Coverage Report

Created: 2025-09-17 00:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/ilaenv.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
0
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
0
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
0
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle_() continue;
256
#define myceiling_(w) {ceil(w)}
257
#define myhuge_(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
/*  -- translated by f2c (version 20000121).
513
   You must link the resulting object file with the libraries:
514
  -lf2c -lm   (in that order)
515
*/
516
517
518
519
/* Table of constant values */
520
521
static integer c__1 = 1;
522
static real c_b179 = 0.f;
523
static real c_b180 = 1.f;
524
static integer c__0 = 0;
525
526
/* > \brief \b ILAENV */
527
528
/*  =========== DOCUMENTATION =========== */
529
530
/* Online html documentation available at */
531
/*            http://www.netlib.org/lapack/explore-html/ */
532
533
/* > \htmlonly */
534
/* > Download ILAENV + dependencies */
535
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.
536
f"> */
537
/* > [TGZ]</a> */
538
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.
539
f"> */
540
/* > [ZIP]</a> */
541
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.
542
f"> */
543
/* > [TXT]</a> */
544
/* > \endhtmlonly */
545
546
/*  Definition: */
547
/*  =========== */
548
549
/*       INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */
550
551
/*       CHARACTER*( * )    NAME, OPTS */
552
/*       INTEGER            ISPEC, N1, N2, N3, N4 */
553
554
555
/* > \par Purpose: */
556
/*  ============= */
557
/* > */
558
/* > \verbatim */
559
/* > */
560
/* > ILAENV is called from the LAPACK routines to choose problem-dependent */
561
/* > parameters for the local environment.  See ISPEC for a description of */
562
/* > the parameters. */
563
/* > */
564
/* > ILAENV returns an INTEGER */
565
/* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */
566
/* > if ILAENV < 0:  if ILAENV = -k, the k-th argument had an illegal value. */
567
/* > */
568
/* > This version provides a set of parameters which should give good, */
569
/* > but not optimal, performance on many of the currently available */
570
/* > computers.  Users are encouraged to modify this subroutine to set */
571
/* > the tuning parameters for their particular machine using the option */
572
/* > and problem size information in the arguments. */
573
/* > */
574
/* > This routine will not function correctly if it is converted to all */
575
/* > lower case.  Converting it to all upper case is allowed. */
576
/* > \endverbatim */
577
578
/*  Arguments: */
579
/*  ========== */
580
581
/* > \param[in] ISPEC */
582
/* > \verbatim */
583
/* >          ISPEC is INTEGER */
584
/* >          Specifies the parameter to be returned as the value of */
585
/* >          ILAENV. */
586
/* >          = 1: the optimal blocksize; if this value is 1, an unblocked */
587
/* >               algorithm will give the best performance. */
588
/* >          = 2: the minimum block size for which the block routine */
589
/* >               should be used; if the usable block size is less than */
590
/* >               this value, an unblocked routine should be used. */
591
/* >          = 3: the crossover point (in a block routine, for N less */
592
/* >               than this value, an unblocked routine should be used) */
593
/* >          = 4: the number of shifts, used in the nonsymmetric */
594
/* >               eigenvalue routines (DEPRECATED) */
595
/* >          = 5: the minimum column dimension for blocking to be used; */
596
/* >               rectangular blocks must have dimension at least k by m, */
597
/* >               where k is given by ILAENV(2,...) and m by ILAENV(5,...) */
598
/* >          = 6: the crossover point for the SVD (when reducing an m by n */
599
/* >               matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */
600
/* >               this value, a QR factorization is used first to reduce */
601
/* >               the matrix to a triangular form.) */
602
/* >          = 7: the number of processors */
603
/* >          = 8: the crossover point for the multishift QR method */
604
/* >               for nonsymmetric eigenvalue problems (DEPRECATED) */
605
/* >          = 9: maximum size of the subproblems at the bottom of the */
606
/* >               computation tree in the divide-and-conquer algorithm */
607
/* >               (used by xGELSD and xGESDD) */
608
/* >          =10: ieee infinity and NaN arithmetic can be trusted not to trap */
609
/* >          =11: infinity arithmetic can be trusted not to trap */
610
/* >          12 <= ISPEC <= 17: */
611
/* >               xHSEQR or related subroutines, */
