/root/doris/contrib/openblas/lapack-netlib/SRC/ilaenv.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | 0 | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | 0 | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | 0 | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle_() continue; |
256 | | #define myceiling_(w) {ceil(w)} |
257 | | #define myhuge_(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n) |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | /* -- translated by f2c (version 20000121). |
513 | | You must link the resulting object file with the libraries: |
514 | | -lf2c -lm (in that order) |
515 | | */ |
516 | | |
517 | | |
518 | | |
519 | | /* Table of constant values */ |
520 | | |
521 | | static integer c__1 = 1; |
522 | | static real c_b179 = 0.f; |
523 | | static real c_b180 = 1.f; |
524 | | static integer c__0 = 0; |
525 | | |
526 | | /* > \brief \b ILAENV */ |
527 | | |
528 | | /* =========== DOCUMENTATION =========== */ |
529 | | |
530 | | /* Online html documentation available at */ |
531 | | /* http://www.netlib.org/lapack/explore-html/ */ |
532 | | |
533 | | /* > \htmlonly */ |
534 | | /* > Download ILAENV + dependencies */ |
535 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv. |
536 | | f"> */ |
537 | | /* > [TGZ]</a> */ |
538 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv. |
539 | | f"> */ |
540 | | /* > [ZIP]</a> */ |
541 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv. |
542 | | f"> */ |
543 | | /* > [TXT]</a> */ |
544 | | /* > \endhtmlonly */ |
545 | | |
546 | | /* Definition: */ |
547 | | /* =========== */ |
548 | | |
549 | | /* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */ |
550 | | |
551 | | /* CHARACTER*( * ) NAME, OPTS */ |
552 | | /* INTEGER ISPEC, N1, N2, N3, N4 */ |
553 | | |
554 | | |
555 | | /* > \par Purpose: */ |
556 | | /* ============= */ |
557 | | /* > */ |
558 | | /* > \verbatim */ |
559 | | /* > */ |
560 | | /* > ILAENV is called from the LAPACK routines to choose problem-dependent */ |
561 | | /* > parameters for the local environment. See ISPEC for a description of */ |
562 | | /* > the parameters. */ |
563 | | /* > */ |
564 | | /* > ILAENV returns an INTEGER */ |
565 | | /* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */ |
566 | | /* > if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value. */ |
567 | | /* > */ |
568 | | /* > This version provides a set of parameters which should give good, */ |
569 | | /* > but not optimal, performance on many of the currently available */ |
570 | | /* > computers. Users are encouraged to modify this subroutine to set */ |
571 | | /* > the tuning parameters for their particular machine using the option */ |
572 | | /* > and problem size information in the arguments. */ |
573 | | /* > */ |
574 | | /* > This routine will not function correctly if it is converted to all */ |
575 | | /* > lower case. Converting it to all upper case is allowed. */ |
576 | | /* > \endverbatim */ |
577 | | |
578 | | /* Arguments: */ |
579 | | /* ========== */ |
580 | | |
581 | | /* > \param[in] ISPEC */ |
582 | | /* > \verbatim */ |
583 | | /* > ISPEC is INTEGER */ |
584 | | /* > Specifies the parameter to be returned as the value of */ |
585 | | /* > ILAENV. */ |
586 | | /* > = 1: the optimal blocksize; if this value is 1, an unblocked */ |
587 | | /* > algorithm will give the best performance. */ |
588 | | /* > = 2: the minimum block size for which the block routine */ |
589 | | /* > should be used; if the usable block size is less than */ |
590 | | /* > this value, an unblocked routine should be used. */ |
591 | | /* > = 3: the crossover point (in a block routine, for N less */ |
592 | | /* > than this value, an unblocked routine should be used) */ |
593 | | /* > = 4: the number of shifts, used in the nonsymmetric */ |
