
115
2.48k
    shutdown();
116
2.48k
    _pool->release_token(this);
117
2.48k
}
118
119
9.06k
Status ThreadPoolToken::submit(std::shared_ptr<Runnable> r) {
120
9.06k
    return _pool->do_submit(std::move(r), this);
121
9.06k
}
122
123
9.10k
Status ThreadPoolToken::submit_func(std::function<void()> f) {
124
9.10k
    return submit(std::make_shared<FunctionRunnable>(std::move(f)));
125
9.10k
}
126
127
3.73k
void ThreadPoolToken::shutdown() {
128
3.73k
    std::unique_lock<std::mutex> l(_pool->_lock);
129
3.73k
    _pool->check_not_pool_thread_unlocked();
130
131
    // Clear the queue under the lock, but defer the releasing of the tasks
132
    // outside the lock, in case there are concurrent threads wanting to access
133
    // the ThreadPool. The task's destructors may acquire locks, etc, so this
134
    // also prevents lock inversions.
135
3.73k
    std::deque<ThreadPool::Task> to_release = std::move(_entries);
136
3.73k
    _pool->_total_queued_tasks -= to_release.size();
137
138
3.73k
    switch (state()) {
139
908
    case State::IDLE:
140
        // There were no tasks outstanding; we can quiesce the token immediately.
141
908
        transition(State::QUIESCED);
142
908
        break;
143
1.20k
    case State::RUNNING:
144
        // There were outstanding tasks. If any are still running, switch to
145
        // QUIESCING and wait for them to finish (the worker thread executing
146
        // the token's last task will switch the token to QUIESCED). Otherwise,
147
        // we can quiesce the token immediately.
148
149
        // Note: this is an O(n) operation, but it's expected to be infrequent.
150
        // Plus doing it this way (rather than switching to QUIESCING and waiting
151
        // for a worker thread to process the queue entry) helps retain state
152
        // transition symmetry with ThreadPool::shutdown.
153
12.4k
        for (auto it = _pool->_queue.begin(); it != _pool->_queue.end();) {
154
11.2k
            if (*it == this) {
155
1.11k
                it = _pool->_queue.erase(it);
156
10.1k
            } else {
157
10.1k
                it++;
158
10.1k
            }
159
11.2k
        }
160
161
1.20k
        if (_active_threads == 0) {
162
510
            transition(State::QUIESCED);
163
510
            break;
164
510
        }
165
697
        transition(State::QUIESCING);
166
697
        [[fallthrough]];
167
717
    case State::QUIESCING:
168
        // The token is already quiescing. Just wait for a worker thread to
169
        // switch it to QUIESCED.
170
1.43k
        _not_running_cond.wait(l, [this]() { return state() == State::QUIESCED; });
171
717
        break;
172
1.60k
    default:
173
1.60k
        break;
174
3.73k
    }
175
3.73k
}
176
177
768
void ThreadPoolToken::wait() {
178
768
    std::unique_lock<std::mutex> l(_pool->_lock);
179
768
    _pool->check_not_pool_thread_unlocked();
180
1.01k
    _not_running_cond.wait(l, [this]() { return !is_active(); });
181
768
}
182
183
8.17k
void ThreadPoolToken::transition(State new_state) {
184
8.17k
#ifndef NDEBUG
185
8.17k
    CHECK_NE(_state, new_state);
186
187
8.17k
    switch (_state) {
188
4.36k
    case State::IDLE:
189
4.36k
        CHECK(new_state == State::RUNNING || new_state == State::QUIESCED);
190
4.36k
        if (new_state == State::RUNNING) {
191
3.09k
            CHECK(!_entries.empty());
192
3.09k
        } else {
193
1.26k
            CHECK(_entries.empty());
194
1.26k
            CHECK_EQ(_active_threads, 0);
195
1.26k
        }
196
4.36k
        break;
197
3.09k
    case State::RUNNING:
198
3.09k
        CHECK(new_state == State::IDLE || new_state == State::QUIESCING ||
199
3.09k
              new_state == State::QUIESCED);
200
3.09k
        CHECK(_entries.empty());
201
3.09k
        if (new_state == State::QUIESCING) {
202
706
            CHECK_GT(_active_threads, 0);
203
706
        }
204
3.09k
        break;
205
706
    case State::QUIESCING:
206
706
        CHECK(new_state == State::QUIESCED);
207
706
        CHECK_EQ(_active_threads, 0);
208
706
        break;
209
0
    case State::QUIESCED:
210
0
        CHECK(false); // QUIESCED is a terminal state
211
0
        break;
212
0
    default:
213
0
        throw Exception(Status::FatalError("Unknown token state: {}", _state));
214
8.17k
    }
215
8.17k
#endif
216
217
    // Take actions based on the state we're entering.
