/root/doris/be/src/gutil/endian.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2005 Google Inc. |
2 | | // |
3 | | // Licensed to the Apache Software Foundation (ASF) under one |
4 | | // or more contributor license agreements. See the NOTICE file |
5 | | // distributed with this work for additional information |
6 | | // regarding copyright ownership. The ASF licenses this file |
7 | | // to you under the Apache License, Version 2.0 (the |
8 | | // "License"); you may not use this file except in compliance |
9 | | // with the License. You may obtain a copy of the License at |
10 | | // |
11 | | // http://www.apache.org/licenses/LICENSE-2.0 |
12 | | // |
13 | | // Unless required by applicable law or agreed to in writing, |
14 | | // software distributed under the License is distributed on an |
15 | | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
16 | | // KIND, either express or implied. See the License for the |
17 | | // specific language governing permissions and limitations |
18 | | // under the License. |
19 | | // |
20 | | // --- |
21 | | // |
22 | | // |
23 | | // Utility functions that depend on bytesex. We define htonll and ntohll, |
24 | | // as well as "Google" versions of all the standards: ghtonl, ghtons, and |
25 | | // so on. These functions do exactly the same as their standard variants, |
26 | | // but don't require including the dangerous netinet/in.h. |
27 | | // |
28 | | // Buffer routines will copy to and from buffers without causing |
29 | | // a bus error when the architecture requires different byte alignments |
30 | | |
31 | | #pragma once |
32 | | |
33 | | #include <assert.h> |
34 | | |
35 | | #include "gutil/integral_types.h" |
36 | | #include "gutil/port.h" |
37 | | #include "vec/core/wide_integer.h" |
38 | | |
39 | 57.2k | inline uint64 gbswap_64(uint64 host_int) { |
40 | 57.2k | #if defined(__GNUC__) && defined(__x86_64__) && !defined(__APPLE__) |
41 | | // Adapted from /usr/include/byteswap.h. Not available on Mac. |
42 | 57.2k | if (__builtin_constant_p(host_int)) { |
43 | 0 | return __bswap_constant_64(host_int); |
44 | 57.2k | } else { |
45 | 57.2k | uint64 result; |
46 | 57.2k | __asm__("bswap %0" : "=r"(result) : "0"(host_int)); |
47 | 57.2k | return result; |
48 | 57.2k | } |
49 | | #elif defined(bswap_64) |
50 | | return bswap_64(host_int); |
51 | | #else |
52 | | return static_cast<uint64>(bswap_32(static_cast<uint32>(host_int >> 32))) | |
53 | | (static_cast<uint64>(bswap_32(static_cast<uint32>(host_int))) << 32); |
54 | | #endif // bswap_64 |
55 | 57.2k | } |
56 | | |
57 | 208 | inline unsigned __int128 gbswap_128(unsigned __int128 host_int) { |
58 | 208 | return static_cast<unsigned __int128>(bswap_64(static_cast<uint64>(host_int >> 64))) | |
59 | 208 | (static_cast<unsigned __int128>(bswap_64(static_cast<uint64>(host_int))) << 64); |
60 | 208 | } |
61 | | |
62 | 1 | inline wide::UInt256 gbswap_256(wide::UInt256 host_int) { |
63 | 1 | wide::UInt256 result {gbswap_64(host_int.items[3]), gbswap_64(host_int.items[2]), |
64 | 1 | gbswap_64(host_int.items[1]), gbswap_64(host_int.items[0])}; |
65 | 1 | return result; |
66 | 1 | } |
67 | | |
68 | | // Swap bytes of a 24-bit value. |
69 | 209 | inline uint32_t bswap_24(uint32_t x) { |
70 | 209 | return ((x & 0x0000ffULL) << 16) | ((x & 0x00ff00ULL)) | ((x & 0xff0000ULL) >> 16); |
71 | 209 | } |
72 | | |
73 | | #ifdef IS_LITTLE_ENDIAN |
74 | | |
75 | | // Definitions for ntohl etc. that don't require us to include |
76 | | // netinet/in.h. We wrap bswap_32 and bswap_16 in functions rather |
