Coverage Report

Created: 2025-04-29 12:50

/root/doris/be/src/util/threadpool.cpp
Line
Count
Source (jump to first uncovered line)
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
// This file is copied from
18
// https://github.com/apache/impala/blob/branch-2.9.0/be/src/util/threadpool.cc
19
// and modified by Doris
20
21
#include "util/threadpool.h"
22
23
#include <algorithm>
24
#include <cstdint>
25
#include <limits>
26
#include <ostream>
27
#include <thread>
28
#include <utility>
29
30
#include "common/logging.h"
31
#include "gutil/map-util.h"
32
#include "gutil/port.h"
33
#include "gutil/strings/substitute.h"
34
#include "util/debug/sanitizer_scopes.h"
35
#include "util/debug_points.h"
36
#include "util/doris_metrics.h"
37
#include "util/metrics.h"
38
#include "util/scoped_cleanup.h"
39
#include "util/stopwatch.hpp"
40
#include "util/thread.h"
41
42
namespace doris {
43
// The name of these varialbs will be useds as metric name in prometheus.
44
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_active_threads, MetricUnit::NOUNIT);
45
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_queue_size, MetricUnit::NOUNIT);
46
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_queue_size, MetricUnit::NOUNIT);
47
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(thread_pool_max_threads, MetricUnit::NOUNIT);
48
DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(thread_pool_submit_failed, MetricUnit::NOUNIT);
49
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(task_execution_time_ns_avg_in_last_1000_times,
50
                                   MetricUnit::NANOSECONDS);
51
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(task_wait_worker_ns_avg_in_last_1000_times,
52
                                   MetricUnit::NANOSECONDS);
53
using namespace ErrorCode;
54
55
using std::string;
56
using strings::Substitute;
57
58
class FunctionRunnable : public Runnable {
59
public:
60
10.4k
    explicit FunctionRunnable(std::function<void()> func) : _func(std::move(func)) {}
61
62
4.86k
    void run() override { _func(); }
63
64
private:
65
    std::function<void()> _func;
66
};
67
68
ThreadPoolBuilder::ThreadPoolBuilder(string name, string workload_group)
69
        : _name(std::move(name)),
70
          _workload_group(std::move(workload_group)),
71
          _min_threads(0),
72
          _max_threads(std::thread::hardware_concurrency()),
73
          _max_queue_size(std::numeric_limits<int>::max()),
74
246
          _idle_timeout(std::chrono::milliseconds(500)) {}
75
76
210
ThreadPoolBuilder& ThreadPoolBuilder::set_min_threads(int min_threads) {
77
210
    CHECK_GE(min_threads, 0);
78
210
    _min_threads = min_threads;
79
210
    return *this;
80
210
}
81
82
218
ThreadPoolBuilder& ThreadPoolBuilder::set_max_threads(int max_threads) {
83
218
    CHECK_GT(max_threads, 0);
84
218
    _max_threads = max_threads;
85
218
    return *this;
86
218
}
87
88
17
ThreadPoolBuilder& ThreadPoolBuilder::set_max_queue_size(int max_queue_size) {
89
17
    _max_queue_size = max_queue_size;
90
17
    return *this;
91
17
}
92
93
0
ThreadPoolBuilder& ThreadPoolBuilder::set_cgroup_cpu_ctl(CgroupCpuCtl* cgroup_cpu_ctl) {
94
0
    _cgroup_cpu_ctl = cgroup_cpu_ctl;
95
0
    return *this;
96
0
}
97
98
ThreadPoolToken::ThreadPoolToken(ThreadPool* pool, ThreadPool::ExecutionMode mode,
99
                                 int max_concurrency)
100
        : _mode(mode),
101
          _pool(pool),
102
          _state(State::IDLE),
103
          _active_threads(0),
104
          _max_concurrency(max_concurrency),
105
          _num_submitted_tasks(0),
106
2.42k
          _num_unsubmitted_tasks(0) {
107
2.42k
    if (max_concurrency == 1 && mode != ThreadPool::ExecutionMode::SERIAL) {
108
1
        _mode = ThreadPool::ExecutionMode::SERIAL;
109
1
    }
110
2.42k
}
111
112
2.42k
ThreadPoolToken::~ThreadPoolToken() {
113
2.42k
    shutdown();
114
2.42k
    _pool->release_token(this);
115
2.42k
}
116
117
9.04k
Status ThreadPoolToken::submit(std::shared_ptr<Runnable> r) {
118
9.04k
    return _pool->do_submit(std::move(r), this);
119
9.04k
}
120
121
9.07k
Status ThreadPoolToken::submit_func(std::function<void()> f) {
122
9.07k
    return submit(std::make_shared<FunctionRunnable>(std::move(f)));
123
9.07k
}
124
125
3.71k
void ThreadPoolToken::shutdown() {
126
3.71k
    std::unique_lock<std::mutex> l(_pool->_lock);
127
3.71k
    _pool->check_not_pool_thread_unlocked();
128
129
    // Clear the queue under the lock, but defer the releasing of the tasks
130
    // outside the lock, in case there are concurrent threads wanting to access
131
    // the ThreadPool. The task's destructors may acquire locks, etc, so this
132
    // also prevents lock inversions.