594 | | /* > eigenvalue routines (DEPRECATED) */ |
595 | | /* > = 5: the minimum column dimension for blocking to be used; */ |
596 | | /* > rectangular blocks must have dimension at least k by m, */ |
597 | | /* > where k is given by ILAENV(2,...) and m by ILAENV(5,...) */ |
598 | | /* > = 6: the crossover point for the SVD (when reducing an m by n */ |
599 | | /* > matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */ |
600 | | /* > this value, a QR factorization is used first to reduce */ |
601 | | /* > the matrix to a triangular form.) */ |
602 | | /* > = 7: the number of processors */ |
603 | | /* > = 8: the crossover point for the multishift QR method */ |
604 | | /* > for nonsymmetric eigenvalue problems (DEPRECATED) */ |
605 | | /* > = 9: maximum size of the subproblems at the bottom of the */ |
606 | | /* > computation tree in the divide-and-conquer algorithm */ |
607 | | /* > (used by xGELSD and xGESDD) */ |
608 | | /* > =10: ieee infinity and NaN arithmetic can be trusted not to trap */ |
609 | | /* > =11: infinity arithmetic can be trusted not to trap */ |
610 | | /* > 12 <= ISPEC <= 17: */ |
611 | | /* > xHSEQR or related subroutines, */ |
612 | | /* > see IPARMQ for detailed explanation */ |
613 | | /* > \endverbatim */ |
614 | | /* > */ |
615 | | /* > \param[in] NAME */ |
616 | | /* > \verbatim */ |
617 | | /* > NAME is CHARACTER*(*) */ |
618 | | /* > The name of the calling subroutine, in either upper case or */ |
619 | | /* > lower case. */ |
620 | | /* > \endverbatim */ |
621 | | /* > */ |
622 | | /* > \param[in] OPTS */ |
623 | | /* > \verbatim */ |
624 | | /* > OPTS is CHARACTER*(*) */ |
625 | | /* > The character options to the subroutine NAME, concatenated */ |
626 | | /* > into a single character string. For example, UPLO = 'U', */ |
627 | | /* > TRANS = 'T', and DIAG = 'N' for a triangular routine would */ |
628 | | /* > be specified as OPTS = 'UTN'. */ |
629 | | /* > \endverbatim */ |
630 | | /* > */ |
631 | | /* > \param[in] N1 */ |
632 | | /* > \verbatim */ |
633 | | /* > N1 is INTEGER */ |
634 | | /* > \endverbatim */ |
635 | | /* > */ |
636 | | /* > \param[in] N2 */ |
637 | | /* > \verbatim */ |
638 | | /* > N2 is INTEGER */ |
639 | | /* > \endverbatim */ |
640 | | /* > */ |
641 | | /* > \param[in] N3 */ |
642 | | /* > \verbatim */ |
643 | | /* > N3 is INTEGER */ |
644 | | /* > \endverbatim */ |
645 | | /* > */ |
646 | | /* > \param[in] N4 */ |
647 | | /* > \verbatim */ |
648 | | /* > N4 is INTEGER */ |
649 | | /* > Problem dimensions for the subroutine NAME; these may not all */ |
650 | | /* > be required. */ |
651 | | /* > \endverbatim */ |
652 | | |
653 | | /* Authors: */ |
654 | | /* ======== */ |
655 | | |
656 | | /* > \author Univ. of Tennessee */ |
657 | | /* > \author Univ. of California Berkeley */ |
658 | | /* > \author Univ. of Colorado Denver */ |
659 | | /* > \author NAG Ltd. */ |
660 | | |
661 | | /* > \ingroup ilaenv */ |
662 | | |
663 | | /* > \par Further Details: */ |
664 | | /* ===================== */ |
665 | | /* > */ |
666 | | /* > \verbatim */ |
667 | | /* > */ |
668 | | /* > The following conventions have been used when calling ILAENV from the */ |
669 | | /* > LAPACK routines: */ |
670 | | /* > 1) OPTS is a concatenation of all of the character options to */ |
671 | | /* > subroutine NAME, in the same order that they appear in the */ |
672 | | /* > argument list for NAME, even if they are not used in determining */ |
673 | | /* > the value of the parameter specified by ISPEC. */ |
674 | | /* > 2) The problem dimensions N1, N2, N3, N4 are specified in the order */ |
675 | | /* > that they appear in the argument list for NAME. N1 is used */ |
676 | | /* > first, N2 second, and so on, and unused problem dimensions are */ |
677 | | /* > passed a value of -1. */ |