612
/* >               see IPARMQ for detailed explanation */
613
/* > \endverbatim */
614
/* > */
615
/* > \param[in] NAME */
616
/* > \verbatim */
617
/* >          NAME is CHARACTER*(*) */
618
/* >          The name of the calling subroutine, in either upper case or */
619
/* >          lower case. */
620
/* > \endverbatim */
621
/* > */
622
/* > \param[in] OPTS */
623
/* > \verbatim */
624
/* >          OPTS is CHARACTER*(*) */
625
/* >          The character options to the subroutine NAME, concatenated */
626
/* >          into a single character string.  For example, UPLO = 'U', */
627
/* >          TRANS = 'T', and DIAG = 'N' for a triangular routine would */
628
/* >          be specified as OPTS = 'UTN'. */
629
/* > \endverbatim */
630
/* > */
631
/* > \param[in] N1 */
632
/* > \verbatim */
633
/* >          N1 is INTEGER */
634
/* > \endverbatim */
635
/* > */
636
/* > \param[in] N2 */
637
/* > \verbatim */
638
/* >          N2 is INTEGER */
639
/* > \endverbatim */
640
/* > */
641
/* > \param[in] N3 */
642
/* > \verbatim */
643
/* >          N3 is INTEGER */
644
/* > \endverbatim */
645
/* > */
646
/* > \param[in] N4 */
647
/* > \verbatim */
648
/* >          N4 is INTEGER */
649
/* >          Problem dimensions for the subroutine NAME; these may not all */
650
/* >          be required. */
651
/* > \endverbatim */
652
653
/*  Authors: */
654
/*  ======== */
655
656
/* > \author Univ. of Tennessee */
657
/* > \author Univ. of California Berkeley */
658
/* > \author Univ. of Colorado Denver */
659
/* > \author NAG Ltd. */
660
661
/* > \ingroup ilaenv */
662
663
/* > \par Further Details: */
664
/*  ===================== */
665
/* > */
666
/* > \verbatim */
667
/* > */
668
/* >  The following conventions have been used when calling ILAENV from the */
669
/* >  LAPACK routines: */
670
/* >  1)  OPTS is a concatenation of all of the character options to */
671
/* >      subroutine NAME, in the same order that they appear in the */
672
/* >      argument list for NAME, even if they are not used in determining */
673
/* >      the value of the parameter specified by ISPEC. */
674
/* >  2)  The problem dimensions N1, N2, N3, N4 are specified in the order */
675
/* >      that they appear in the argument list for NAME.  N1 is used */
676
/* >      first, N2 second, and so on, and unused problem dimensions are */
677
/* >      passed a value of -1. */
678
/* >  3)  The parameter value returned by ILAENV is checked for validity in */
679
/* >      the calling subroutine.  For example, ILAENV is used to retrieve */
680
/* >      the optimal blocksize for STRTRI as follows: */
681
/* > */
682
/* >      NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */
683
/* >      IF( NB.LE.1 ) NB = MAX( 1, N ) */
684
/* > \endverbatim */
685
/* > */
686
/*  ===================================================================== */
687
integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1, 
688
  integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen 
689
  opts_len)
690
0
{
691
    /* System generated locals */
692
0
    integer ret_val, i__1, i__2, i__3;
693
694
    /* Local variables */
695
0
    logical twostage;
696
0
    integer i__;
697
0
    logical cname;
698
0
    integer nbmin;
699
0
    logical sname;
700
0
    char c1[1], c2[2], c3[3], c4[2];
701
0
    integer ic, nb;
702
0
    extern integer ieeeck_(integer *, real *, real *);
703
0
    integer iz, nx;
704
0
    char subnam[16];
705
0
    extern integer iparmq_(integer *, char *, char *, integer *, integer *, 
706
0
      integer *, integer *);
707
708
709
/*  -- LAPACK auxiliary routine -- */
710
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
711
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
712
713
714
/*  ===================================================================== */
715
716
717
0
    switch (*ispec) {
718
0
  case 1:  goto L10;
719
0
  case 2:  goto L10;
720
0
  case 3:  goto L10;
721
0
  case 4:  goto L80;
722
0
  case 5:  goto L90;
723
0
  case 6:  goto L100;
724
0
  case 7:  goto L110;
725
0
  case 8:  goto L120;
726
0
  case 9:  goto L130;
727
0
  case 10:  goto L140;
728
0
  case 11:  goto L150;
729
0
  case 12:  goto L160;
730
0
  case 13:  goto L160;
731
0
  case 14:  goto L160;
732
0
  case 15:  goto L160;
733
0
  case 16:  goto L160;
734
0
  case 17:  goto L160;
735
0
    }
736
737
/*     Invalid value for ISPEC */
738
739
0
    ret_val = -1;
740
0
    return ret_val;
741
742
0
L10:
743
744
/*     Convert NAME to upper case if the first character is lower case. */
745
746
0
    ret_val = 1;
747
0
    s_copy(subnam, name__, (ftnlen)16, name_len);
748
0
    ic = *(unsigned char *)subnam;
749
0
    iz = 'Z';
750
0
    if (iz == 90 || iz == 122) {
751
752
