Coverage Report

Created: 2024-11-21 14:31

/root/doris/be/src/runtime/decimalv2_value.cpp
Line
Count
Source (jump to first uncovered line)
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
18
#include "runtime/decimalv2_value.h"
19
20
#include <fmt/format.h>
21
22
#include <cmath>
23
#include <cstring>
24
#include <iostream>
25
#include <utility>
26
27
#include "util/string_parser.hpp"
28
29
namespace doris {
30
31
const int128_t DecimalV2Value::MAX_DECIMAL_VALUE;
32
33
1.12k
static inline int128_t abs(const int128_t& x) {
34
1.12k
    return (x < 0) ? -x : x;
35
1.12k
}
36
37
// x>=0 && y>=0
38
4
static int do_add(int128_t x, int128_t y, int128_t* result) {
39
4
    int error = E_DEC_OK;
40
4
    if (DecimalV2Value::MAX_DECIMAL_VALUE - x >= y) {
41
4
        *result = x + y;
42
4
    } else {
43
0
        *result = DecimalV2Value::MAX_DECIMAL_VALUE;
44
0
        error = E_DEC_OVERFLOW;
45
0
    }
46
4
    return error;
47
4
}
48
49
// x>=0 && y>=0
50
2
static int do_sub(int128_t x, int128_t y, int128_t* result) {
51
2
    int error = E_DEC_OK;
52
2
    *result = x - y;
53
2
    return error;
54
2
}
55
56
// clear leading zero for __int128
57
2
static int clz128(unsigned __int128 v) {
58
2
    if (v == 0) return sizeof(__int128);
59
2
    unsigned __int128 shifted = v >> 64;
60
2
    if (shifted != 0) {
61
0
        return __builtin_clzll(shifted);
62
2
    } else {
63
2
        return __builtin_clzll(v) + 64;
64
2
    }
65
2
}
66
67
// x>0 && y>0
68
1
static int do_mul(int128_t x, int128_t y, int128_t* result) {
69
1
    int error = E_DEC_OK;
70
1
    int128_t max128 = ~(static_cast<int128_t>(1ll) << 127);
71
72
1
    int leading_zero_bits = clz128(x) + clz128(y);
73
1
    if (leading_zero_bits < sizeof(int128_t) || max128 / x < y) {
74
0
        *result = DecimalV2Value::MAX_DECIMAL_VALUE;
75
0
        error = E_DEC_OVERFLOW;
76
0
        return error;
77
0
    }
78
79
1
    int128_t product = x * y;
80
1
    *result = product / DecimalV2Value::ONE_BILLION;
81
82
    // overflow
83
1
    if (*result > DecimalV2Value::MAX_DECIMAL_VALUE) {
84
0
        *result = DecimalV2Value::MAX_DECIMAL_VALUE;
85
0
        error = E_DEC_OVERFLOW;
86
0
        return error;
87
0
    }
88
89
    // truncate with round
90
1
    int128_t remainder = product % DecimalV2Value::ONE_BILLION;
91
1
    if (remainder != 0) {
92
0
        error = E_DEC_TRUNCATED;
93
0
        if (remainder >= (DecimalV2Value::ONE_BILLION >> 1)) {
94
0
            *result += 1;
95
0
        }
96
0
    }
97
98
1
    return error;
99
1
}
100
101
// x>0 && y>0
102
2
static int do_div(int128_t x, int128_t y, int128_t* result) {
103
2
    int error = E_DEC_OK;
104
2
    int128_t dividend = x * DecimalV2Value::ONE_BILLION;
105
2
    *result = dividend / y;
106
107
    // overflow
108
2
    int128_t remainder = dividend % y;
109
2
    if (remainder != 0) {
110
0
        error = E_DEC_TRUNCATED;
111
0
        if (remainder >= (y >> 1)) {
112
0
            *result += 1;
113
0
        }
114
0
    }
115
116
2
    return error;
117
2
}
118
119
// x>0 && y>0
120
0
static int do_mod(int128_t x, int128_t y, int128_t* result) {
121
0
    int error = E_DEC_OK;
122
0
    *result = x % y;
123
0
    return error;
124
0
}
125
126
3
DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2) {
127
3
    int128_t result;
128
3
    int128_t x = v1.value();
129
3
    int128_t y = v2.value();
130
3
    if (x == 0) {
131
0
        result = y;
132
3
    } else if (y == 0) {
133
0
        result = x;
134
3
    } else if (x > 0) {
135
2
        if (y > 0) {
136
2
            do_add(x, y, &result);
137
2
        } else {
138
0
            do_sub(x, -y, &result);
139