218
8.17k
    switch (new_state) {
219
1.87k
    case State::IDLE:
220
4.36k
    case State::QUIESCED:
221
4.36k
        _not_running_cond.notify_all();
222
4.36k
        break;
223
3.80k
    default:
224
3.80k
        break;
225
8.17k
    }
226
227
8.17k
    _state = new_state;
228
8.17k
}
229
230
0
const char* ThreadPoolToken::state_to_string(State s) {
231
0
    switch (s) {
232
0
    case State::IDLE:
233
0
        return "IDLE";
234
0
        break;
235
0
    case State::RUNNING:
236
0
        return "RUNNING";
237
0
        break;
238
0
    case State::QUIESCING:
239
0
        return "QUIESCING";
240
0
        break;
241
0
    case State::QUIESCED:
242
0
        return "QUIESCED";
243
0
        break;
244
0
    }
245
0
    return "<cannot reach here>";
246
0
}
247
248
7.64k
bool ThreadPoolToken::need_dispatch() {
249
7.64k
    return _state == ThreadPoolToken::State::IDLE ||
250
7.64k
           (_mode == ThreadPool::ExecutionMode::CONCURRENT &&
251
4.54k
            _num_submitted_tasks < _max_concurrency);
252
7.64k
}
253
254
ThreadPool::ThreadPool(const ThreadPoolBuilder& builder)
255
        : _name(builder._name),
256
          _workload_group(builder._workload_group),
257
          _min_threads(builder._min_threads),
258
          _max_threads(builder._max_threads),
259
          _max_queue_size(builder._max_queue_size),
260
          _idle_timeout(builder._idle_timeout),
261
          _pool_status(Status::Uninitialized("The pool was not initialized.")),
262
          _num_threads(0),
263
          _num_threads_pending_start(0),
264
          _active_threads(0),
265
          _total_queued_tasks(0),
266
          _cgroup_cpu_ctl(builder._cgroup_cpu_ctl),
267
          _tokenless(new_token(ExecutionMode::CONCURRENT)),
268
322
          _id(UniqueId::gen_uid()) {}
269
270
310
ThreadPool::~ThreadPool() {
271
    // There should only be one live token: the one used in tokenless submission.
272
310
    CHECK_EQ(1, _tokens.size()) << absl::Substitute(
273
0
            "Threadpool $0 destroyed with $1 allocated tokens", _name, _tokens.size());
274
310
    shutdown();
275
310
}
276
277
327
Status ThreadPool::try_create_thread(int thread_num, std::lock_guard<std::mutex>&) {
278
1.35k
    for (int i = 0; i < thread_num; i++) {
279
1.03k
        Status status = create_thread();
280
1.03k
        if (status.ok()) {
281
1.03k
            _num_threads_pending_start++;
282
1.03k
        } else {
283
0
            LOG(WARNING) << "Thread pool " << _name << " failed to create thread: " << status;
284
0
            return status;
285
0
        }
286
1.03k
    }
287
327
    return Status::OK();
288
327
}
289
290
322
Status ThreadPool::init() {
291
322
    if (!_pool_status.is<UNINITIALIZED>()) {
292
0
        return Status::NotSupported("The thread pool {} is already initialized", _name);
293
0
    }
294
322
    _pool_status = Status::OK();
295
296
322
    {
297
322
        std::lock_guard<std::mutex> l(_lock);
298
        // create thread failed should not cause threadpool init failed,
299
        // because thread can be created later such as when submit a task.
300
322
        static_cast<void>(try_create_thread(_min_threads, l));
301
322
    }
302
303
    // _id of thread pool is used to make sure when we create thread pool with same name, we can
304
    // get different _metric_entity
305
    // If not, we will have problem when we deregister entity and register hook.