/*        ASCII character set */
753
754
0
  if (ic >= 97 && ic <= 122) {
755
0
      *(unsigned char *)subnam = (char) (ic - 32);
756
0
      for (i__ = 2; i__ <= 6; ++i__) {
757
0
    ic = *(unsigned char *)&subnam[i__ - 1];
758
0
    if (ic >= 97 && ic <= 122) {
759
0
        *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
760
0
    }
761
/* L20: */
762
0
      }
763
0
  }
764
765
0
    } else if (iz == 233 || iz == 169) {
766
767
/*        EBCDIC character set */
768
769
0
  if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && 
770
0
    ic <= 169) {
771
0
      *(unsigned char *)subnam = (char) (ic + 64);
772
0
      for (i__ = 2; i__ <= 6; ++i__) {
773
0
    ic = *(unsigned char *)&subnam[i__ - 1];
774
0
    if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 
775
0
      162 && ic <= 169) {
776
0
        *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
777
0
    }
778
/* L30: */
779
0
      }
780
0
  }
781
782
0
    } else if (iz == 218 || iz == 250) {
783
784
/*        Prime machines:  ASCII+128 */
785
786
0
  if (ic >= 225 && ic <= 250) {
787
0
      *(unsigned char *)subnam = (char) (ic - 32);
788
0
      for (i__ = 2; i__ <= 6; ++i__) {
789
0
    ic = *(unsigned char *)&subnam[i__ - 1];
790
0
    if (ic >= 225 && ic <= 250) {
791
0
        *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
792
0
    }
793
/* L40: */
794
0
      }
795
0
  }
796
0
    }
797
798
0
    *(unsigned char *)c1 = *(unsigned char *)subnam;
799
0
    sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
800
0
    cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
801
0
    if (! (cname || sname)) {
802
0
  return ret_val;
803
0
    }
804
0
    s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
805
0
    s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
806
0
    s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
807
0
    twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[
808
0
      10] == '2';
809
810
0
    switch (*ispec) {
811
0
  case 1:  goto L50;
812
0
  case 2:  goto L60;
813
0
  case 3:  goto L70;
814
0
    }
815
816
0
L50:
817
818
/*     ISPEC = 1:  block size */
819
820
/*     In these examples, separate code is provided for setting NB for */
821
/*     real and complex.  We assume that NB will take the same value in */
822
/*     single or double precision. */
823
824
0
    nb = 1;
825
826
0
    if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) {
827
828
/*        This is for *LAORHR_GETRFNP routine */
829
830
0
  if (sname) {
831
0
      nb = 32;
832
0
  } else {
833
0
      nb = 32;
834
0
  }
835
0
    } else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
836
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
837
0
      if (sname) {
838
0
    nb = 64;
839
0
      } else {
840
0
    nb = 64;
841
0
      }
842
0
  } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, 
843
0
    "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
844
0
    3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) 
845
0
    == 0) {
846
0
      if (sname) {
847
0
    nb = 32;
848
0
      } else {
849
0
    nb = 32;
850
0
      }
851
0
  } else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) {
852
0
      if (*n3 == 1) {
853
0
    if (sname) {
854
/*     M*N */
855
0
        if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
856
0
      nb = *n1;
857
0
        } else {
858
0
      nb = 32768 / *n2;
859
0
        }
860
0
    } else {
861
0
        if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
862
0
      nb = *n1;
863
0
        } else {
864
0
      nb = 32768 / *n2;
865
0
        }
866
0
    }
867
0
      } else {
868
0
    if (sname) {
869
0
        nb = 1;
870
0
    } else {
871
0
        nb = 1;
872
0
    }
873
0
      }
874
0
  } else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) {
875
0
      if (*n3 == 2) {
876
0
    if (sname) {
877
/*     M*N */
878
0
        if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
879
0
      nb = *n1;
880
0
        } else {
881
0
      nb = 32768 / *n2;
882
0
        }
883
0
    } else {
884
0
        if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
885
0
      nb = *n1;
886
0
        } else {
887
0
      nb = 32768 / *n2;
888
0
        }
889
0
    }
890
0
      } else {
891
0
    if (sname) {
892
0
        nb = 1;
893
0
    } else {
894
0
        nb = 1;
895
0
    }
896
0
      }
897
0
  } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
898
0
      if (sname) {
899
0
    nb = 32;
900
0
      } else {
901
0
    nb = 32;
902
0
      }
903
0
  } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
904
0
      if (sname) {
905
0
    nb = 32;
906
0
      } else {
907
0
    nb = 32;
908
0
      }
909
0
  } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