678 | | /* > 3) The parameter value returned by ILAENV is checked for validity in */ |
679 | | /* > the calling subroutine. For example, ILAENV is used to retrieve */ |
680 | | /* > the optimal blocksize for STRTRI as follows: */ |
681 | | /* > */ |
682 | | /* > NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */ |
683 | | /* > IF( NB.LE.1 ) NB = MAX( 1, N ) */ |
684 | | /* > \endverbatim */ |
685 | | /* > */ |
686 | | /* ===================================================================== */ |
687 | | integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1, |
688 | | integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen |
689 | | opts_len) |
690 | 0 | { |
691 | | /* System generated locals */ |
692 | 0 | integer ret_val, i__1, i__2, i__3; |
693 | | |
694 | | /* Local variables */ |
695 | 0 | logical twostage; |
696 | 0 | integer i__; |
697 | 0 | logical cname; |
698 | 0 | integer nbmin; |
699 | 0 | logical sname; |
700 | 0 | char c1[1], c2[2], c3[3], c4[2]; |
701 | 0 | integer ic, nb; |
702 | 0 | extern integer ieeeck_(integer *, real *, real *); |
703 | 0 | integer iz, nx; |
704 | 0 | char subnam[16]; |
705 | 0 | extern integer iparmq_(integer *, char *, char *, integer *, integer *, |
706 | 0 | integer *, integer *); |
707 | | |
708 | | |
709 | | /* -- LAPACK auxiliary routine -- */ |
710 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
711 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
712 | | |
713 | | |
714 | | /* ===================================================================== */ |
715 | | |
716 | |
|
717 | 0 | switch (*ispec) { |
718 | 0 | case 1: goto L10; |
719 | 0 | case 2: goto L10; |
720 | 0 | case 3: goto L10; |
721 | 0 | case 4: goto L80; |
722 | 0 | case 5: goto L90; |
723 | 0 | case 6: goto L100; |
724 | 0 | case 7: goto L110; |
725 | 0 | case 8: goto L120; |
726 | 0 | case 9: goto L130; |
727 | 0 | case 10: goto L140; |
728 | 0 | case 11: goto L150; |
729 | 0 | case 12: goto L160; |
730 | 0 | case 13: goto L160; |
731 | 0 | case 14: goto L160; |
732 | 0 | case 15: goto L160; |
733 | 0 | case 16: goto L160; |
734 | 0 | case 17: goto L160; |
735 | 0 | } |
736 | | |
737 | | /* Invalid value for ISPEC */ |
738 | | |
739 | 0 | ret_val = -1; |
740 | 0 | return ret_val; |
741 | | |
742 | 0 | L10: |
743 | | |
744 | | /* Convert NAME to upper case if the first character is lower case. */ |
745 | |
|
746 | 0 | ret_val = 1; |
747 | 0 | s_copy(subnam, name__, (ftnlen)16, name_len); |
748 | 0 | ic = *(unsigned char *)subnam; |
749 | 0 | iz = 'Z'; |
750 | 0 | if (iz == 90 || iz == 122) { |
751 | | |
752 | | /* ASCII character set */ |
753 | |
|
754 | 0 | if (ic >= 97 && ic <= 122) { |
755 | 0 | *(unsigned char *)subnam = (char) (ic - 32); |
756 | 0 | for (i__ = 2; i__ <= 6; ++i__) { |
757 | 0 | ic = *(unsigned char *)&subnam[i__ - 1]; |
758 | 0 | if (ic >= 97 && ic <= 122) { |
759 | 0 | *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); |
760 | 0 | } |
761 | | /* L20: */ |
762 | 0 | } |
763 | 0 | } |
764 | |
|
765 | 0 | } else if (iz == 233 || iz == 169) { |
766 | | |
767 | | /* EBCDIC character set */ |
768 | |
|
769 | 0 | if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && |
770 | 0 | ic <= 169) { |
771 | 0 | *(unsigned char *)subnam = (char) (ic + 64); |
772 | 0 | for (i__ = 2; i__ <= 6; ++i__) { |
773 | 0 | ic = *(unsigned char *)&subnam[i__ - 1]; |
774 | 0 | if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= |
775 | 0 | 162 && ic <= 169) { |
776 | 0 | *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64); |
777 | 0 | } |
778 | | /* L30: */ |
779 | 0 | } |
780 | 0 | } |
781 | |
|
782 | 0 | } else if (iz == 218 || iz == 250) { |
783 | | |
784 | | /* Prime machines: ASCII+128 */ |
785 | |
|
786 | 0 | if (ic >= 225 && ic <= 250) { |
787 | 0 | *(unsigned char *)subnam = (char) (ic - 32); |