306
322
    _metric_entity = DorisMetrics::instance()->metric_registry()->register_entity(
307
322
            fmt::format("thread_pool_{}", _name), {{"thread_pool_name", _name},
308
322
                                                   {"workload_group", _workload_group},
309
322
                                                   {"id", _id.to_string()}});
310
311
322
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_active_threads);
312
322
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_threads);
313
322
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_queue_size);
314
322
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_queue_size);
315
322
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_task_execution_time_ns_total);
316
322
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_task_execution_count_total);
317
322
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_task_wait_worker_time_ns_total);
318
322
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_task_wait_worker_count_total);
319
322
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_submit_failed);
320
321
322
    _metric_entity->register_hook("update", [this]() {
322
0
        {
323
0
            std::lock_guard<std::mutex> l(_lock);
324
0
            if (!_pool_status.ok()) {
325
0
                return;
326
0
            }
327
0
        }
328
329
0
        thread_pool_active_threads->set_value(num_active_threads());
330
0
        thread_pool_queue_size->set_value(get_queue_size());
331
0
        thread_pool_max_queue_size->set_value(get_max_queue_size());
332
0
        thread_pool_max_threads->set_value(max_threads());
333
0
    });
334
322
    return Status::OK();
335
322
}
336
337
533
void ThreadPool::shutdown() {
338
    // Why access to doris_metrics is safe here?
339
    // Since DorisMetrics is a singleton, it will be destroyed only after doris_main is exited.
340
    // The shutdown/destroy of ThreadPool is guaranteed to take place before doris_main exits by
341
    // ExecEnv::destroy().
342
533
    DorisMetrics::instance()->metric_registry()->deregister_entity(_metric_entity);
343
533
    debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan;
344
533
    std::unique_lock<std::mutex> l(_lock);
345
533
    check_not_pool_thread_unlocked();
346
347
    // Note: this is the same error seen at submission if the pool is at
348
    // capacity, so clients can't tell them apart. This isn't really a practical
349
    // concern though because shutting down a pool typically requires clients to
350
    // be quiesced first, so there's no danger of a client getting confused.
351
    // Not print stack trace here
352
533
    _pool_status = Status::Error<SERVICE_UNAVAILABLE, false>(
353
533
            "The thread pool {} has been shut down.", _name);
354
355
    // Clear the various queues under the lock, but defer the releasing
356
    // of the tasks outside the lock, in case there are concurrent threads
357
    // wanting to access the ThreadPool. The task's destructors may acquire
358
    // locks, etc, so this also prevents lock inversions.
359
533
    _queue.clear();
360
361
533
    std::deque<std::deque<Task>> to_release;
362
618
    for (auto* t : _tokens) {
363
618
        if (!t->_entries.empty()) {
364
6
            to_release.emplace_back(std::move(t->_entries));
365
6
        }
366
618
        switch (t->state()) {
367
360
        case ThreadPoolToken::State::IDLE:
368
            // The token is idle; we can quiesce it immediately.
369
360
            t->transition(ThreadPoolToken::State::QUIESCED);
370
360
            break;
371
12
        case ThreadPoolToken::State::RUNNING:
372
            // The token has tasks associated with it. If they're merely queued
373
            // (i.e. there are no active threads), the tasks will have been removed
374
            // above and we can quiesce immediately. Otherwise, we need to wait for
375
            // the threads to finish.
376
12
            t->transition(t->_active_threads > 0 ? ThreadPoolToken::State::QUIESCING
377
12
                                                 : ThreadPoolToken::State::QUIESCED);
378
12
            break;
379
246
        default:
380
246
            break;
381
618
        }
382
618
    }
383
384
    // The queues are empty. Wake any sleeping worker threads and wait for all
385
    // of them to exit. Some worker threads will exit immediately upon waking,
386
    // while others will exit after they finish executing an outstanding task.
387
533
    _total_queued_tasks = 0;
388
1.62k
    while (!_idle_threads.empty()) {
389
1.09k
        _idle_threads.front().not_empty.notify_one();
390
1.09k
        _idle_threads.pop_front();
391
1.09k
    }
392
393
821
    _no_threads_cond.wait(l, [this]() { return _num_threads + _num_threads_pending_start == 0; });
394
395
    // All the threads have exited. Check the state of each token.