133
3.71k
    std::deque<ThreadPool::Task> to_release = std::move(_entries);
134
3.71k
    _pool->_total_queued_tasks -= to_release.size();
135
136
3.71k
    switch (state()) {
137
971
    case State::IDLE:
138
        // There were no tasks outstanding; we can quiesce the token immediately.
139
971
        transition(State::QUIESCED);
140
971
        break;
141
1.21k
    case State::RUNNING:
142
        // There were outstanding tasks. If any are still running, switch to
143
        // QUIESCING and wait for them to finish (the worker thread executing
144
        // the token's last task will switch the token to QUIESCED). Otherwise,
145
        // we can quiesce the token immediately.
146
147
        // Note: this is an O(n) operation, but it's expected to be infrequent.
148
        // Plus doing it this way (rather than switching to QUIESCING and waiting
149
        // for a worker thread to process the queue entry) helps retain state
150
        // transition symmetry with ThreadPool::shutdown.
151
13.3k
        for (auto it = _pool->_queue.begin(); it != _pool->_queue.end();) {
152
12.1k
            if (*it == this) {
153
1.15k
                it = _pool->_queue.erase(it);
154
11.0k
            } else {
155
11.0k
                it++;
156
11.0k
            }
157
12.1k
        }
158
159
1.21k
        if (_active_threads == 0) {
160
562
            transition(State::QUIESCED);
161
562
            break;
162
562
        }
163
651
        transition(State::QUIESCING);
164
651
        [[fallthrough]];
165
668
    case State::QUIESCING:
166
        // The token is already quiescing. Just wait for a worker thread to
167
        // switch it to QUIESCED.
168
1.33k
        _not_running_cond.wait(l, [this]() { return state() == State::QUIESCED; });
169
668
        break;
170
1.51k
    default:
171
1.51k
        break;
172
3.71k
    }
173
3.71k
}
174
175
735
void ThreadPoolToken::wait() {
176
735
    std::unique_lock<std::mutex> l(_pool->_lock);
177
735
    _pool->check_not_pool_thread_unlocked();
178
957
    _not_running_cond.wait(l, [this]() { return !is_active(); });
179
735
}
180
181
7.62k
void ThreadPoolToken::transition(State new_state) {
182
7.62k
#ifndef NDEBUG
183
7.62k
    CHECK_NE(_state, new_state);
184
185
7.62k
    switch (_state) {
186
4.08k
    case State::IDLE:
187
4.08k
        CHECK(new_state == State::RUNNING || new_state == State::QUIESCED);
188
4.08k
        if (new_state == State::RUNNING) {
189
2.87k
            CHECK(!_entries.empty());
190
2.87k
        } else {
191
1.20k
            CHECK(_entries.empty());
192
1.20k
            CHECK_EQ(_active_threads, 0);
193
1.20k
        }
194
4.08k
        break;
195
2.87k
    case State::RUNNING:
196
2.87k
        CHECK(new_state == State::IDLE || new_state == State::QUIESCING ||
197
2.87k
              new_state == State::QUIESCED);
198
2.87k
        CHECK(_entries.empty());
199
2.87k
        if (new_state == State::QUIESCING) {
200
658
            CHECK_GT(_active_threads, 0);
201
658
        }
202
2.87k
        break;
203
658
    case State::QUIESCING:
204
658
        CHECK(new_state == State::QUIESCED);
205
658
        CHECK_EQ(_active_threads, 0);
206
658
        break;
207
0
    case State::QUIESCED:
208
0
        CHECK(false); // QUIESCED is a terminal state
209
0
        break;
210
0
    default:
211
0
        LOG(FATAL) << "Unknown token state: " << _state;
212
7.62k
    }
213
7.62k
#endif
214
215
    // Take actions based on the state we're entering.
