Coverage Report

Created: 2025-09-22 13:36

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasd8.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
0
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
0
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
static integer c__0 = 0;
517
static real c_b8 = 1.f;
518
519
/* > \brief \b SLASD8 finds the square roots of the roots of the secular equation, and stores, for each elemen
520
t in D, the distance to its two nearest poles. Used by sbdsdc. */
521
522
/*  =========== DOCUMENTATION =========== */
523
524
/* Online html documentation available at */
525
/*            http://www.netlib.org/lapack/explore-html/ */
526
527
/* > \htmlonly */
528
/* > Download SLASD8 + dependencies */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd8.
530
f"> */
531
/* > [TGZ]</a> */
532
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd8.
533
f"> */
534
/* > [ZIP]</a> */
535
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd8.
536
f"> */
537
/* > [TXT]</a> */
538
/* > \endhtmlonly */
539
540
/*  Definition: */
541
/*  =========== */
542
543
/*       SUBROUTINE SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, */
544
/*                          DSIGMA, WORK, INFO ) */
545
546
/*       INTEGER            ICOMPQ, INFO, K, LDDIFR */
547
/*       REAL               D( * ), DIFL( * ), DIFR( LDDIFR, * ), */
548
/*      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ), */
549
/*      $                   Z( * ) */
550
551
552
/* > \par Purpose: */
553
/*  ============= */
554
/* > */
555
/* > \verbatim */
556
/* > */
557
/* > SLASD8 finds the square roots of the roots of the secular equation, */
558
/* > as defined by the values in DSIGMA and Z. It makes the appropriate */
559
/* > calls to SLASD4, and stores, for each  element in D, the distance */
560
/* > to its two nearest poles (elements in DSIGMA). It also updates */
561
/* > the arrays VF and VL, the first and last components of all the */
562
/* > right singular vectors of the original bidiagonal matrix. */
563
/* > */
564
/* > SLASD8 is called from SLASD6. */
565
/* > \endverbatim */
566
567
/*  Arguments: */
568
/*  ========== */
569
570
/* > \param[in] ICOMPQ */
571
/* > \verbatim */
572
/* >          ICOMPQ is INTEGER */
573
/* >          Specifies whether singular vectors are to be computed in */
574
/* >          factored form in the calling routine: */
575
/* >          = 0: Compute singular values only. */
576
/* >          = 1: Compute singular vectors in factored form as well. */
577
/* > \endverbatim */
578
/* > */
579
/* > \param[in] K */
580
/* > \verbatim */
581
/* >          K is INTEGER */
582
/* >          The number of terms in the rational function to be solved */
583
/* >          by SLASD4.  K >= 1. */
584
/* > \endverbatim */
585
/* > */
586
/* > \param[out] D */
587
/* > \verbatim */
588
/* >          D is REAL array, dimension ( K ) */
589
/* >          On output, D contains the updated singular values. */
590
/* > \endverbatim */
591
/* > */
592
/* > \param[in,out] Z */
593
/* > \verbatim */
594
/* >          Z is REAL array, dimension ( K ) */
595
/* >          On entry, the first K elements of this array contain the */
596
/* >          components of the deflation-adjusted updating row vector. */
597
/* >          On exit, Z is updated. */
598
/* > \endverbatim */
599
/* > */
600
/* > \param[in,out] VF */
601
/* > \verbatim */
602
/* >          VF is REAL array, dimension ( K ) */
603
/* >          On entry, VF contains  information passed through DBEDE8. */
604
/* >          On exit, VF contains the first K components of the first */
605
/* >          components of all right singular vectors of the bidiagonal */
606
/* >          matrix. */
607
/* > \endverbatim */
608
/* > */
609
/* > \param[in,out] VL */
610
/* > \verbatim */
611
/* >          VL is REAL array, dimension ( K ) */
612
/* >          On entry, VL contains  information passed through DBEDE8. */
613
/* >          On exit, VL contains the first K components of the last */
614
/* >          components of all right singular vectors of the bidiagonal */
615
/* >          matrix. */
616
/* > \endverbatim */
617
/* > */
618
/* > \param[out] DIFL */
619
/* > \verbatim */
620
/* >          DIFL is REAL array, dimension ( K ) */
621
/* >          On exit, DIFL(I) = D(I) - DSIGMA(I). */
622
/* > \endverbatim */
623
/* > */
624
/* > \param[out] DIFR */
625