396
618
    for (auto* t : _tokens) {
397
618
        DCHECK(t->state() == ThreadPoolToken::State::IDLE ||
398
618
               t->state() == ThreadPoolToken::State::QUIESCED);
399
618
    }
400
533
}
401
402
2.49k
std::unique_ptr<ThreadPoolToken> ThreadPool::new_token(ExecutionMode mode, int max_concurrency) {
403
2.49k
    std::lock_guard<std::mutex> l(_lock);
404
2.49k
    std::unique_ptr<ThreadPoolToken> t(new ThreadPoolToken(this, mode, max_concurrency));
405
2.49k
    if (!_tokens.insert(t.get()).second) {
406
0
        throw Exception(Status::InternalError("duplicate token"));
407
0
    }
408
2.49k
    return t;
409
2.49k
}
410
411
2.48k
void ThreadPool::release_token(ThreadPoolToken* t) {
412
2.48k
    std::lock_guard<std::mutex> l(_lock);
413
2.48k
    CHECK(!t->is_active()) << absl::Substitute("Token with state $0 may not be released",
414
0
                                               ThreadPoolToken::state_to_string(t->state()));
415
2.48k
    CHECK_EQ(1, _tokens.erase(t));
416
2.48k
}
417
418
1.65k
Status ThreadPool::submit(std::shared_ptr<Runnable> r) {
419
1.65k
    return do_submit(std::move(r), _tokenless.get());
420
1.65k
}
421
422
1.41k
Status ThreadPool::submit_func(std::function<void()> f) {
423
1.41k
    return submit(std::make_shared<FunctionRunnable>(std::move(f)));
424
1.41k
}
425
426
10.7k
Status ThreadPool::do_submit(std::shared_ptr<Runnable> r, ThreadPoolToken* token) {
427
10.7k
    DCHECK(token);
428
429
10.7k
    std::unique_lock<std::mutex> l(_lock);
430
10.7k
    if (PREDICT_FALSE(!_pool_status.ok())) {
431
1
        return _pool_status;
432
1
    }
433
434
10.7k
    if (PREDICT_FALSE(!token->may_submit_new_tasks())) {
435
3.16k
        return Status::Error<SERVICE_UNAVAILABLE>("Thread pool({}) token was shut down", _name);
436
3.16k
    }
437
438
    // Size limit check.
439
7.60k
    int64_t capacity_remaining = static_cast<int64_t>(_max_threads) - _active_threads +
440
7.60k
                                 static_cast<int64_t>(_max_queue_size) - _total_queued_tasks;
441
7.60k
    if (capacity_remaining < 1) {
442
4
        thread_pool_submit_failed->increment(1);
443
4
        return Status::Error<SERVICE_UNAVAILABLE>(
444
4
                "Thread pool {} is at capacity ({}/{} tasks running, {}/{} tasks queued)", _name,
445
4
                _num_threads + _num_threads_pending_start, _max_threads, _total_queued_tasks,
446
4
                _max_queue_size);
447
4
    }
448
449
    // Should we create another thread?
450
451
    // We assume that each current inactive thread will grab one item from the
452
    // queue.  If it seems like we'll need another thread, we create one.
453
    //
454
    // Rather than creating the thread here, while holding the lock, we defer
455
    // it to down below. This is because thread creation can be rather slow
456
    // (hundreds of milliseconds in some cases) and we'd like to allow the
457
    // existing threads to continue to process tasks while we do so.
458
    //
459
    // In theory, a currently active thread could finish immediately after this
460
    // calculation but before our new worker starts running. This would mean we
461
    // created a thread we didn't really need. However, this race is unavoidable
462
    // and harmless.
463
    //
464
    // Of course, we never create more than _max_threads threads no matter what.
465
7.60k
    int threads_from_this_submit =
466
7.60k
            token->is_active() && token->mode() == ExecutionMode::SERIAL ? 0 : 1;
467
7.60k
    int inactive_threads = _num_threads + _num_threads_pending_start - _active_threads;
468
7.60k
    int additional_threads =
469
7.60k
            static_cast<int>(_queue.size()) + threads_from_this_submit - inactive_threads;
470
7.60k
    bool need_a_thread = false;
471
7.60k
    if (additional_threads > 0 && _num_threads + _num_threads_pending_start < _max_threads) {
472
623
        need_a_thread = true;
473
623
        _num_threads_pending_start++;
474
623
    }
475
476
7.60k
    Task task;
477
7.60k
    task.runnable = std::move(r);
478
7.60k
    task.submit_time_wather.start();
479
480
    // Add the task to the token's queue.