788 | 0 | for (i__ = 2; i__ <= 6; ++i__) { |
789 | 0 | ic = *(unsigned char *)&subnam[i__ - 1]; |
790 | 0 | if (ic >= 225 && ic <= 250) { |
791 | 0 | *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); |
792 | 0 | } |
793 | | /* L40: */ |
794 | 0 | } |
795 | 0 | } |
796 | 0 | } |
797 | |
|
798 | 0 | *(unsigned char *)c1 = *(unsigned char *)subnam; |
799 | 0 | sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D'; |
800 | 0 | cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z'; |
801 | 0 | if (! (cname || sname)) { |
802 | 0 | return ret_val; |
803 | 0 | } |
804 | 0 | s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2); |
805 | 0 | s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3); |
806 | 0 | s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2); |
807 | 0 | twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[ |
808 | 0 | 10] == '2'; |
809 | |
|
810 | 0 | switch (*ispec) { |
811 | 0 | case 1: goto L50; |
812 | 0 | case 2: goto L60; |
813 | 0 | case 3: goto L70; |
814 | 0 | } |
815 | | |
816 | 0 | L50: |
817 | | |
818 | | /* ISPEC = 1: block size */ |
819 | | |
820 | | /* In these examples, separate code is provided for setting NB for */ |
821 | | /* real and complex. We assume that NB will take the same value in */ |
822 | | /* single or double precision. */ |
823 | |
|
824 | 0 | nb = 1; |
825 | |
|
826 | 0 | if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) { |
827 | | |
828 | | /* This is for *LAORHR_GETRFNP routine */ |
829 | |
|
830 | 0 | if (sname) { |
831 | 0 | nb = 32; |
832 | 0 | } else { |
833 | 0 | nb = 32; |
834 | 0 | } |
835 | 0 | } else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { |
836 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
837 | 0 | if (sname) { |
838 | 0 | nb = 64; |
839 | 0 | } else { |
840 | 0 | nb = 64; |
841 | 0 | } |
842 | 0 | } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, |
843 | 0 | "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen) |
844 | 0 | 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) |
845 | 0 | == 0) { |
846 | 0 | if (sname) { |
847 | 0 | nb = 32; |
848 | 0 | } else { |
849 | 0 | nb = 32; |
850 | 0 | } |
851 | 0 | } else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) { |
852 | 0 | if (*n3 == 1) { |
853 | 0 | if (sname) { |
854 | | /* M*N */ |
855 | 0 | if (*n1 * *n2 <= 131072 || *n1 <= 8192) { |
856 | 0 | nb = *n1; |
857 | 0 | } else { |
858 | 0 | nb = 32768 / *n2; |
859 | 0 | } |
860 | 0 | } else { |
861 | 0 | if (*n1 * *n2 <= 131072 || *n1 <= 8192) { |
862 | 0 | nb = *n1; |
863 | 0 | } else { |
864 | 0 | nb = 32768 / *n2; |
865 | 0 | } |
866 | 0 | } |
867 | 0 | } else { |
868 | 0 | if (sname) { |
869 | 0 | nb = 1; |
870 | 0 | } else { |
871 | 0 | nb = 1; |
872 | 0 | } |
873 | 0 | } |
874 | 0 | } else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) { |
875 | 0 | if (*n3 == 2) { |
876 | 0 | if (sname) { |
877 | | /* M*N */ |
878 | 0 | if (*n1 * *n2 <= 131072 || *n1 <= 8192) { |
879 | 0 | nb = *n1; |
880 | 0 | } else { |
881 | 0 | nb = 32768 / *n2; |
882 | 0 | } |
883 | 0 | } else { |
884 | 0 | if (*n1 * *n2 <= 131072 || *n1 <= 8192) { |
885 | 0 | nb = *n1; |
886 | 0 | } else { |
887 | 0 | nb = 32768 / *n2; |
888 | 0 | } |
889 | 0 | } |
890 | 0 | } else { |
891 | 0 | if (sname) { |
892 | 0 | nb = 1; |
893 | 0 | } else { |
894 | 0 | nb = 1; |
895 | 0 | } |
896 | 0 | } |
897 | 0 | } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { |
898 | 0 | if (sname) { |
899 | 0 | nb = 32; |
900 | 0 | } else { |
901 | 0 | nb = 32; |
902 | 0 | } |
903 | 0 | } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { |
904 | 0 | if (sname) { |
905 | 0 | nb = 32; |
906 | 0 | } else { |
907 | 0 | nb = 32; |
908 | 0 | } |
909 | 0 | } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { |
910 | 0 | if (sname) { |
911 | 0 | nb = 64; |