216
7.62k
    switch (new_state) {
217
1.65k
    case State::IDLE:
218
4.08k
    case State::QUIESCED:
219
4.08k
        _not_running_cond.notify_all();
220
4.08k
        break;
221
3.53k
    default:
222
3.53k
        break;
223
7.62k
    }
224
225
7.62k
    _state = new_state;
226
7.62k
}
227
228
0
const char* ThreadPoolToken::state_to_string(State s) {
229
0
    switch (s) {
230
0
    case State::IDLE:
231
0
        return "IDLE";
232
0
        break;
233
0
    case State::RUNNING:
234
0
        return "RUNNING";
235
0
        break;
236
0
    case State::QUIESCING:
237
0
        return "QUIESCING";
238
0
        break;
239
0
    case State::QUIESCED:
240
0
        return "QUIESCED";
241
0
        break;
242
0
    }
243
0
    return "<cannot reach here>";
244
0
}
245
246
7.26k
bool ThreadPoolToken::need_dispatch() {
247
7.26k
    return _state == ThreadPoolToken::State::IDLE ||
248
7.26k
           (_mode == ThreadPool::ExecutionMode::CONCURRENT &&
249
4.38k
            _num_submitted_tasks < _max_concurrency);
250
7.26k
}
251
252
ThreadPool::ThreadPool(const ThreadPoolBuilder& builder)
253
        : _name(builder._name),
254
          _workload_group(builder._workload_group),
255
          _min_threads(builder._min_threads),
256
          _max_threads(builder._max_threads),
257
          _max_queue_size(builder._max_queue_size),
258
          _idle_timeout(builder._idle_timeout),
259
          _pool_status(Status::Uninitialized("The pool was not initialized.")),
260
          _num_threads(0),
261
          _num_threads_pending_start(0),
262
          _active_threads(0),
263
          _total_queued_tasks(0),
264
          _cgroup_cpu_ctl(builder._cgroup_cpu_ctl),
265
          _tokenless(new_token(ExecutionMode::CONCURRENT)),
266
241
          _id(UniqueId::gen_uid()) {}
267
268
241
ThreadPool::~ThreadPool() {
269
    // There should only be one live token: the one used in tokenless submission.
270
241
    CHECK_EQ(1, _tokens.size()) << strings::Substitute(
271
0
            "Threadpool $0 destroyed with $1 allocated tokens", _name, _tokens.size());
272
241
    shutdown();
273
241
}
274
275
241
Status ThreadPool::init() {
276
241
    if (!_pool_status.is<UNINITIALIZED>()) {
277
0
        return Status::NotSupported("The thread pool {} is already initialized", _name);
278
0
    }
279
241
    _pool_status = Status::OK();
280
241
    _num_threads_pending_start = _min_threads;
281
1.03k
    for (int i = 0; i < _min_threads; i++) {
282
796
        Status status = create_thread();
283
796
        if (!status.ok()) {
284
0
            shutdown();
285
0
            return status;
286
0
        }
287
796
    }
288
    // _id of thread pool is used to make sure when we create thread pool with same name, we can
289
    // get different _metric_entity
290
    // If not, we will have problem when we deregister entity and register hook.
291
241
    _metric_entity = DorisMetrics::instance()->metric_registry()->register_entity(
292
241
            fmt::format("thread_pool_{}", _name), {{"thread_pool_name", _name},
293
241
                                                   {"workload_group", _workload_group},
294
241
                                                   {"id", _id.to_string()}});
295
296
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_active_threads);
297
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_threads);
298
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_queue_size);
299
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, thread_pool_max_queue_size);
300
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, task_execution_time_ns_avg_in_last_1000_times);
301
241
    INT_GAUGE_METRIC_REGISTER(_metric_entity, task_wait_worker_ns_avg_in_last_1000_times);
302
241
    INT_COUNTER_METRIC_REGISTER(_metric_entity, thread_pool_submit_failed);
303
304
241
    _metric_entity->register_hook("update", [this]() {
305
0
        {
306
0
            std::lock_guard<std::mutex> l(_lock);
307
0
            if (!_pool_status.ok()) {
308
0
                return;
309
0
            }
310
0
        }
311
312
0
        thread_pool_active_threads->set_value(num_active_threads());
313
0
        thread_pool_queue_size->set_value(get_queue_size());
314
0
        thread_pool_max_queue_size->set_value(get_max_queue_size());
315
0
        thread_pool_max_threads->set_value(max_threads());
316
0
        task_execution_time_ns_avg_in_last_1000_times->set_value(
317
0
                _task_execution_time_ns_statistic.mean());
318
0
        task_wait_worker_ns_avg_in_last_1000_times->set_value(
319
0
                _task_wait_worker_time_ns_statistic.mean());
320
0
    });
321
241
    return Status::OK();
322
241
}
323
324
395
void ThreadPool::shutdown() {
325
    // Why access to doris_metrics is safe here?