0
        }
140
2
    } else { // x < 0
141
1
        if (y > 0) {
142
1
            do_sub(y, -x, &result);
143
1
        } else {
144
0
            do_add(-x, -y, &result);
145
0
            result = -result;
146
0
        }
147
1
    }
148
149
3
    return DecimalV2Value(result);
150
3
}
151
152
4
DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2) {
153
4
    int128_t result;
154
4
    int128_t x = v1.value();
155
4
    int128_t y = v2.value();
156
4
    if (x == 0) {
157
1
        result = -y;
158
3
    } else if (y == 0) {
159
0
        result = x;
160
3
    } else if (x > 0) {
161
2
        if (y > 0) {
162
1
            do_sub(x, y, &result);
163
1
        } else {
164
1
            do_add(x, -y, &result);
165
1
        }
166
2
    } else { // x < 0
167
1
        if (y > 0) {
168
1
            do_add(-x, y, &result);
169
1
            result = -result;
170
1
        } else {
171
0
            do_sub(-x, -y, &result);
172
0
            result = -result;
173
0
        }
174
1
    }
175
176
4
    return DecimalV2Value(result);
177
4
}
178
179
2
DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2) {
180
2
    int128_t result;
181
2
    int128_t x = v1.value();
182
2
    int128_t y = v2.value();
183
184
2
    if (x == 0 || y == 0) return DecimalV2Value(0);
185
186
1
    bool is_positive = (x > 0 && y > 0) || (x < 0 && y < 0);
187
188
1
    do_mul(abs(x), abs(y), &result);
189
190
1
    if (!is_positive) result = -result;
191
192
1
    return DecimalV2Value(result);
193
2
}
194
195
2
DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2) {
196
2
    int128_t result;
197
2
    int128_t x = v1.value();
198
2
    int128_t y = v2.value();
199
200
2
    DCHECK(y != 0);
201
2
    if (x == 0 || y == 0) return DecimalV2Value(0);
202
2
    bool is_positive = (x > 0 && y > 0) || (x < 0 && y < 0);
203
2
    do_div(abs(x), abs(y), &result);
204
205
2
    if (!is_positive) result = -result;
206
207
2
    return DecimalV2Value(result);
208
2
}
209
210
0
DecimalV2Value operator%(const DecimalV2Value& v1, const DecimalV2Value& v2) {
211
0
    int128_t result;
212
0
    int128_t x = v1.value();
213
0
    int128_t y = v2.value();
214
215
0
    DCHECK(y != 0);
216
0
    if (x == 0 || y == 0) return DecimalV2Value(0);
217
218
0
    do_mod(x, y, &result);
219
220
0
    return DecimalV2Value(result);
221
0
}
222
223
0
std::ostream& operator<<(std::ostream& os, DecimalV2Value const& decimal_value) {
224
0
    return os << decimal_value.to_string();
225
0
}
226
227
0
std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value) {
228
0
    std::string str_buff;
229
0
    ism >> str_buff;
230
0
    decimal_value.parse_from_str(str_buff.c_str(), str_buff.size());
231
0
    return ism;
232
0
}
233
234
1
DecimalV2Value operator-(const DecimalV2Value& v) {
235
1
    return DecimalV2Value(-v.value());
236
1
}
237
238
1
DecimalV2Value& DecimalV2Value::operator+=(const DecimalV2Value& other) {
239
1
    *this = *this + other;
240
1
    return *this;
241
1
}
242
243
// Solve a one-dimensional quadratic equation: ax2 + bx + c =0
244
// Reference: https://gist.github.com/miloyip/1fcc1859c94d33a01957cf41a7c25fdf
245
// Reference: https://www.zhihu.com/question/51381686
246
static std::pair<double, double> quadratic_equation_naive(__uint128_t a, __uint128_t b,
247
0
                                                          __uint128_t c) {
248
0
    __uint128_t dis = b * b - 4 * a * c;
249
    // assert(dis >= 0);
250
    // not handling complex root
251
0
    double sqrtdis = std::sqrt(static_cast<double>(dis));
252
0
    double a_r = static_cast<double>(a);
253
0
    double b_r = static_cast<double>(b);
254
0