77 | | // than just #defining them because in debug mode, gcc doesn't |
78 | | // correctly handle the (rather involved) definitions of bswap_32. |
79 | | // gcc guarantees that inline functions are as fast as macros, so |
80 | | // this isn't a performance hit. |
81 | 0 | inline uint16 ghtons(uint16 x) { |
82 | 0 | return bswap_16(x); |
83 | 0 | } |
84 | 0 | inline uint32 ghtonl(uint32 x) { |
85 | 0 | return bswap_32(x); |
86 | 0 | } |
87 | 0 | inline uint64 ghtonll(uint64 x) { |
88 | 0 | return gbswap_64(x); |
89 | 0 | } |
90 | | |
91 | | #elif defined IS_BIG_ENDIAN |
92 | | |
93 | | // These definitions are simpler on big-endian machines |
94 | | // These are functions instead of macros to avoid self-assignment warnings |
95 | | // on calls such as "i = ghtnol(i);". This also provides type checking. |
96 | | inline uint16 ghtons(uint16 x) { |
97 | | return x; |
98 | | } |
99 | | inline uint32 ghtonl(uint32 x) { |
100 | | return x; |
101 | | } |
102 | | inline uint64 ghtonll(uint64 x) { |
103 | | return x; |
104 | | } |
105 | | |
106 | | #else |
107 | | #error "Unsupported bytesex: Either IS_BIG_ENDIAN or IS_LITTLE_ENDIAN must be defined" // NOLINT |
108 | | #endif // bytesex |
109 | | |
110 | | // ntoh* and hton* are the same thing for any size and bytesex, |
111 | | // since the function is an involution, i.e., its own inverse. |
112 | | #if !defined(__APPLE__) |
113 | | // This one is safe to take as it's an extension |
114 | | #define htonll(x) ghtonll(x) |
115 | | #define ntohll(x) htonll(x) |
116 | | #endif |
117 | | |
118 | | // Utilities to convert numbers between the current hosts's native byte |
119 | | // order and little-endian byte order |
120 | | // |
121 | | // Load/Store methods are alignment safe |
122 | | class LittleEndian { |
123 | | public: |
124 | | // Conversion functions. |
125 | | #ifdef IS_LITTLE_ENDIAN |
126 | | |
127 | 0 | static uint16 FromHost16(uint16 x) { return x; } |
128 | 0 | static uint16 ToHost16(uint16 x) { return x; } |
129 | | |
130 | 0 | static uint32 FromHost32(uint32 x) { return x; } |
131 | 8 | static uint32 ToHost32(uint32 x) { return x; } |
132 | | |
133 | 0 | static uint64 FromHost64(uint64 x) { return x; } |
134 | 0 | static uint64 ToHost64(uint64 x) { return x; } |
135 | | |
136 | 0 | static unsigned __int128 FromHost128(unsigned __int128 x) { return x; } |
137 | 0 | static unsigned __int128 ToHost128(unsigned __int128 x) { return x; } |
138 | | |
139 | 0 | static wide::UInt256 FromHost256(wide::UInt256 x) { return x; } |
140 | 0 | static wide::UInt256 ToHost256(wide::UInt256 x) { return x; } |
141 | | |
142 | 0 | static bool IsLittleEndian() { return true; } |
143 | | |
144 | | #elif defined IS_BIG_ENDIAN |
145 | | |
146 | | static uint16 FromHost16(uint16 x) { return bswap_16(x); } |
147 | | static uint16 ToHost16(uint16 x) { return bswap_16(x); } |
148 | | |
149 | | static uint32 FromHost32(uint32 x) { return bswap_32(x); } |
150 | | static uint32 ToHost32(uint32 x) { return bswap_32(x); } |
151 | | |
152 | | static uint64 FromHost64(uint64 x) { return gbswap_64(x); } |
153 | | static uint64 ToHost64(uint64 x) { return gbswap_64(x); } |
154 | | |
155 | | static unsigned __int128 FromHost128(unsigned __int128 x) { return gbswap_128(x); } |
156 | | static unsigned __int128 ToHost128(unsigned __int128 x) { return gbswap_128(x); } |
157 | | |
158 | | static wide::UInt256 FromHost256(wide::UInt256 x) { return gbswap_256(x); } |
159 | | static wide::UInt256 ToHost256(wide::UInt256 x) { return gbswap_256(x); } |
160 | | |
161 | | static bool IsLittleEndian() { return false; } |
162 | | |