326
    // Since DorisMetrics is a singleton, it will be destroyed only after doris_main is exited.
327
    // The shutdown/destroy of ThreadPool is guaranteed to take place before doris_main exits by
328
    // ExecEnv::destroy().
329
395
    DorisMetrics::instance()->metric_registry()->deregister_entity(_metric_entity);
330
395
    debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan;
331
395
    std::unique_lock<std::mutex> l(_lock);
332
395
    check_not_pool_thread_unlocked();
333
334
    // Note: this is the same error seen at submission if the pool is at
335
    // capacity, so clients can't tell them apart. This isn't really a practical
336
    // concern though because shutting down a pool typically requires clients to
337
    // be quiesced first, so there's no danger of a client getting confused.
338
    // Not print stack trace here
339
395
    _pool_status = Status::Error<SERVICE_UNAVAILABLE, false>(
340
395
            "The thread pool {} has been shut down.", _name);
341
342
    // Clear the various queues under the lock, but defer the releasing
343
    // of the tasks outside the lock, in case there are concurrent threads
344
    // wanting to access the ThreadPool. The task's destructors may acquire
345
    // locks, etc, so this also prevents lock inversions.
346
395
    _queue.clear();
347
348
395
    std::deque<std::deque<Task>> to_release;
349
397
    for (auto* t : _tokens) {
350
397
        if (!t->_entries.empty()) {
351
3
            to_release.emplace_back(std::move(t->_entries));
352
3
        }
353
397
        switch (t->state()) {
354
236
        case ThreadPoolToken::State::IDLE:
355
            // The token is idle; we can quiesce it immediately.
356
236
            t->transition(ThreadPoolToken::State::QUIESCED);
357
236
            break;
358
7
        case ThreadPoolToken::State::RUNNING:
359
            // The token has tasks associated with it. If they're merely queued
360
            // (i.e. there are no active threads), the tasks will have been removed
361
            // above and we can quiesce immediately. Otherwise, we need to wait for
362
            // the threads to finish.
363
7
            t->transition(t->_active_threads > 0 ? ThreadPoolToken::State::QUIESCING
364
7
                                                 : ThreadPoolToken::State::QUIESCED);
365
7
            break;
366
154
        default:
367
154
            break;
368
397
        }
369
397
    }
370
371
    // The queues are empty. Wake any sleeping worker threads and wait for all
372
    // of them to exit. Some worker threads will exit immediately upon waking,
373
    // while others will exit after they finish executing an outstanding task.
374
395
    _total_queued_tasks = 0;
375
1.27k
    while (!_idle_threads.empty()) {
376
883
        _idle_threads.front().not_empty.notify_one();
377
883
        _idle_threads.pop_front();
378
883
    }
379
380
614
    _no_threads_cond.wait(l, [this]() { return _num_threads + _num_threads_pending_start == 0; });
381
382
    // All the threads have exited. Check the state of each token.