    double x1 = (-b_r - sqrtdis) / (a_r + a_r);
255
0
    double x2 = (-b_r + sqrtdis) / (a_r + a_r);
256
0
    return std::make_pair(x1, x2);
257
0
}
258
259
0
static inline double sgn(double x) {
260
0
    if (x > 0)
261
0
        return 1;
262
0
    else if (x < 0)
263
0
        return -1;
264
0
    else
265
0
        return 0;
266
0
}
267
268
// In the above quadratic_equation_naive solution process, we found that -b + sqrtdis will
269
// get the correct answer, and -b-sqrtdis will get the wrong answer. For two close floating-point
270
// decimals a, b, a-b will cause larger errors than a + b, which is called catastrophic cancellation.
271
// Both -b and sqrtdis are positive numbers. We can first find the roots brought by -b + sqrtdis,
272
// and then use the product of the two roots of the quadratic equation in one unknown to find another root
273
0
static std::pair<double, double> quadratic_equation_better(int128_t a, int128_t b, int128_t c) {
274
0
    if (b == 0) return quadratic_equation_naive(a, b, c);
275
0
    int128_t dis = b * b - 4 * a * c;
276
    // assert(dis >= 0);
277
    // not handling complex root
278
0
    if (dis < 0) return std::make_pair(0, 0);
279
280
    // There may be a loss of precision, but here is used to find the mantissa of the square root.
281
    // The current SCALE=9, which is less than the 15 significant digits of the double type,
282
    // so theoretically the loss of precision will not be reflected in the result.
283
0
    double sqrtdis = std::sqrt(static_cast<double>(dis));
284
0
    double a_r = static_cast<double>(a);
285
0
    double b_r = static_cast<double>(b);
286
0
    double c_r = static_cast<double>(c);
287
    // Here b comes from an unsigned integer, and sgn(b) is always 1,
288
    // which is only used to preserve the complete algorithm
289
0
    double x1 = (-b_r - sgn(b_r) * sqrtdis) / (a_r + a_r);
290
0
    double x2 = c_r / (a_r * x1);
291
0
    return std::make_pair(x1, x2);
292
0
}
293
294
// Large integer square roots, returns the integer part.
295
// The time complexity is lower than the traditional dichotomy
296
// and Newton iteration method, and the number of iterations is fixed.
297
// in real-time systems, functions that execute an unpredictable number of iterations
298
// will make the total time per task unpredictable, and introduce jitter
299
// Reference: https://www.embedded.com/integer-square-roots/
300
// Reference: https://link.zhihu.com/?target=https%3A//gist.github.com/miloyip/69663b78b26afa0dcc260382a6034b1a
301
// Reference: https://www.zhihu.com/question/35122102
302
0
static std::pair<__uint128_t, __uint128_t> sqrt_integer(__uint128_t n) {
303
0
    __uint128_t remainder = 0, root = 0;
304
0
    for (size_t i = 0; i < 64; i++) {
305
0
        root <<= 1;
306
0
        ++root;
307
0
        remainder <<= 2;
308
0
        remainder |= n >> 126;
309
0
        n <<= 2; // Extract 2 MSB from n
310
0
        if (root <= remainder) {
311
0
            remainder -= root;
312
0
            ++root;
313
0
        } else {
314
0
            --root;
315
0
        }
316
0
    }
317
0
    return std::make_pair(root >>= 1, remainder);
318
0
}
319
320
// According to the integer part and the remainder of the square root,
321
// Use one-dimensional quadratic equation to solve the fractional part of the square root
322
0
static double sqrt_fractional(int128_t sqrt_int, int128_t remainder) {
323
0
    std::pair<double, double> p = quadratic_equation_better(1, 2 * sqrt_int, -remainder);
324
0
    if ((0 < p.first) && (p.first < 1)) return p.first;
325
0
    if ((0 < p.second) && (p.second < 1)) return p.second;
326
0
    return 0;
327
0