481
7.60k
    ThreadPoolToken::State state = token->state();
482
7.60k
    DCHECK(state == ThreadPoolToken::State::IDLE || state == ThreadPoolToken::State::RUNNING);
483
7.60k
    token->_entries.emplace_back(std::move(task));
484
    // When we need to execute the task in the token, we submit the token object to the queue.
485
    // There are currently two places where tokens will be submitted to the queue:
486
    // 1. When submitting a new task, if the token is still in the IDLE state,
487
    //    or the concurrency of the token has not reached the online level, it will be added to the queue.
488
    // 2. When the dispatch thread finishes executing a task:
489
    //    1. If it is a SERIAL token, and there are unsubmitted tasks, submit them to the queue.
490
    //    2. If it is a CONCURRENT token, and there are still unsubmitted tasks, and the upper limit of concurrency is not reached,
491
    //       then submitted to the queue.
492
7.60k
    if (token->need_dispatch()) {
493
5.65k
        _queue.emplace_back(token);
494
5.65k
        ++token->_num_submitted_tasks;
495
5.65k
        if (state == ThreadPoolToken::State::IDLE) {
496
3.09k
            token->transition(ThreadPoolToken::State::RUNNING);
497
3.09k
        }
498
5.65k
    } else {
499
1.95k
        ++token->_num_unsubmitted_tasks;
500
1.95k
    }
501
7.60k
    _total_queued_tasks++;
502
503
    // Wake up an idle thread for this task. Choosing the thread at the front of
504
    // the list ensures LIFO semantics as idling threads are also added to the front.
505
    //
506
    // If there are no idle threads, the new task remains on the queue and is
507
    // processed by an active thread (or a thread we're about to create) at some
508
    // point in the future.
509
7.60k
    if (!_idle_threads.empty()) {
510
1.76k
        _idle_threads.front().not_empty.notify_one();
511
1.76k
        _idle_threads.pop_front();
512
1.76k
    }
513
7.60k
    l.unlock();
514
515
7.60k
    if (need_a_thread) {
516
623
        Status status = create_thread();
517
623
        if (!status.ok()) {
518
0
            l.lock();
519
0
            _num_threads_pending_start--;
520
0
            if (_num_threads + _num_threads_pending_start == 0) {
521
                // If we have no threads, we can't do any work.
522
0
                return status;
523
0
            }
524
            // If we failed to create a thread, but there are still some other
525
            // worker threads, log a warning message and continue.
526
0
            LOG(WARNING) << "Thread pool " << _name
527
0
                         << " failed to create thread: " << status.to_string();
528
0
        }
529
623
    }
530
531
7.60k
    return Status::OK();
532
7.60k
}
533
534
121
void ThreadPool::wait() {
535
121
    std::unique_lock<std::mutex> l(_lock);
536
121
    check_not_pool_thread_unlocked();
537
243
    _idle_cond.wait(l, [this]() { return _total_queued_tasks == 0 && _active_threads == 0; });
538
121
}
539
540
1.65k
void ThreadPool::dispatch_thread() {
541
1.65k
    std::unique_lock<std::mutex> l(_lock);
542
1.65k
    debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan;
543
1.65k
    if (!_threads.insert(Thread::current_thread()).second) {
544
0
        throw Exception(Status::InternalError("duplicate token"));
545
0
    }
546
1.65k
    DCHECK_GT(_num_threads_pending_start, 0);
547
1.65k
    _num_threads++;
548
1.65k
    _num_threads_pending_start--;
549
550
1.65k
    if (std::shared_ptr<CgroupCpuCtl> cg_cpu_ctl_sptr = _cgroup_cpu_ctl.lock()) {
551
0
        static_cast<void>(cg_cpu_ctl_sptr->add_thread_to_cgroup());
552
0
    }
553
554
    // Owned by this worker thread and added/removed from _idle_threads as needed.
555
1.65k
    IdleThread me;
556
557
272k
    while (true) {
558
        // Note: Status::Aborted() is used to indicate normal shutdown.
559
272k
        if (!_pool_status.ok()) {
560
1.12k
            VLOG_CRITICAL << "DispatchThread exiting: " << _pool_status.to_string();
561
1.12k
            break;
562
1.12k
        }
563
564
271k
        if (_num_threads + _num_threads_pending_start > _max_threads) {
565
2
            break;
566
2
        }
567
568
271k
        if (_queue.empty()) {
569
            // There's no work to do, let's go idle.