383
397
    for (auto* t : _tokens) {
384
397
        DCHECK(t->state() == ThreadPoolToken::State::IDLE ||
385
397
               t->state() == ThreadPoolToken::State::QUIESCED);
386
397
    }
387
395
}
388
389
2.42k
std::unique_ptr<ThreadPoolToken> ThreadPool::new_token(ExecutionMode mode, int max_concurrency) {
390
2.42k
    std::lock_guard<std::mutex> l(_lock);
391
2.42k
    std::unique_ptr<ThreadPoolToken> t(new ThreadPoolToken(this, mode, max_concurrency));
392
2.42k
    InsertOrDie(&_tokens, t.get());
393
2.42k
    return t;
394
2.42k
}
395
396
2.42k
void ThreadPool::release_token(ThreadPoolToken* t) {
397
2.42k
    std::lock_guard<std::mutex> l(_lock);
398
2.42k
    CHECK(!t->is_active()) << strings::Substitute("Token with state $0 may not be released",
399
0
                                                  ThreadPoolToken::state_to_string(t->state()));
400
2.42k
    CHECK_EQ(1, _tokens.erase(t));
401
2.42k
}
402
403
1.50k
Status ThreadPool::submit(std::shared_ptr<Runnable> r) {
404
1.50k
    return do_submit(std::move(r), _tokenless.get());
405
1.50k
}
406
407
1.34k
Status ThreadPool::submit_func(std::function<void()> f) {
408
1.34k
    return submit(std::make_shared<FunctionRunnable>(std::move(f)));
409
1.34k
}
410
411
10.6k
Status ThreadPool::do_submit(std::shared_ptr<Runnable> r, ThreadPoolToken* token) {
412
10.6k
    DCHECK(token);
413
414
10.6k
    std::unique_lock<std::mutex> l(_lock);
415
10.6k
    if (PREDICT_FALSE(!_pool_status.ok())) {
416
1
        return _pool_status;
417
1
    }
418
419
10.6k
    if (PREDICT_FALSE(!token->may_submit_new_tasks())) {
420
3.37k
        return Status::Error<SERVICE_UNAVAILABLE>("Thread pool({}) token was shut down", _name);
421
3.37k
    }
422
423
    // Size limit check.
424
7.22k
    int64_t capacity_remaining = static_cast<int64_t>(_max_threads) - _active_threads +
425
7.22k
                                 static_cast<int64_t>(_max_queue_size) - _total_queued_tasks;
426
7.22k
    if (capacity_remaining < 1) {
427
4
        thread_pool_submit_failed->increment(1);
428
4
        return Status::Error<SERVICE_UNAVAILABLE>(
429
4
                "Thread pool {} is at capacity ({}/{} tasks running, {}/{} tasks queued)", _name,
430
4
                _num_threads + _num_threads_pending_start, _max_threads, _total_queued_tasks,
431
4
                _max_queue_size);
432
4
    }
433
434
    // Should we create another thread?
435
436
    // We assume that each current inactive thread will grab one item from the
437
    // queue.  If it seems like we'll need another thread, we create one.
438
    //
439
    // Rather than creating the thread here, while holding the lock, we defer
440
    // it to down below. This is because thread creation can be rather slow
441
    // (hundreds of milliseconds in some cases) and we'd like to allow the
442
    // existing threads to continue to process tasks while we do so.
443
    //
444
    // In theory, a currently active thread could finish immediately after this
445
    // calculation but before our new worker starts running. This would mean we
446
    // created a thread we didn't really need. However, this race is unavoidable
447
    // and harmless.
448
    //
449
    // Of course, we never create more than _max_threads threads no matter what.
450
7.22k
    int threads_from_this_submit =
451
7.22k
            token->is_active() && token->mode() == ExecutionMode::SERIAL ? 0 : 1;
452
7.22k
    int inactive_threads = _num_threads + _num_threads_pending_start - _active_threads;
453
7.22k
    int additional_threads =
454
7.22k
            static_cast<int>(_queue.size()) + threads_from_this_submit - inactive_threads;
455
7.22k
    bool need_a_thread = false;
456
7.22k
    if (additional_threads > 0 && _num_threads + _num_threads_pending_start < _max_threads) {
457
623
        need_a_thread = true;
458
623
        _num_threads_pending_start++;
459
623
    }
460
461
7.22k
    Task task;
462
7.22k
    task.runnable = std::move(r);
463
7.22k
    task.submit_time_wather.start();
464
465
    // Add the task to the token's queue.
466
7.22k
    ThreadPoolToken::State state = token->state();
467
7.22k
    DCHECK(state == ThreadPoolToken::State::IDLE || state == ThreadPoolToken::State::RUNNING);
468
7.22k
    token->_entries.emplace_back(std::move(task));
469
    // When we need to execute the task in the token, we submit the token object to the queue.
470
    // There are currently two places where tokens will be submitted to the queue:
471
    // 1. When submitting a new task, if the token is still in the IDLE state,
472
    //    or the concurrency of the token has not reached the online level, it will be added to the queue.