}
328
329
const int128_t DecimalV2Value::SQRT_MOLECULAR_MAGNIFICATION = get_scale_base(PRECISION / 2);
330
const int128_t DecimalV2Value::SQRT_DENOMINATOR =
331
        int128_t(std::sqrt(ONE_BILLION) * get_scale_base(PRECISION / 2 - SCALE));
332
333
0
DecimalV2Value DecimalV2Value::sqrt(const DecimalV2Value& v) {
334
0
    int128_t x = v.value();
335
0
    std::pair<__uint128_t, __uint128_t> sqrt_integer_ret;
336
0
    bool is_negative = (x < 0);
337
0
    if (x == 0) {
338
0
        return DecimalV2Value(0);
339
0
    }
340
0
    sqrt_integer_ret = sqrt_integer(abs(x));
341
0
    int128_t integer_root = static_cast<int128_t>(sqrt_integer_ret.first);
342
0
    int128_t integer_remainder = static_cast<int128_t>(sqrt_integer_ret.second);
343
0
    double fractional = sqrt_fractional(integer_root, integer_remainder);
344
345
    // Multiplying by SQRT_MOLECULAR_MAGNIFICATION here will not overflow,
346
    // because integer_root can be up to 64 bits.
347
0
    int128_t molecular_integer = integer_root * SQRT_MOLECULAR_MAGNIFICATION;
348
0
    int128_t molecular_fractional =
349
0
            static_cast<int128_t>(fractional * SQRT_MOLECULAR_MAGNIFICATION);
350
0
    int128_t ret = (molecular_integer + molecular_fractional) / SQRT_DENOMINATOR;
351
0
    if (is_negative) ret = -ret;
352
0
    return DecimalV2Value(ret);
353
0
}
354
355
63
int DecimalV2Value::parse_from_str(const char* decimal_str, int32_t length) {
356
63
    int32_t error = E_DEC_OK;
357
63
    StringParser::ParseResult result = StringParser::PARSE_SUCCESS;
358
359
63
    _value = StringParser::string_to_decimal<TYPE_DECIMALV2>(decimal_str, length, PRECISION, SCALE,
360
63
                                                             &result);
361
63
    if (!config::allow_invalid_decimalv2_literal && result != StringParser::PARSE_SUCCESS) {
362
2
        error = E_DEC_BAD_NUM;
363
61
    } else if (config::allow_invalid_decimalv2_literal && result == StringParser::PARSE_FAILURE) {
364
0
        error = E_DEC_BAD_NUM;
365
0
    }
366
63
    return error;
367
63
}
368
369
1.08k
std::string DecimalV2Value::to_string(int scale) const {
370
1.08k
    int64_t int_val = int_value();
371
1.08k
    int32_t frac_val = abs(frac_value());
372
1.08k
    if (scale < 0 || scale > SCALE) {
373
69
        if (frac_val == 0) {
374
21
            scale = 0;
375
48
        } else {
376
48
            scale = SCALE;
377
332
            while (frac_val != 0 && frac_val % 10 == 0) {
378
284
                frac_val = frac_val / 10;
379
284
                scale--;
380
284
            }
381
48
        }
382
1.01k
    } else {
383
        // roundup to FIX 17191
384
1.01k
        if (scale < SCALE) {
385
22
            int32_t frac_val_tmp = frac_val / SCALE_TRIM_ARRAY[scale];
386
22
            if (frac_val / SCALE_TRIM_ARRAY[scale + 1] % 10 >= 5) {
387
2
                frac_val_tmp++;
388
2
                if (frac_val_tmp >= SCALE_TRIM_ARRAY[9 - scale]) {
389
2
                    frac_val_tmp = 0;
390
2
                    _value >= 0 ? int_val++ : int_val--;
391
2
                }
392
2
            }
393
22
            frac_val = frac_val_tmp;
394
22
        }
395
1.01k
    }
396
1.08k
    auto f_int = fmt::format_int(int_val);
397
1.08k
    if (scale == 0) {
398
21
        return f_int.str();
399
21
    }
400
1.06k
    std::string str;
401
1.06k
    if (_value < 0 && int_val == 0 && frac_val != 0) {
402
4
        str.reserve(f_int.size() + scale + 2);
403
4
        str.push_back('-');
404
1.05k
    } else {
405
1.05k
        str.reserve(f_int.size() + scale + 1);
406
1.05k
    }
407
1.06k
    str.append(f_int.data(), f_int.size());
408
1.06k