910
0
      if (sname) {
911
0
    nb = 64;
912
0
      } else {
913
0
    nb = 64;
914
0
      }
915
0
  } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
916
0
      if (sname) {
917
0
    nb = 32;
918
0
      } else {
919
0
    nb = 32;
920
0
      }
921
0
  }
922
0
    } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
923
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
924
0
      if (sname) {
925
0
    nb = 64;
926
0
      } else {
927
0
    nb = 64;
928
0
      }
929
0
  }
930
0
    } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
931
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
932
0
      if (sname) {
933
0
    if (twostage) {
934
0
        nb = 192;
935
0
    } else {
936
0
        nb = 64;
937
0
    }
938
0
      } else {
939
0
    if (twostage) {
940
0
        nb = 192;
941
0
    } else {
942
0
        nb = 64;
943
0
    }
944
0
      }
945
0
  } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
946
0
      nb = 32;
947
0
  } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
948
0
      nb = 64;
949
0
  }
950
0
    } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
951
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
952
0
      if (twostage) {
953
0
    nb = 192;
954
0
      } else {
955
0
    nb = 64;
956
0
      }
957
0
  } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
958
0
      nb = 32;
959
0
  } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
960
0
      nb = 64;
961
0
  }
962
0
    } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
963
0
  if (*(unsigned char *)c3 == 'G') {
964
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
965
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
966
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
967
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
968
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
969
0
        ftnlen)2, (ftnlen)2) == 0) {
970
0
    nb = 32;
971
0
      }
972
0
  } else if (*(unsigned char *)c3 == 'M') {
973
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
974
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
975
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
976
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
977
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
978
0
        ftnlen)2, (ftnlen)2) == 0) {
979
0
    nb = 32;
980
0
      }
981
0
  }
982
0
    } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
983
0
  if (*(unsigned char *)c3 == 'G') {
984
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
985
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
986
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
987
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
988
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
989
0
        ftnlen)2, (ftnlen)2) == 0) {
990
0
    nb = 32;
991
0
      }
992
0
  } else if (*(unsigned char *)c3 == 'M') {
993
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
994
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
995
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
996
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
997
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
998
0
        ftnlen)2, (ftnlen)2) == 0) {
999
0
    nb = 32;
1000
0
      }
1001
0
  }
1002
0
    } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
1003
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
1004
0
      if (sname) {
1005
0
    if (*n4 <= 64) {
1006
0
        nb = 1;
1007
0
    } else {
1008
0
        nb = 32;
1009
0
    }
1010
0
      } else {
1011
0
    if (*n4 <= 64) {
1012
0
        nb = 1;
1013
0
    } else {
1014
0
        nb = 32;
1015
0
    }
1016
0
      }
1017
0
  }
1018
0
    } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
1019
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
1020
0
      if (sname) {
1021
0
    if (*n2 <= 64) {
1022
0
        nb = 1;
1023
0
    } else {
1024
0
        nb = 32;
1025
0
    }
1026
0
      } else {
1027
0
    if (*n2 <= 64) {
1028
0
        nb = 1;
1029
0
    } else {
1030
0
        nb = 32;
1031
0
    }
1032
0
      }
1033
0
  }
1034
0
    } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
1035
0
  if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
1036
0
      if (sname) {
1037
0
    nb = 64;
1038
0
      } else {
1039
0
    nb = 64;
1040
0
      }
1041
0
  } else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) {
1042
0
      if (sname) {
1043
0
    nb = 64;
1044
0
      } else {
1045
0
    nb = 64;
1046
0
      }
1047
0
  } else if (s_cmp(c3, "SYL", (ftnlen)3, (ftnlen)3) == 0) {
1048
/*           The upper bound is to prevent overly aggressive scaling. */
1049
0
      if (sname) {
1050
/* Computing MIN */
1051
/* Computing MAX */
1052
0