473
    // 2. When the dispatch thread finishes executing a task:
474
    //    1. If it is a SERIAL token, and there are unsubmitted tasks, submit them to the queue.
475
    //    2. If it is a CONCURRENT token, and there are still unsubmitted tasks, and the upper limit of concurrency is not reached,
476
    //       then submitted to the queue.
477
7.22k
    if (token->need_dispatch()) {
478
5.42k
        _queue.emplace_back(token);
479
5.42k
        ++token->_num_submitted_tasks;
480
5.42k
        if (state == ThreadPoolToken::State::IDLE) {
481
2.87k
            token->transition(ThreadPoolToken::State::RUNNING);
482
2.87k
        }
483
5.42k
    } else {
484
1.79k
        ++token->_num_unsubmitted_tasks;
485
1.79k
    }
486
7.22k
    _total_queued_tasks++;
487
488
    // Wake up an idle thread for this task. Choosing the thread at the front of
489
    // the list ensures LIFO semantics as idling threads are also added to the front.
490
    //
491
    // If there are no idle threads, the new task remains on the queue and is
492
    // processed by an active thread (or a thread we're about to create) at some
493
    // point in the future.
494
7.22k
    if (!_idle_threads.empty()) {
495
1.56k
        _idle_threads.front().not_empty.notify_one();
496
1.56k
        _idle_threads.pop_front();
497
1.56k
    }
498
7.22k
    l.unlock();
499
500
7.22k
    if (need_a_thread) {
501
623
        Status status = create_thread();
502
623
        if (!status.ok()) {
503
0
            l.lock();
504
0
            _num_threads_pending_start--;
505
0
            if (_num_threads + _num_threads_pending_start == 0) {
506
                // If we have no threads, we can't do any work.
507
0
                return status;
508
0
            }
509
            // If we failed to create a thread, but there are still some other
510
            // worker threads, log a warning message and continue.
511
0
            LOG(WARNING) << "Thread pool " << _name
512
0
                         << " failed to create thread: " << status.to_string();
513
0
        }
514
623
    }
515
516
7.22k
    return Status::OK();
517
7.22k
}
518
519
64
void ThreadPool::wait() {
520
64
    std::unique_lock<std::mutex> l(_lock);
521
64
    check_not_pool_thread_unlocked();
522
132
    _idle_cond.wait(l, [this]() { return _total_queued_tasks == 0 && _active_threads == 0; });
523
64
}
524
525
1.42k
void ThreadPool::dispatch_thread() {
526
1.42k
    std::unique_lock<std::mutex> l(_lock);
527
1.42k
    debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan;
528
1.42k
    InsertOrDie(&_threads, Thread::current_thread());
529
1.42k
    DCHECK_GT(_num_threads_pending_start, 0);
530
1.42k
    _num_threads++;
531
1.42k
    _num_threads_pending_start--;
532
533
1.42k
    if (_cgroup_cpu_ctl != nullptr) {
534
0
        static_cast<void>(_cgroup_cpu_ctl->add_thread_to_cgroup());
535
0
    }
536
537
    // Owned by this worker thread and added/removed from _idle_threads as needed.
538
1.42k
    IdleThread me;
539
540
55.0k
    while (true) {
541
        // Note: Status::Aborted() is used to indicate normal shutdown.
542
55.0k
        if (!_pool_status.ok()) {
543
915
            VLOG_CRITICAL << "DispatchThread exiting: " << _pool_status.to_string();
544
915
            break;
545
915
        }
546
547
54.1k
        if (_num_threads + _num_threads_pending_start > _max_threads) {
548
2
            break;
549
2
        }
550
551
54.1k
        if (_queue.empty()) {
552
            // There's no work to do, let's go idle.
553
            //
554
            // Note: if FIFO behavior is desired, it's as simple as changing this to push_back().
555
49.0k
            _idle_threads.push_front(me);
556
49.0k
            SCOPED_CLEANUP({
557
                // For some wake ups (i.e. shutdown or do_submit) this thread is
558
                // guaranteed to be unlinked after being awakened. In others (i.e.
559
                // spurious wake-up or Wait timeout), it'll still be linked.