912 | 0 | } else { |
913 | 0 | nb = 64; |
914 | 0 | } |
915 | 0 | } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) { |
916 | 0 | if (sname) { |
917 | 0 | nb = 32; |
918 | 0 | } else { |
919 | 0 | nb = 32; |
920 | 0 | } |
921 | 0 | } |
922 | 0 | } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) { |
923 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
924 | 0 | if (sname) { |
925 | 0 | nb = 64; |
926 | 0 | } else { |
927 | 0 | nb = 64; |
928 | 0 | } |
929 | 0 | } |
930 | 0 | } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { |
931 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
932 | 0 | if (sname) { |
933 | 0 | if (twostage) { |
934 | 0 | nb = 192; |
935 | 0 | } else { |
936 | 0 | nb = 64; |
937 | 0 | } |
938 | 0 | } else { |
939 | 0 | if (twostage) { |
940 | 0 | nb = 192; |
941 | 0 | } else { |
942 | 0 | nb = 64; |
943 | 0 | } |
944 | 0 | } |
945 | 0 | } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
946 | 0 | nb = 32; |
947 | 0 | } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { |
948 | 0 | nb = 64; |
949 | 0 | } |
950 | 0 | } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { |
951 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
952 | 0 | if (twostage) { |
953 | 0 | nb = 192; |
954 | 0 | } else { |
955 | 0 | nb = 64; |
956 | 0 | } |
957 | 0 | } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
958 | 0 | nb = 32; |
959 | 0 | } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { |
960 | 0 | nb = 64; |
961 | 0 | } |
962 | 0 | } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { |
963 | 0 | if (*(unsigned char *)c3 == 'G') { |
964 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
965 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
966 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
967 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
968 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
969 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
970 | 0 | nb = 32; |
971 | 0 | } |
972 | 0 | } else if (*(unsigned char *)c3 == 'M') { |
973 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
974 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
975 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
976 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
977 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
978 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
979 | 0 | nb = 32; |
980 | 0 | } |
981 | 0 | } |
982 | 0 | } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { |
983 | 0 | if (*(unsigned char *)c3 == 'G') { |
984 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
985 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
986 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
987 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
988 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
989 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
990 | 0 | nb = 32; |
991 | 0 | } |
992 | 0 | } else if (*(unsigned char *)c3 == 'M') { |
993 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
994 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
995 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
996 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
997 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
998 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
999 | 0 | nb = 32; |
1000 | 0 | } |
1001 | 0 | } |
1002 | 0 | } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) { |
1003 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
1004 | 0 | if (sname) { |
1005 | 0 | if (*n4 <= 64) { |
1006 | 0 | nb = 1; |
1007 | 0 | } else { |
1008 | 0 | nb = 32; |
1009 | 0 | } |
1010 | 0 | } else { |
1011 | 0 | if (*n4 <= 64) { |
1012 | 0 | nb = 1; |
1013 | 0 | } else { |
1014 | 0 | nb = 32; |
1015 | 0 | } |
1016 | 0 | } |