    str.push_back('.');
409
1.06k
    if (frac_val == 0) {
410
110
        str.append(scale, '0');
411
951
    } else {
412
951
        auto f_frac = fmt::format_int(frac_val);
413
951
        if (f_frac.size() < scale) {
414
26
            str.append(scale - f_frac.size(), '0');
415
26
        }
416
951
        str.append(f_frac.data(), f_frac.size());
417
951
    }
418
1.06k
    return str;
419
1.08k
}
420
421
17
int32_t DecimalV2Value::to_buffer(char* buffer, int scale) const {
422
17
    int64_t int_val = int_value();
423
17
    int32_t frac_val = abs(frac_value());
424
17
    if (scale < 0 || scale > SCALE) {
425
9
        if (frac_val == 0) {
426
4
            scale = 0;
427
5
        } else {
428
5
            scale = SCALE;
429
25
            while (frac_val != 0 && frac_val % 10 == 0) {
430
20
                frac_val = frac_val / 10;
431
20
                scale--;
432
20
            }
433
5
        }
434
9
    } else {
435
        // roundup to FIX 17191
436
8
        if (scale < SCALE) {
437
8
            int32_t frac_val_tmp = frac_val / SCALE_TRIM_ARRAY[scale];
438
8
            if (frac_val / SCALE_TRIM_ARRAY[scale + 1] % 10 >= 5) {
439
2
                frac_val_tmp++;
440
2
                if (frac_val_tmp >= SCALE_TRIM_ARRAY[9 - scale]) {
441
2
                    frac_val_tmp = 0;
442
2
                    _value >= 0 ? int_val++ : int_val--;
443
2
                }
444
2
            }
445
8
            frac_val = frac_val_tmp;
446
8
        }
447
8
    }
448
17
    int extra_sign_size = 0;
449
17
    if (_value < 0 && int_val == 0 && frac_val != 0) {
450
2
        *buffer++ = '-';
451
2
        extra_sign_size = 1;
452
2
    }
453
17
    auto f_int = fmt::format_int(int_val);
454
17
    memcpy(buffer, f_int.data(), f_int.size());
455
17
    if (scale == 0) {
456
4
        return f_int.size();
457
4
    }
458
13
    *(buffer + f_int.size()) = '.';
459
13
    buffer = buffer + f_int.size() + 1;
460
13
    if (frac_val == 0) {
461
5
        memset(buffer, '0', scale);
462
8
    } else {
463
8
        auto f_frac = fmt::format_int(frac_val);
464
8
        if (f_frac.size() < scale) {
465
2
            memset(buffer, '0', scale - f_frac.size());
466
2
            buffer = buffer + scale - f_frac.size();
467
2
        }
468
8
        memcpy(buffer, f_frac.data(), f_frac.size());
469
8
    }
470
13
    return f_int.size() + scale + 1 + extra_sign_size;
471
17
}
472
473
66
std::string DecimalV2Value::to_string() const {
474
66
    return to_string(-1);
475
66
}
476
477
// NOTE: only change abstract value, do not change sign
478
2
void DecimalV2Value::to_max_decimal(int32_t precision, int32_t scale) {
479
2
    static const int64_t INT_MAX_VALUE[PRECISION] = {9ll,
480
2
                                                     99ll,
481
2
                                                     999ll,
482
2
                                                     9999ll,
483
2
                                                     99999ll,
484
2
                                                     999999ll,
485
2
                                                     9999999ll,
486
2
                                                     99999999ll,
487
2
                                                     999999999ll,
488
2
                                                     9999999999ll,
489
2
                                                     99999999999ll,
490
2
                                                     999999999999ll,
491
2
                                                     9999999999999ll,
492
2
                                                     99999999999999ll,
493
2