163 | | #endif /* ENDIAN */ |
164 | | |
165 | | // Functions to do unaligned loads and stores in little-endian order. |
166 | 0 | static uint16 Load16(const void* p) { return ToHost16(UNALIGNED_LOAD16(p)); } |
167 | | |
168 | 0 | static void Store16(void* p, uint16 v) { UNALIGNED_STORE16(p, FromHost16(v)); } |
169 | | |
170 | 8 | static uint32 Load32(const void* p) { return ToHost32(UNALIGNED_LOAD32(p)); } |
171 | | |
172 | 0 | static void Store32(void* p, uint32 v) { UNALIGNED_STORE32(p, FromHost32(v)); } |
173 | | |
174 | 0 | static uint64 Load64(const void* p) { return ToHost64(UNALIGNED_LOAD64(p)); } |
175 | | |
176 | | // Build a uint64 from 1-8 bytes. |
177 | | // 8 * len least significant bits are loaded from the memory with |
178 | | // LittleEndian order. The 64 - 8 * len most significant bits are |
179 | | // set all to 0. |
180 | | // In latex-friendly words, this function returns: |
181 | | // $\sum_{i=0}^{len-1} p[i] 256^{i}$, where p[i] is unsigned. |
182 | | // |
183 | | // This function is equivalent with: |
184 | | // uint64 val = 0; |
185 | | // memcpy(&val, p, len); |
186 | | // return ToHost64(val); |
187 | | // TODO(user): write a small benchmark and benchmark the speed |
188 | | // of a memcpy based approach. |
189 | | // |
190 | | // For speed reasons this function does not work for len == 0. |
191 | | // The caller needs to guarantee that 1 <= len <= 8. |
192 | 0 | static uint64 Load64VariableLength(const void* const p, int len) { |
193 | 0 | assert(len >= 1 && len <= 8); |
194 | 0 | const char* const buf = static_cast<const char*>(p); |
195 | 0 | uint64 val = 0; |
196 | 0 | --len; |
197 | 0 | do { |
198 | 0 | val = (val << 8) | buf[len]; |
199 | 0 | // (--len >= 0) is about 10 % faster than (len--) in some benchmarks. |
200 | 0 | } while (--len >= 0); |
201 | 0 | // No ToHost64(...) needed. The bytes are accessed in little-endian manner |
202 | 0 | // on every architecture. |
203 | 0 | return val; |
204 | 0 | } |
205 | | |
206 | 0 | static void Store64(void* p, uint64 v) { UNALIGNED_STORE64(p, FromHost64(v)); } |
207 | | |
208 | | // Load & Store in machine's word size. |
209 | 0 | static uword_t LoadUnsignedWord(const void* p) { |
210 | 0 | if (sizeof(uword_t) == 8) |
211 | 0 | return Load64(p); |
212 | 0 | else |
213 | 0 | return Load32(p); |
214 | 0 | } |
215 | | |
216 | 0 | static void StoreUnsignedWord(void* p, uword_t v) { |
217 | 0 | if (sizeof(v) == 8) |
218 | 0 | Store64(p, v); |
219 | 0 | else |
220 | 0 | Store32(p, v); |
221 | 0 | } |
222 | | }; |
223 | | |
224 | | // Utilities to convert numbers between the current hosts's native byte |
225 | | // order and big-endian byte order (same as network byte order) |
226 | | // |
227 | | // Load/Store methods are alignment safe |
228 | | class BigEndian { |
229 | | public: |
230 | | #ifdef IS_LITTLE_ENDIAN |
231 | | |
232 | 233 | static uint16 FromHost16(uint16 x) { return bswap_16(x); } |
233 | 1 | static uint16 ToHost16(uint16 x) { return bswap_16(x); } |
234 | | |
235 | 209 | static uint32 FromHost24(uint32 x) { return bswap_24(x); } |
236 | 0 | static uint32 ToHost24(uint32 x) { return bswap_24(x); } |
237 | | |
238 | 868k | static uint32 FromHost32(uint32 x) { return bswap_32(x); } |
239 | 1 | static uint32 ToHost32(uint32 x) { return bswap_32(x); } |
240 | | |
241 | 56.0k | static uint64 FromHost64(uint64 x) { return gbswap_64(x); } |
242 | 1.19k | static uint64 ToHost64(uint64 x) { return gbswap_64(x); } |
243 | | |
244 | 207 | static unsigned __int128 FromHost128(unsigned __int128 x) { return gbswap_128(x); } |