570
            //
571
            // Note: if FIFO behavior is desired, it's as simple as changing this to push_back().
572
265k
            _idle_threads.push_front(me);
573
265k
            SCOPED_CLEANUP({
574
                // For some wake ups (i.e. shutdown or do_submit) this thread is
575
                // guaranteed to be unlinked after being awakened. In others (i.e.
576
                // spurious wake-up or Wait timeout), it'll still be linked.
577
265k
                if (me.is_linked()) {
578
265k
                    _idle_threads.erase(_idle_threads.iterator_to(me));
579
265k
                }
580
265k
            });
581
265k
            if (me.not_empty.wait_for(l, _idle_timeout) == std::cv_status::timeout) {
582
                // After much investigation, it appears that pthread condition variables have
583
                // a weird behavior in which they can return ETIMEDOUT from timed_wait even if
584
                // another thread did in fact signal. Apparently after a timeout there is some
585
                // brief period during which another thread may actually grab the internal mutex
586
                // protecting the state, signal, and release again before we get the mutex. So,
587
                // we'll recheck the empty queue case regardless.
588
265k
                if (_queue.empty() && _num_threads + _num_threads_pending_start > _min_threads) {
589
505
                    VLOG_NOTICE << "Releasing worker thread from pool " << _name << " after "
590
0
                                << std::chrono::duration_cast<std::chrono::milliseconds>(
591
0
                                           _idle_timeout)
592
0
                                           .count()
593
0
                                << "ms of idle time.";
594
505
                    break;
595
505
                }
596
265k
            }
597
265k
            continue;
598
265k
        }
599
600
5.25k
        MonotonicStopWatch task_execution_time_watch;
601
5.25k
        task_execution_time_watch.start();
602
        // Get the next token and task to execute.
603
5.25k
        ThreadPoolToken* token = _queue.front();
604
5.25k
        _queue.pop_front();
605
5.25k
        DCHECK_EQ(ThreadPoolToken::State::RUNNING, token->state());
606
5.25k
        DCHECK(!token->_entries.empty());
607
5.25k
        Task task = std::move(token->_entries.front());
608
5.25k
        thread_pool_task_wait_worker_time_ns_total->increment(
609
5.25k
                task.submit_time_wather.elapsed_time());
610
5.25k
        thread_pool_task_wait_worker_count_total->increment(1);
611
5.25k
        token->_entries.pop_front();
612
5.25k
        token->_active_threads++;
613
5.25k
        --_total_queued_tasks;
614
5.25k
        ++_active_threads;
615
616
5.25k
        l.unlock();
617
618
        // Execute the task
619
5.25k
        task.runnable->run();
620
        // Destruct the task while we do not hold the lock.
621
        //
622
        // The task's destructor may be expensive if it has a lot of bound
623
        // objects, and we don't want to block submission of the threadpool.
624
        // In the worst case, the destructor might even try to do something
625
        // with this threadpool, and produce a deadlock.
626
5.25k
        task.runnable.reset();
627
5.25k
        l.lock();
628
5.25k
        thread_pool_task_execution_time_ns_total->increment(
629
5.25k
                task_execution_time_watch.elapsed_time());
630
5.25k
        thread_pool_task_execution_count_total->increment(1);
631
        // Possible states:
632
        // 1. The token was shut down while we ran its task. Transition to QUIESCED.
633
        // 2. The token has no more queued tasks. Transition back to IDLE.
634
        // 3. The token has more tasks. Requeue it and transition back to RUNNABLE.
635
5.25k
        ThreadPoolToken::State state = token->state();
636
5.25k
        DCHECK(state == ThreadPoolToken::State::RUNNING ||
637
5.25k
               state == ThreadPoolToken::State::QUIESCING);
638
5.25k
        --token->_active_threads;
639
5.25k
        --token->_num_submitted_tasks;
640
641
        // handle shutdown && idle
642
5.25k
        if (token->_active_threads == 0) {
643
3.73k
            if (state == ThreadPoolToken::State::QUIESCING) {
644
706
                DCHECK(token->_entries.empty());
645
706
                token->transition(ThreadPoolToken::State::QUIESCED);
646
3.03k
            } else if (token->_entries.empty()) {
647
1.87k
                token->transition(ThreadPoolToken::State::IDLE);
648
1.87k
            }
649
3.73k
        }
650
651
        // We decrease _num_submitted_tasks holding lock, so the following DCHECK works.