560
49.0k
                if (me.is_linked()) {
561
49.0k
                    _idle_threads.erase(_idle_threads.iterator_to(me));
562
49.0k
                }
563
49.0k
            });
564
49.0k
            if (me.not_empty.wait_for(l, _idle_timeout) == std::cv_status::timeout) {
565
                // After much investigation, it appears that pthread condition variables have
566
                // a weird behavior in which they can return ETIMEDOUT from timed_wait even if
567
                // another thread did in fact signal. Apparently after a timeout there is some
568
                // brief period during which another thread may actually grab the internal mutex
569
                // protecting the state, signal, and release again before we get the mutex. So,
570
                // we'll recheck the empty queue case regardless.
571
46.6k
                if (_queue.empty() && _num_threads + _num_threads_pending_start > _min_threads) {
572
505
                    VLOG_NOTICE << "Releasing worker thread from pool " << _name << " after "
573
0
                                << std::chrono::duration_cast<std::chrono::milliseconds>(
574
0
                                           _idle_timeout)
575
0
                                           .count()
576
0
                                << "ms of idle time.";
577
505
                    break;
578
505
                }
579
46.6k
            }
580
48.5k
            continue;
581
49.0k
        }
582
583
5.05k
        MonotonicStopWatch task_execution_time_watch;
584
5.05k
        task_execution_time_watch.start();
585
        // Get the next token and task to execute.
586
5.05k
        ThreadPoolToken* token = _queue.front();
587
5.05k
        _queue.pop_front();
588
5.05k
        DCHECK_EQ(ThreadPoolToken::State::RUNNING, token->state());
589
5.05k
        DCHECK(!token->_entries.empty());
590
5.05k
        Task task = std::move(token->_entries.front());
591
5.05k
        _task_wait_worker_time_ns_statistic.add(task.submit_time_wather.elapsed_time());
592
5.05k
        token->_entries.pop_front();
593
5.05k
        token->_active_threads++;
594
5.05k
        --_total_queued_tasks;
595
5.05k
        ++_active_threads;
596
597
5.05k
        l.unlock();
598
599
        // Execute the task
600
5.05k
        task.runnable->run();
601
        // Destruct the task while we do not hold the lock.
602
        //
603
        // The task's destructor may be expensive if it has a lot of bound
604
        // objects, and we don't want to block submission of the threadpool.
605
        // In the worst case, the destructor might even try to do something
606
        // with this threadpool, and produce a deadlock.
607
5.05k
        task.runnable.reset();
608
5.05k
        l.lock();
609
5.05k
        _task_execution_time_ns_statistic.add(task_execution_time_watch.elapsed_time());
610
        // Possible states:
611
        // 1. The token was shut down while we ran its task. Transition to QUIESCED.
612
        // 2. The token has no more queued tasks. Transition back to IDLE.
613
        // 3. The token has more tasks. Requeue it and transition back to RUNNABLE.
614
5.05k
        ThreadPoolToken::State state = token->state();
615
5.05k
        DCHECK(state == ThreadPoolToken::State::RUNNING ||
616
5.05k
               state == ThreadPoolToken::State::QUIESCING);
617
5.05k
        --token->_active_threads;
618
5.05k
        --token->_num_submitted_tasks;
619
620
        // handle shutdown && idle
621
5.05k
        if (token->_active_threads == 0) {
622
3.36k
            if (state == ThreadPoolToken::State::QUIESCING) {
623
658
                DCHECK(token->_entries.empty());
624
658
                token->transition(ThreadPoolToken::State::QUIESCED);
625
2.70k
            } else if (token->_entries.empty()) {
626
1.65k
                token->transition(ThreadPoolToken::State::IDLE);
627
1.65k
            }
628
3.36k
        }
629
630
        // We decrease _num_submitted_tasks holding lock, so the following DCHECK works.
631
5.05k
        DCHECK(token->_num_submitted_tasks < token->_max_concurrency);
632
633
        // If token->state is running and there are unsubmitted tasks in the token, we put
634
        // the token back.
635
5.05k
        if (token->_num_unsubmitted_tasks > 0 && state == ThreadPoolToken::State::RUNNING) {
636
            // SERIAL: if _entries is not empty, then num_unsubmitted_tasks must be greater than 0.
637
            // CONCURRENT: we have to check _num_unsubmitted_tasks because there may be at least 2
638
            // threads are running for the token.