                                                     999999999999999ll,
494
2
                                                     9999999999999999ll,
495
2
                                                     99999999999999999ll,
496
2
                                                     999999999999999999ll};
497
2
    static const int32_t FRAC_MAX_VALUE[SCALE] = {900000000, 990000000, 999000000,
498
2
                                                  999900000, 999990000, 999999000,
499
2
                                                  999999900, 999999990, 999999999};
500
501
    // precision > 0 && scale >= 0 && scale <= SCALE
502
2
    if (precision <= 0 || scale < 0) return;
503
2
    if (scale > SCALE) scale = SCALE;
504
505
    // precision: (scale, PRECISION]
506
2
    if (precision > PRECISION) precision = PRECISION;
507
2
    if (precision - scale > PRECISION - SCALE) {
508
0
        precision = PRECISION - SCALE + scale;
509
2
    } else if (precision <= scale) {
510
0
        LOG(WARNING) << "Warning: error precision: " << precision << " or scale: " << scale;
511
0
        precision = scale + 1; // correct error precision
512
0
    }
513
514
2
    int64_t int_value = INT_MAX_VALUE[precision - scale - 1];
515
2
    int64_t frac_value = scale == 0 ? 0 : FRAC_MAX_VALUE[scale - 1];
516
2
    _value = static_cast<int128_t>(int_value) * DecimalV2Value::ONE_BILLION + frac_value;
517
2
}
518
519
0
std::size_t hash_value(DecimalV2Value const& value) {
520
0
    return value.hash(0);
521
0
}
522
523
52
int DecimalV2Value::round(DecimalV2Value* to, int rounding_scale, DecimalRoundMode op) {
524
52
    int32_t error = E_DEC_OK;
525
52
    int128_t result;
526
527
52
    if (rounding_scale >= SCALE) return error;
528
52
    if (rounding_scale < -(PRECISION - SCALE)) return 0;
529
530
52
    int128_t base = get_scale_base(SCALE - rounding_scale);
531
52
    result = _value / base;
532
533
52
    int one = _value > 0 ? 1 : -1;
534
52
    int128_t remainder = _value % base;
535
52
    switch (op) {
536
16
    case HALF_UP:
537
16
    case HALF_EVEN:
538
16
        if (abs(remainder) >= (base >> 1)) {
539
4
            result = (result + one) * base;
540
12
        } else {
541
12
            result = result * base;
542
12
        }
543
16
        break;
544
12
    case CEILING:
545
12
        if (remainder > 0 && _value > 0) {
546
4
            result = (result + one) * base;
547
8
        } else {
548
8
            result = result * base;
549
8
        }
550
12
        break;
551
12
    case FLOOR:
552
12
        if (remainder < 0 && _value < 0) {
553
4
            result = (result + one) * base;
554
8
        } else {
555
8
            result = result * base;
556
8
        }
557
12
        break;
558
12
    case TRUNCATE:
559
12
        result = result * base;
560
12
        break;
561
0
    default:
562
0
        break;
563
52
    }
564
565
52
    to->set_value(result);
566
52
    return error;
567
52
}
568
569
3
bool DecimalV2Value::greater_than_scale(int scale) {
570
3
    if (scale >= SCALE || scale < 0) {
571
0
        return false;
572
3
    } else if (scale == SCALE) {
573
0
        return true;
574
0
    }
575
576
3
    int frac_val = frac_value();
577
3
    if (scale == 0) {
578
0
        bool ret = frac_val == 0 ? false : true;
579
0
        return ret;
580
0
    }
581
582
3
    static const int values[SCALE] = {1,      10,      100,      1000,     10000,
583
3
                                      100000, 1000000, 10000000, 100000000};
584
585
3
    int base = values[SCALE - scale];
586
3
    if (frac_val % base != 0) return true;
587
1
    return false;
588
3
}
589
590
} // end namespace doris