    i__2 = 48, i__3 = (f2cmin(*n1,*n2) << 4) / 100;
1053
0
    i__1 = f2cmax(i__2,i__3);
1054
0
    nb = f2cmin(i__1,240);
1055
0
      } else {
1056
/* Computing MIN */
1057
/* Computing MAX */
1058
0
    i__2 = 24, i__3 = (f2cmin(*n1,*n2) << 3) / 100;
1059
0
    i__1 = f2cmax(i__2,i__3);
1060
0
    nb = f2cmin(i__1,80);
1061
0
      }
1062
0
  }
1063
0
    } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
1064
0
  if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
1065
0
      if (sname) {
1066
0
    nb = 64;
1067
0
      } else {
1068
0
    nb = 64;
1069
0
      }
1070
0
  } else if (s_cmp(c3, "TRS", (ftnlen)3, (ftnlen)3) == 0) {
1071
0
      if (sname) {
1072
0
    nb = 32;
1073
0
      } else {
1074
0
    nb = 32;
1075
0
      }
1076
0
  }
1077
0
    } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) {
1078
0
  if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
1079
0
      nb = 1;
1080
0
  }
1081
0
    } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
1082
0
  nb = 32;
1083
0
  if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
1084
0
      if (sname) {
1085
0
    nb = 32;
1086
0
      } else {
1087
0
    nb = 32;
1088
0
      }
1089
0
  }
1090
0
    }
1091
0
    ret_val = nb;
1092
0
    return ret_val;
1093
1094
0
L60:
1095
1096
/*     ISPEC = 2:  minimum block size */
1097
1098
0
    nbmin = 2;
1099
0
    if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
1100
0
  if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
1101
0
    ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
1102
0
    ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
1103
0
     {
1104
0
      if (sname) {
1105
0
    nbmin = 2;
1106
0
      } else {
1107
0
    nbmin = 2;
1108
0
      }
1109
0
  } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
1110
0
      if (sname) {
1111
0
    nbmin = 2;
1112
0
      } else {
1113
0
    nbmin = 2;
1114
0
      }
1115
0
  } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
1116
0
      if (sname) {
1117
0
    nbmin = 2;
1118
0
      } else {
1119
0
    nbmin = 2;
1120
0
      }
1121
0
  } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
1122
0
      if (sname) {
1123
0
    nbmin = 2;
1124
0
      } else {
1125
0
    nbmin = 2;
1126
0
      }
1127
0
  } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
1128
0
      if (sname) {
1129
0
    nbmin = 2;
1130
0
      } else {
1131
0
    nbmin = 2;
1132
0
      }
1133
0
  }
1134
0
    } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
1135
0
  if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
1136
0
      if (sname) {
1137
0
    nbmin = 8;
1138
0
      } else {
1139
0
    nbmin = 8;
1140
0
      }
1141
0
  } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
1142
0
      nbmin = 2;
1143
0
  }
1144
0
    } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
1145
0
  if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
1146
0
      nbmin = 2;
1147
0
  }
1148
0
    } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
1149
0
  if (*(unsigned char *)c3 == 'G') {
1150
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1151
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1152
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1153
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1154
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1155
0
        ftnlen)2, (ftnlen)2) == 0) {
1156
0
    nbmin = 2;
1157
0
      }
1158
0
  } else if (*(unsigned char *)c3 == 'M') {
1159
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1160
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1161
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1162
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1163
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1164
0
        ftnlen)2, (ftnlen)2) == 0) {
1165
0
    nbmin = 2;
1166
0
      }
1167
0
  }
1168
0
    } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
1169
0
  if (*(unsigned char *)c3 == 'G') {
1170
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1171
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1172
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1173
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1174
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1175
0
        ftnlen)2, (ftnlen)2) == 0) {
1176
0
    nbmin = 2;
1177
0
      }
1178
0
  } else if (*(unsigned char *)c3 == 'M') {
1179
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1180
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1181
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1182
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1183
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1184
0
        ftnlen)2, (ftnlen)2) == 0) {
1185
0
    nbmin = 2;
1186
0
      }
1187
0
  }
1188
0
    } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
1189
0
  nbmin = 2;
1190
0
  if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
1191
0
      nbmin = 2;
1192
0
  }
1193
0
    }
1194
0
    ret_val = nbmin;
1195
0
    return ret_val;
1196
1197
0
L70:
1198
1199
/*     ISPEC = 3:  crossover point */
1200
1201
0
    nx = 0;
1202
0
    if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
1203
0
  if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
1204
0
    ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
1205
0
    ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
1206
0
     {
1207
0
      if (sname) {
1208
0
    nx = 128;
1209
0
      } else {
1210
0
    nx = 128;
1211
0
      }
1212
0
  } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
1213
0
      if (sname) {
1214
0
    nx = 128;
1215
0
      } else {
1216
0
    nx = 128;
1217
0
      }
1218
0
  } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
1219
0
      if (sname) {
1220
0
    nx = 128;
1221
0
      } else {
1222
0
    nx = 128;
1223
0
      }
1224
0
  } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) {
1225
0
      if (sname) {
1226
0
    nx = 128;
1227
0
      } else {
1228
0
    nx = 128;
1229
0
      }
1230
0
  }
1231
0
    } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
1232
0
  if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
1233
0
      nx = 32;
1234
0
  }
1235
0
    } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
1236
0
  if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
1237
0
      nx = 32;
1238
0
  }
1239
0
    } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
1240
0
  if (*(unsigned char *)c3 == 'G') {
1241
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1242
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1243
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1244
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1245
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1246
0
        ftnlen)2, (ftnlen)2) == 0) {
1247
0
    nx = 128;
1248
0
      }
1249
0
  }
1250
0
    } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
1251
0
  if (*(unsigned char *)c3 == 'G') {
1252
0
      if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
1253
0
        (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
1254
0
        ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
1255
0
         0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
1256
0
        c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
1257
0
        ftnlen)2, (ftnlen)2) == 0) {
1258
0
    nx = 128;
1259
0
      }
1260
0
  }
1261
0
    } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
1262
0
  nx = 128;
1263
0
  if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
1264
0
      nx = 128;
1265
0
  }
1266
0
    }
1267
0
    ret_val = nx;
1268
0
    return ret_val;
1269
1270
0
L80:
1271
1272
/*     ISPEC = 4:  number of shifts (used by xHSEQR) */
1273
1274
0
    ret_val = 6;
1275
0
    return ret_val;
1276
1277
0
L90:
1278
1279
/*     ISPEC = 5:  minimum column dimension (not used) */
1280
1281
0
    ret_val = 2;
1282
0
    return ret_val;
1283
1284
0
L100:
1285
1286
/*     ISPEC = 6:  crossover point for SVD (used by xGELSS and xGESVD) */
1287
1288
0
    ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f);
1289
0
    return ret_val;
1290
1291
0
L110:
1292
1293
/*     ISPEC = 7:  number of processors (not used) */
1294
1295
0
    ret_val = 1;
1296
0
    return ret_val;
1297
1298
0
L120:
1299
1300
/*     ISPEC = 8:  crossover point for multishift (used by xHSEQR) */
1301
1302
0
    ret_val = 50;
1303
0
    return ret_val;
1304
1305
0
L130:
1306
1307
/*     ISPEC = 9:  maximum size of the subproblems at the bottom of the */
1308
/*                 computation tree in the divide-and-conquer algorithm */
1309
/*                 (used by xGELSD and xGESDD) */
1310
1311
0
    ret_val = 25;
1312
0
    return ret_val;
1313
1314
0
L140:
1315
1316
/*     ISPEC = 10: ieee and infinity NaN arithmetic can be trusted not to trap */
1317
1318
/*     ILAENV = 0 */
1319
0
    ret_val = 1;
1320
0
    if (ret_val == 1) {
1321
0
  ret_val = ieeeck_(&c__1, &c_b179, &c_b180);
1322
0
    }
1323
0
    return ret_val;
1324
1325
0
L150:
1326
1327
/*     ISPEC = 11: ieee infinity arithmetic can be trusted not to trap */
1328
1329
/*     ILAENV = 0 */
1330
0
    ret_val = 1;
1331
0
    if (ret_val == 1) {
1332
0
  ret_val = ieeeck_(&c__0, &c_b179, &c_b180);
1333
0
    }
1334
0
    return ret_val;
1335
1336
0
L160:
1337
1338
/*     12 <= ISPEC <= 17: xHSEQR or related subroutines. */
1339
1340
0
    ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4)
1341
0
      ;
1342
0
    return ret_val;
1343
1344
/*     End of ILAENV */
1345
1346
0
} /* ilaenv_ */
1347