/* > \verbatim */
626
/* >          DIFR is REAL array, */
627
/* >                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
628
/* >                   dimension ( K ) if ICOMPQ = 0. */
629
/* >          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
630
/* >          defined and will not be referenced. */
631
/* > */
632
/* >          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
633
/* >          normalizing factors for the right singular vector matrix. */
634
/* > \endverbatim */
635
/* > */
636
/* > \param[in] LDDIFR */
637
/* > \verbatim */
638
/* >          LDDIFR is INTEGER */
639
/* >          The leading dimension of DIFR, must be at least K. */
640
/* > \endverbatim */
641
/* > */
642
/* > \param[in,out] DSIGMA */
643
/* > \verbatim */
644
/* >          DSIGMA is REAL array, dimension ( K ) */
645
/* >          On entry, the first K elements of this array contain the old */
646
/* >          roots of the deflated updating problem.  These are the poles */
647
/* >          of the secular equation. */
648
/* >          On exit, the elements of DSIGMA may be very slightly altered */
649
/* >          in value. */
650
/* > \endverbatim */
651
/* > */
652
/* > \param[out] WORK */
653
/* > \verbatim */
654
/* >          WORK is REAL array, dimension (3*K) */
655
/* > \endverbatim */
656
/* > */
657
/* > \param[out] INFO */
658
/* > \verbatim */
659
/* >          INFO is INTEGER */
660
/* >          = 0:  successful exit. */
661
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
662
/* >          > 0:  if INFO = 1, a singular value did not converge */
663
/* > \endverbatim */
664
665
/*  Authors: */
666
/*  ======== */
667
668
/* > \author Univ. of Tennessee */
669
/* > \author Univ. of California Berkeley */
670
/* > \author Univ. of Colorado Denver */
671
/* > \author NAG Ltd. */
672
673
/* > \date June 2017 */
674
675
/* > \ingroup OTHERauxiliary */
676
677
/* > \par Contributors: */
678
/*  ================== */
679
/* > */
680
/* >     Ming Gu and Huan Ren, Computer Science Division, University of */
681
/* >     California at Berkeley, USA */
682
/* > */
683
/*  ===================================================================== */
684
/* Subroutine */ void slasd8_(integer *icompq, integer *k, real *d__, real *
685
  z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr, 
686
  real *dsigma, real *work, integer *info)
687
0
{
688
    /* System generated locals */
689
0
    integer difr_dim1, difr_offset, i__1, i__2;
690
0
    real r__1, r__2;
691
692
    /* Local variables */
693
0
    real temp;
694
0
    extern real sdot_(integer *, real *, integer *, real *, integer *);
695
0
    integer iwk2i, iwk3i;
696
0
    extern real snrm2_(integer *, real *, integer *);
697
0
    integer i__, j;
698
0
    real diflj, difrj, dsigj;
699
0
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
700
0
      integer *);
701
0
    extern real slamc3_(real *, real *);
702
0
    extern /* Subroutine */ void slasd4_(integer *, integer *, real *, real *, 
703
0
      real *, real *, real *, real *, integer *);
704
0
    real dj;
705
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
706
0
    real dsigjp;
707
0
    extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
708
0
      real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
709
0
      real *, integer *);
710
0
    real rho;
711
0
    integer iwk1, iwk2, iwk3;
712
713
714
/*  -- LAPACK auxiliary routine (version 3.7.1) -- */
715
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
716
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
717
/*     June 2017 */
718
719
720
/*  ===================================================================== */
721
722
723
/*     Test the input parameters. */
724
725
    /* Parameter adjustments */
726
0
    --d__;
727
0
    --z__;
728
0
    --vf;
729
0
    --vl;
730
0
    --difl;
731
0
    difr_dim1 = *lddifr;
732
0
    difr_offset = 1 + difr_dim1 * 1;
733
0
    difr -= difr_offset;
734
0
    --dsigma;
735
0
    --work;
736
737
    /* Function Body */
738
0
    *info = 0;
739
740
0
    if (*icompq < 0 || *icompq > 1) {
741
0
  *info = -1;
742
0
    } else if (*k < 1) {
743
0
  *info = -2;
744
0
    } else if (*lddifr < *k) {
745
0
  *info = -9;
746
0
    }
747
0
    if (*info != 0) {
748
0
  i__1 = -(*info);
749
0
  xerbla_("SLASD8", &i__1, (ftnlen)6);
750
0
  return;
751
0
    }
752
753
/*     Quick return if possible */