1017 | 0 | } |
1018 | 0 | } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) { |
1019 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
1020 | 0 | if (sname) { |
1021 | 0 | if (*n2 <= 64) { |
1022 | 0 | nb = 1; |
1023 | 0 | } else { |
1024 | 0 | nb = 32; |
1025 | 0 | } |
1026 | 0 | } else { |
1027 | 0 | if (*n2 <= 64) { |
1028 | 0 | nb = 1; |
1029 | 0 | } else { |
1030 | 0 | nb = 32; |
1031 | 0 | } |
1032 | 0 | } |
1033 | 0 | } |
1034 | 0 | } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) { |
1035 | 0 | if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { |
1036 | 0 | if (sname) { |
1037 | 0 | nb = 64; |
1038 | 0 | } else { |
1039 | 0 | nb = 64; |
1040 | 0 | } |
1041 | 0 | } else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) { |
1042 | 0 | if (sname) { |
1043 | 0 | nb = 64; |
1044 | 0 | } else { |
1045 | 0 | nb = 64; |
1046 | 0 | } |
1047 | 0 | } else if (s_cmp(c3, "SYL", (ftnlen)3, (ftnlen)3) == 0) { |
1048 | | /* The upper bound is to prevent overly aggressive scaling. */ |
1049 | 0 | if (sname) { |
1050 | | /* Computing MIN */ |
1051 | | /* Computing MAX */ |
1052 | 0 | i__2 = 48, i__3 = (f2cmin(*n1,*n2) << 4) / 100; |
1053 | 0 | i__1 = f2cmax(i__2,i__3); |
1054 | 0 | nb = f2cmin(i__1,240); |
1055 | 0 | } else { |
1056 | | /* Computing MIN */ |
1057 | | /* Computing MAX */ |
1058 | 0 | i__2 = 24, i__3 = (f2cmin(*n1,*n2) << 3) / 100; |
1059 | 0 | i__1 = f2cmax(i__2,i__3); |
1060 | 0 | nb = f2cmin(i__1,80); |
1061 | 0 | } |
1062 | 0 | } |
1063 | 0 | } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) { |
1064 | 0 | if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) { |
1065 | 0 | if (sname) { |
1066 | 0 | nb = 64; |
1067 | 0 | } else { |
1068 | 0 | nb = 64; |
1069 | 0 | } |
1070 | 0 | } else if (s_cmp(c3, "TRS", (ftnlen)3, (ftnlen)3) == 0) { |
1071 | 0 | if (sname) { |
1072 | 0 | nb = 32; |
1073 | 0 | } else { |
1074 | 0 | nb = 32; |
1075 | 0 | } |
1076 | 0 | } |
1077 | 0 | } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) { |
1078 | 0 | if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) { |
1079 | 0 | nb = 1; |
1080 | 0 | } |
1081 | 0 | } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { |
1082 | 0 | nb = 32; |
1083 | 0 | if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { |
1084 | 0 | if (sname) { |
1085 | 0 | nb = 32; |
1086 | 0 | } else { |
1087 | 0 | nb = 32; |
1088 | 0 | } |
1089 | 0 | } |
1090 | 0 | } |
1091 | 0 | ret_val = nb; |
1092 | 0 | return ret_val; |
1093 | | |
1094 | 0 | L60: |
1095 | | |
1096 | | /* ISPEC = 2: minimum block size */ |
1097 | |
|
1098 | 0 | nbmin = 2; |
1099 | 0 | if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { |
1100 | 0 | if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( |
1101 | 0 | ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( |
1102 | 0 | ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) |
1103 | 0 | { |
1104 | 0 | if (sname) { |
1105 | 0 | nbmin = 2; |
1106 | 0 | } else { |
1107 | 0 | nbmin = 2; |
1108 | 0 | } |
1109 | 0 | } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { |
1110 | 0 | if (sname) { |
1111 | 0 | nbmin = 2; |
1112 | 0 | } else { |
1113 | 0 | nbmin = 2; |
1114 | 0 | } |
1115 | 0 | } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { |
1116 | 0 | if (sname) { |
1117 | 0 | nbmin = 2; |
1118 | 0 | } else { |
1119 | 0 | nbmin = 2; |
1120 | 0 | } |
1121 | 0 | } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { |
1122 | 0 | if (sname) { |
1123 | 0 | nbmin = 2; |
1124 | 0 | } else { |
1125 | 0 | nbmin = 2; |
1126 | 0 | } |
1127 | 0 | } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) { |
1128 | 0 | if (sname) { |
1129 | 0 | nbmin = 2; |
1130 | 0 | } else { |
1131 | 0 | nbmin = 2; |
1132 | 0 | } |
1133 | 0 | } |
1134 | 0 | } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { |
1135 | 0 | if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { |
1136 | 0 | if (sname) { |
1137 | 0 | nbmin = 8; |
1138 | 0 | } else { |
1139 | 0 | nbmin = 8; |
1140 | 0 | } |
1141 | 0 | } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
1142 | 0 | nbmin = 2; |
1143 | 0 | } |
1144 | 0 | } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { |
1145 | 0 | if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
1146 | 0 | nbmin = 2; |
1147 | 0 | } |
1148 | 0 | } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { |
1149 | 0 | if (*(unsigned char *)c3 == 'G') { |
1150 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1151 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1152 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1153 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1154 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1155 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1156 | 0 | nbmin = 2; |
1157 | 0 | } |
1158 | 0 | } else if (*(unsigned char *)c3 == 'M') { |
1159 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1160 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1161 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1162 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1163 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1164 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1165 | 0 | nbmin = 2; |
1166 | 0 | } |
1167 | 0 | } |
1168 | 0 | } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { |
1169 | 0 | if (*(unsigned char *)c3 == 'G') { |
1170 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1171 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1172 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1173 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1174 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1175 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1176 | 0 | nbmin = 2; |
1177 | 0 | } |
1178 | 0 | } else if (*(unsigned char *)c3 == 'M') { |
1179 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1180 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1181 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1182 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1183 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1184 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1185 | 0 | nbmin = 2; |
1186 | 0 | } |
1187 | 0 | } |
1188 | 0 | } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { |
1189 | 0 | nbmin = 2; |
1190 | 0 | if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { |
1191 | 0 | nbmin = 2; |
1192 | 0 | } |
1193 | 0 | } |
1194 | 0 | ret_val = nbmin; |
1195 | 0 | return ret_val; |
1196 | | |
1197 | 0 | L70: |
1198 | | |
1199 | | /* ISPEC = 3: crossover point */ |
1200 | |
|
1201 | 0 | nx = 0; |
1202 | 0 | if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { |
1203 | 0 | if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( |
1204 | 0 | ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( |
1205 | 0 | ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) |
1206 | 0 | { |
1207 | 0 | if (sname) { |
1208 | 0 | nx = 128; |
1209 | 0 | } else { |
1210 | 0 | nx = 128; |
1211 | 0 | } |
1212 | 0 | } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { |
1213 | 0 | if (sname) { |
1214 | 0 | nx = 128; |
1215 | 0 | } else { |
1216 | 0 | nx = 128; |
1217 | 0 | } |
1218 | 0 | } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { |
1219 | 0 | if (sname) { |
1220 | 0 | nx = 128; |
1221 | 0 | } else { |
1222 | 0 | nx = 128; |
1223 | 0 | } |
1224 | 0 | } else if (s_cmp(subnam + 3, "QP3RK", (ftnlen)4, (ftnlen)5) == 0) { |
1225 | 0 | if (sname) { |
1226 | 0 | nx = 128; |
1227 | 0 | } else { |
1228 | 0 | nx = 128; |
1229 | 0 | } |
1230 | 0 | } |
1231 | 0 | } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { |
1232 | 0 | if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
1233 | 0 | nx = 32; |
1234 | 0 | } |
1235 | 0 | } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { |
1236 | 0 | if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { |
1237 | 0 | nx = 32; |
1238 | 0 | } |
1239 | 0 | } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { |
1240 | 0 | if (*(unsigned char *)c3 == 'G') { |
1241 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1242 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1243 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1244 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1245 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1246 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1247 | 0 | nx = 128; |
1248 | 0 | } |
1249 | 0 | } |
1250 | 0 | } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { |
1251 | 0 | if (*(unsigned char *)c3 == 'G') { |
1252 | 0 | if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", |
1253 | 0 | (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( |
1254 | 0 | ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == |
1255 | 0 | 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( |
1256 | 0 | c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( |
1257 | 0 | ftnlen)2, (ftnlen)2) == 0) { |
1258 | 0 | nx = 128; |
1259 | 0 | } |
1260 | 0 | } |
1261 | 0 | } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { |
1262 | 0 | nx = 128; |
1263 | 0 | if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { |
1264 | 0 | nx = 128; |
1265 | 0 | } |
1266 | 0 | } |
1267 | 0 | ret_val = nx; |
1268 | 0 | return ret_val; |
1269 | | |
1270 | 0 | L80: |
1271 | | |
1272 | | /* ISPEC = 4: number of shifts (used by xHSEQR) */ |
1273 | |
|
1274 | 0 | ret_val = 6; |
1275 | 0 | return ret_val; |
1276 | | |
1277 | 0 | L90: |
1278 | | |
1279 | | /* ISPEC = 5: minimum column dimension (not used) */ |
1280 | |
|
1281 | 0 | ret_val = 2; |
1282 | 0 | return ret_val; |
1283 | | |
1284 | 0 | L100: |
1285 | | |
1286 | | /* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */ |
1287 | |
|
1288 | 0 | ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f); |
1289 | 0 | return ret_val; |
1290 | | |
1291 | 0 | L110: |
1292 | | |
1293 | | /* ISPEC = 7: number of processors (not used) */ |
1294 | |
|
1295 | 0 | ret_val = 1; |
1296 | 0 | return ret_val; |
1297 | | |
1298 | 0 | L120: |
1299 | | |
1300 | | /* ISPEC = 8: crossover point for multishift (used by xHSEQR) */ |
1301 | |
|
1302 | 0 | ret_val = 50; |
1303 | 0 | return ret_val; |
1304 | | |
1305 | 0 | L130: |
1306 | | |
1307 | | /* ISPEC = 9: maximum size of the subproblems at the bottom of the */ |
1308 | | /* computation tree in the divide-and-conquer algorithm */ |
1309 | | /* (used by xGELSD and xGESDD) */ |
1310 | |
|
1311 | 0 | ret_val = 25; |
1312 | 0 | return ret_val; |
1313 | | |
1314 | 0 | L140: |
1315 | | |
1316 | | /* ISPEC = 10: ieee and infinity NaN arithmetic can be trusted not to trap */ |
1317 | | |
1318 | | /* ILAENV = 0 */ |
1319 | 0 | ret_val = 1; |
1320 | 0 | if (ret_val == 1) { |
1321 | 0 | ret_val = ieeeck_(&c__1, &c_b179, &c_b180); |
1322 | 0 | } |
1323 | 0 | return ret_val; |
1324 | | |
1325 | 0 | L150: |
1326 | | |
1327 | | /* ISPEC = 11: ieee infinity arithmetic can be trusted not to trap */ |
1328 | | |
1329 | | /* ILAENV = 0 */ |
1330 | 0 | ret_val = 1; |
1331 | 0 | if (ret_val == 1) { |
1332 | 0 | ret_val = ieeeck_(&c__0, &c_b179, &c_b180); |
1333 | 0 | } |
1334 | 0 | return ret_val; |
1335 | | |
1336 | 0 | L160: |
1337 | | |
1338 | | /* 12 <= ISPEC <= 17: xHSEQR or related subroutines. */ |
1339 | |
|
1340 | 0 | ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4) |
1341 | 0 | ; |
1342 | 0 | return ret_val; |
1343 | | |
1344 | | /* End of ILAENV */ |
1345 | |
|
1346 | 0 | } /* ilaenv_ */ |
1347 | | |