639
799
            _queue.emplace_back(token);
640
799
            ++token->_num_submitted_tasks;
641
799
            --token->_num_unsubmitted_tasks;
642
799
        }
643
644
5.05k
        if (--_active_threads == 0) {
645
787
            _idle_cond.notify_all();
646
787
        }
647
5.05k
    }
648
649
    // It's important that we hold the lock between exiting the loop and dropping
650
    // _num_threads. Otherwise it's possible someone else could come along here
651
    // and add a new task just as the last running thread is about to exit.
652
1.42k
    CHECK(l.owns_lock());
653
654
1.42k
    CHECK_EQ(_threads.erase(Thread::current_thread()), 1);
655
1.42k
    _num_threads--;
656
1.42k
    if (_num_threads + _num_threads_pending_start == 0) {
657
717
        _no_threads_cond.notify_all();
658
659
        // Sanity check: if we're the last thread exiting, the queue ought to be
660
        // empty. Otherwise it will never get processed.
661
717
        CHECK(_queue.empty());
662
717
        DCHECK_EQ(0, _total_queued_tasks);
663
717
    }
664
1.42k
}
665
666
1.42k
Status ThreadPool::create_thread() {
667
1.42k
    return Thread::create("thread pool", strings::Substitute("$0 [worker]", _name),
668
1.42k
                          &ThreadPool::dispatch_thread, this, nullptr);
669
1.42k
}
670
671
4.91k
void ThreadPool::check_not_pool_thread_unlocked() {
672
4.91k
    Thread* current = Thread::current_thread();
673
4.91k
    if (ContainsKey(_threads, current)) {
674
0
        LOG(FATAL) << strings::Substitute(
675
0
                "Thread belonging to thread pool '$0' with "
676
0
                "name '$1' called pool function that would result in deadlock",
677
0
                _name, current->name());
678
0
    }
679
4.91k
}
680
681
4
Status ThreadPool::set_min_threads(int min_threads) {
682
4
    std::lock_guard<std::mutex> l(_lock);
683
4
    if (min_threads > _max_threads) {
684
        // min threads can not be set greater than max threads
685
1
        return Status::InternalError("set thread pool {} min_threads failed", _name);
686
1
    }
687
3
    _min_threads = min_threads;
688
3
    if (min_threads > _num_threads + _num_threads_pending_start) {
689
0
        int addition_threads = min_threads - _num_threads - _num_threads_pending_start;
690
0
        _num_threads_pending_start += addition_threads;
691
0
        for (int i = 0; i < addition_threads; i++) {
692
0
            Status status = create_thread();
693
0
            if (!status.ok()) {
694
0
                _num_threads_pending_start--;
695
0
                LOG(WARNING) << "Thread pool " << _name
696
0
                             << " failed to create thread: " << status.to_string();
697
0
                return status;
698
0
            }
699
0
        }
700
0
    }
701
3
    return Status::OK();
702
3
}
703
704
8
Status ThreadPool::set_max_threads(int max_threads) {
705
8
    std::lock_guard<std::mutex> l(_lock);
706
8
    DBUG_EXECUTE_IF("ThreadPool.set_max_threads.force_set", {
707
8
        _max_threads = max_threads;
708
8
        return Status::OK();
709
8
    })
710
8
    if (_min_threads > max_threads) {
711
        // max threads can not be set less than min threads
712
1
        return Status::InternalError("set thread pool {} max_threads failed", _name);
713
1
    }
714
715
7
    _max_threads = max_threads;
716
7
    if (_max_threads > _num_threads + _num_threads_pending_start) {
717
5
        int addition_threads = _max_threads - _num_threads - _num_threads_pending_start;
718
5
        addition_threads = std::min(addition_threads, _total_queued_tasks);
719
5
        _num_threads_pending_start += addition_threads;
720
8
        for (int i = 0; i < addition_threads; i++) {
721
3
            Status status = create_thread();
722
3
            if (!status.ok()) {
723
0
                _num_threads_pending_start--;
724
0
                LOG(WARNING) << "Thread pool " << _name
725
0
                             << " failed to create thread: " << status.to_string();
726
0
                return status;
727
0
            }
728
3
        }
729
5
    }
730
7
    return Status::OK();
731
7
}
732
733
0
std::ostream& operator<<(std::ostream& o, ThreadPoolToken::State s) {
734
0
    return o << ThreadPoolToken::state_to_string(s);
735
0
}
736
737
} // namespace doris