754
755
0
    if (*k == 1) {
756
0
  d__[1] = abs(z__[1]);
757
0
  difl[1] = d__[1];
758
0
  if (*icompq == 1) {
759
0
      difl[2] = 1.f;
760
0
      difr[(difr_dim1 << 1) + 1] = 1.f;
761
0
  }
762
0
  return;
763
0
    }
764
765
/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
766
/*     be computed with high relative accuracy (barring over/underflow). */
767
/*     This is a problem on machines without a guard digit in */
768
/*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
769
/*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
770
/*     which on any of these machines zeros out the bottommost */
771
/*     bit of DSIGMA(I) if it is 1; this makes the subsequent */
772
/*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
773
/*     occurs. On binary machines with a guard digit (almost all */
774
/*     machines) it does not change DSIGMA(I) at all. On hexadecimal */
775
/*     and decimal machines with a guard digit, it slightly */
776
/*     changes the bottommost bits of DSIGMA(I). It does not account */
777
/*     for hexadecimal or decimal machines without guard digits */
778
/*     (we know of none). We use a subroutine call to compute */
779
/*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
780
/*     this code. */
781
782
0
    i__1 = *k;
783
0
    for (i__ = 1; i__ <= i__1; ++i__) {
784
0
  dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
785
/* L10: */
786
0
    }
787
788
/*     Book keeping. */
789
790
0
    iwk1 = 1;
791
0
    iwk2 = iwk1 + *k;
792
0
    iwk3 = iwk2 + *k;
793
0
    iwk2i = iwk2 - 1;
794
0
    iwk3i = iwk3 - 1;
795
796
/*     Normalize Z. */
797
798
0
    rho = snrm2_(k, &z__[1], &c__1);
799
0
    slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
800
0
    rho *= rho;
801
802
/*     Initialize WORK(IWK3). */
803
804
0
    slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);
805
806
/*     Compute the updated singular values, the arrays DIFL, DIFR, */
807
/*     and the updated Z. */
808
809
0
    i__1 = *k;
810
0
    for (j = 1; j <= i__1; ++j) {
811
0
  slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
812
0
    iwk2], info);
813
814
/*        If the root finder fails, report the convergence failure. */
815
816
0
  if (*info != 0) {
817
0
      return;
818
0
  }
819
0
  work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
820
0
  difl[j] = -work[j];
821
0
  difr[j + difr_dim1] = -work[j + 1];
822
0
  i__2 = j - 1;
823
0
  for (i__ = 1; i__ <= i__2; ++i__) {
824
0
      work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
825
0
        i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
826
0
        j]);
827
/* L20: */
828
0
  }
829
0
  i__2 = *k;
830
0
  for (i__ = j + 1; i__ <= i__2; ++i__) {
831
0
      work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
832
0
        i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
833
0
        j]);
834
/* L30: */
835
0
  }
836
/* L40: */
837
0
    }
838
839
/*     Compute updated Z. */
840
841
0
    i__1 = *k;
842
0
    for (i__ = 1; i__ <= i__1; ++i__) {
843
0
  r__2 = sqrt((r__1 = work[iwk3i + i__], abs(r__1)));
844
0
  z__[i__] = r_sign(&r__2, &z__[i__]);
845
/* L50: */
846
0
    }
847
848
/*     Update VF and VL. */
849
850
0
    i__1 = *k;
851
0
    for (j = 1; j <= i__1; ++j) {
852
0
  diflj = difl[j];
853
0
  dj = d__[j];
854
0
  dsigj = -dsigma[j];
855
0
  if (j < *k) {
856
0
      difrj = -difr[j + difr_dim1];
857
0
      dsigjp = -dsigma[j + 1];
858
0
  }
859
0
  work[j] = -z__[j] / diflj / (dsigma[j] + dj);
860
0
  i__2 = j - 1;
861
0
  for (i__ = 1; i__ <= i__2; ++i__) {
862
0
      work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / (
863
0
        dsigma[i__] + dj);
864
/* L60: */
865
0
  }
866
0
  i__2 = *k;
867
0
  for (i__ = j + 1; i__ <= i__2; ++i__) {
868
0
      work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) / 
869
0
        (dsigma[i__] + dj);
870
/* L70: */
871
0
  }
872
0
  temp = snrm2_(k, &work[1], &c__1);
873
0
  work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
874
0
  work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
875
0
  if (*icompq == 1) {
876
0
      difr[j + (difr_dim1 << 1)] = temp;
877
0
  }
878
/* L80: */
879
0
    }
880
881
0
    scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
882
0
    scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
883
884
0
    return;
885
886
/*     End of SLASD8 */
887
888
0
} /* slasd8_ */
889