652
5.25k
        DCHECK(token->_num_submitted_tasks < token->_max_concurrency);
653
654
        // If token->state is running and there are unsubmitted tasks in the token, we put
655
        // the token back.
656
5.25k
        if (token->_num_unsubmitted_tasks > 0 && state == ThreadPoolToken::State::RUNNING) {
657
            // SERIAL: if _entries is not empty, then num_unsubmitted_tasks must be greater than 0.
658
            // CONCURRENT: we have to check _num_unsubmitted_tasks because there may be at least 2
659
            // threads are running for the token.
660
893
            _queue.emplace_back(token);
661
893
            ++token->_num_submitted_tasks;
662
893
            --token->_num_unsubmitted_tasks;
663
893
        }
664
665
5.25k
        if (--_active_threads == 0) {
666
921
            _idle_cond.notify_all();
667
921
        }
668
5.25k
    }
669
670
    // It's important that we hold the lock between exiting the loop and dropping
671
    // _num_threads. Otherwise it's possible someone else could come along here
672
    // and add a new task just as the last running thread is about to exit.
673
1.65k
    CHECK(l.owns_lock());
674
675
1.65k
    CHECK_EQ(_threads.erase(Thread::current_thread()), 1);
676
1.65k
    _num_threads--;
677
1.65k
    if (_num_threads + _num_threads_pending_start == 0) {
678
786
        _no_threads_cond.notify_all();
679
680
        // Sanity check: if we're the last thread exiting, the queue ought to be
681
        // empty. Otherwise it will never get processed.
682
786
        CHECK(_queue.empty());
683
786
        DCHECK_EQ(0, _total_queued_tasks);
684
786
    }
685
1.65k
}
686
687
1.65k
Status ThreadPool::create_thread() {
688
1.65k
    return Thread::create("thread pool", absl::Substitute("$0 [worker]", _name),
689
1.65k
                          &ThreadPool::dispatch_thread, this, nullptr);
690
1.65k
}
691
692
5.16k
void ThreadPool::check_not_pool_thread_unlocked() {
693
5.16k
    Thread* current = Thread::current_thread();
694
5.16k
    if (_threads.contains(current)) {
695
0
        throw Exception(
696
0
                Status::FatalError("Thread belonging to thread pool {} with "
697
0
                                   "name {} called pool function that would result in deadlock",
698
0
                                   _name, current->name()));
699
0
    }
700
5.16k
}
701
702
4
Status ThreadPool::set_min_threads(int min_threads) {
703
4
    std::lock_guard<std::mutex> l(_lock);
704
4
    if (min_threads > _max_threads) {
705
        // min threads can not be set greater than max threads
706
1
        return Status::InternalError("set thread pool {} min_threads failed", _name);
707
1
    }
708
3
    _min_threads = min_threads;
709
3
    if (min_threads > _num_threads + _num_threads_pending_start) {
710
0
        int addition_threads = min_threads - _num_threads - _num_threads_pending_start;
711
0
        RETURN_IF_ERROR(try_create_thread(addition_threads, l));
712
0
    }
713
3
    return Status::OK();
714
3
}
715
716
8
Status ThreadPool::set_max_threads(int max_threads) {
717
8
    std::lock_guard<std::mutex> l(_lock);
718
8
    DBUG_EXECUTE_IF("ThreadPool.set_max_threads.force_set", {
719
8
        _max_threads = max_threads;
720
8
        return Status::OK();
721
8
    })
722
8
    if (_min_threads > max_threads) {
723
        // max threads can not be set less than min threads
724
1
        return Status::InternalError("set thread pool {} max_threads failed", _name);
725
1
    }
726
727
7
    _max_threads = max_threads;
728
7
    if (_max_threads > _num_threads + _num_threads_pending_start) {
729
5
        int addition_threads = _max_threads - _num_threads - _num_threads_pending_start;
730
5
        addition_threads = std::min(addition_threads, _total_queued_tasks);
731
5
        RETURN_IF_ERROR(try_create_thread(addition_threads, l));
732
5
    }
733
7
    return Status::OK();
734
7
}
735
736
0
std::ostream& operator<<(std::ostream& o, ThreadPoolToken::State s) {
737
0
    return o << ThreadPoolToken::state_to_string(s);
738
0
}
739
740
} // namespace doris