245 | 1 | static unsigned __int128 ToHost128(unsigned __int128 x) { return gbswap_128(x); } |
246 | | |
247 | 0 | static wide::UInt256 FromHost256(wide::UInt256 x) { return gbswap_256(x); } |
248 | 1 | static wide::UInt256 ToHost256(wide::UInt256 x) { return gbswap_256(x); } |
249 | | |
250 | 0 | static bool IsLittleEndian() { return true; } |
251 | | |
252 | | #elif defined IS_BIG_ENDIAN |
253 | | |
254 | | static uint16 FromHost16(uint16 x) { return x; } |
255 | | static uint16 ToHost16(uint16 x) { return x; } |
256 | | |
257 | | static uint32 FromHost24(uint32 x) { return x; } |
258 | | static uint32 ToHost24(uint32 x) { return x; } |
259 | | |
260 | | static uint32 FromHost32(uint32 x) { return x; } |
261 | | static uint32 ToHost32(uint32 x) { return x; } |
262 | | |
263 | | static uint64 FromHost64(uint64 x) { return x; } |
264 | | static uint64 ToHost64(uint64 x) { return x; } |
265 | | |
266 | | static wide::UInt256 FromHost256(wide::UInt256 x) { return x; } |
267 | | static wide::UInt256 ToHost256(wide::UInt256 x) { return x; } |
268 | | |
269 | | static bool IsLittleEndian() { return false; } |
270 | | |
271 | | #endif /* ENDIAN */ |
272 | | // Functions to do unaligned loads and stores in little-endian order. |
273 | 0 | static uint16 Load16(const void* p) { return ToHost16(UNALIGNED_LOAD16(p)); } |
274 | | |
275 | 0 | static void Store16(void* p, uint16 v) { UNALIGNED_STORE16(p, FromHost16(v)); } |
276 | | |
277 | 0 | static uint32 Load32(const void* p) { return ToHost32(UNALIGNED_LOAD32(p)); } |
278 | | |
279 | 0 | static void Store32(void* p, uint32 v) { UNALIGNED_STORE32(p, FromHost32(v)); } |
280 | | |
281 | 0 | static uint64 Load64(const void* p) { return ToHost64(UNALIGNED_LOAD64(p)); } |
282 | | |
283 | | // Build a uint64 from 1-8 bytes. |
284 | | // 8 * len least significant bits are loaded from the memory with |
285 | | // BigEndian order. The 64 - 8 * len most significant bits are |
286 | | // set all to 0. |
287 | | // In latex-friendly words, this function returns: |
288 | | // $\sum_{i=0}^{len-1} p[i] 256^{i}$, where p[i] is unsigned. |
289 | | // |
290 | | // This function is equivalent with: |
291 | | // uint64 val = 0; |
292 | | // memcpy(&val, p, len); |
293 | | // return ToHost64(val); |
294 | | // TODO(user): write a small benchmark and benchmark the speed |
295 | | // of a memcpy based approach. |
296 | | // |
297 | | // For speed reasons this function does not work for len == 0. |
298 | | // The caller needs to guarantee that 1 <= len <= 8. |
299 | 0 | static uint64 Load64VariableLength(const void* const p, int len) { |
300 | 0 | assert(len >= 1 && len <= 8); |
301 | 0 | uint64 val = Load64(p); |
302 | 0 | uint64 mask = 0; |
303 | 0 | --len; |
304 | 0 | do { |
305 | 0 | mask = (mask << 8) | 0xff; |
306 | 0 | // (--len >= 0) is about 10 % faster than (len--) in some benchmarks. |
307 | 0 | } while (--len >= 0); |
308 | 0 | return val & mask; |
309 | 0 | } |
310 | | |
311 | 0 | static void Store64(void* p, uint64 v) { UNALIGNED_STORE64(p, FromHost64(v)); } |
312 | | |
313 | | // Load & Store in machine's word size. |
314 | 0 | static uword_t LoadUnsignedWord(const void* p) { |
315 | 0 | if (sizeof(uword_t) == 8) |
316 | 0 | return Load64(p); |
317 | 0 | else |
318 | 0 | return Load32(p); |
319 | 0 | } |
320 | | |
321 | 0 | static void StoreUnsignedWord(void* p, uword_t v) { |
322 | 0 | if (sizeof(uword_t) == 8) |
323 | 0 | Store64(p, v); |
324 | 0 | else |
325 | 0 | Store32(p, v); |
326 | 0 | } |
327 | | }; // BigEndian |
328 | | |
329 | | // Network byte order is big-endian |
330 | | typedef BigEndian NetworkByteOrder; |