ApplyRuleJob.java
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
package org.apache.doris.nereids.jobs.cascades;
import org.apache.doris.nereids.exceptions.AnalysisException;
import org.apache.doris.nereids.jobs.Job;
import org.apache.doris.nereids.jobs.JobContext;
import org.apache.doris.nereids.jobs.JobType;
import org.apache.doris.nereids.memo.CopyInResult;
import org.apache.doris.nereids.memo.GroupExpression;
import org.apache.doris.nereids.metrics.EventChannel;
import org.apache.doris.nereids.metrics.EventProducer;
import org.apache.doris.nereids.metrics.consumer.LogConsumer;
import org.apache.doris.nereids.metrics.event.TransformEvent;
import org.apache.doris.nereids.minidump.NereidsTracer;
import org.apache.doris.nereids.pattern.GroupExpressionMatching;
import org.apache.doris.nereids.rules.Rule;
import org.apache.doris.nereids.rules.RuleType;
import org.apache.doris.nereids.trees.plans.Plan;
import org.apache.doris.nereids.trees.plans.logical.LogicalPlan;
import com.google.common.collect.Lists;
import java.util.HashMap;
import java.util.List;
/**
* Job to apply rule on {@link GroupExpression}.
*/
public class ApplyRuleJob extends Job {
private static final EventProducer APPLY_RULE_TRACER = new EventProducer(TransformEvent.class,
EventChannel.getDefaultChannel().addConsumers(new LogConsumer(TransformEvent.class, EventChannel.LOG)));
private final GroupExpression groupExpression;
private final Rule rule;
/**
* Constructor of ApplyRuleJob.
*
* @param groupExpression apply rule on this {@link GroupExpression}
* @param rule rule to be applied
* @param context context of current job
*/
public ApplyRuleJob(GroupExpression groupExpression, Rule rule, JobContext context) {
super(JobType.APPLY_RULE, context);
this.groupExpression = groupExpression;
this.rule = rule;
super.cteIdToStats = new HashMap<>();
}
@Override
public final void execute() throws AnalysisException {
if (groupExpression.hasApplied(rule)
|| groupExpression.isUnused()) {
return;
}
countJobExecutionTimesOfGroupExpressions(groupExpression);
List<DeriveStatsJob> deriveStatsJobs = Lists.newArrayList();
GroupExpressionMatching groupExpressionMatching
= new GroupExpressionMatching(rule.getPattern(), groupExpression);
for (Plan plan : groupExpressionMatching) {
if (rule.isExploration()
&& context.getCascadesContext().getMemo().getGroupExpressionsSize() > context.getCascadesContext()
.getConnectContext().getSessionVariable().memoMaxGroupExpressionSize) {
break;
}
List<Plan> newPlans = rule.transform(plan, context.getCascadesContext());
for (Plan newPlan : newPlans) {
if (newPlan == plan) {
continue;
}
CopyInResult result = context.getCascadesContext()
.getMemo()
.copyIn(newPlan, groupExpression.getOwnerGroup(), false);
if (!result.generateNewExpression) {
continue;
}
GroupExpression newGroupExpression = result.correspondingExpression;
newGroupExpression.setFromRule(rule);
if (newPlan instanceof LogicalPlan) {
pushJob(new OptimizeGroupExpressionJob(newGroupExpression, context));
if (!rule.getRuleType().equals(RuleType.LOGICAL_JOIN_COMMUTE)) {
deriveStatsJobs.add(new DeriveStatsJob(newGroupExpression, context));
} else {
// The Join Commute rule preserves the operator's expression and children,
// thereby not altering the statistics. Hence, there is no need to derive statistics for it.
newGroupExpression.setStatDerived(true);
}
} else {
pushJob(new CostAndEnforcerJob(newGroupExpression, context));
if (newGroupExpression.children().stream().anyMatch(g -> g.getLogicalExpressions().isEmpty())) {
// If a rule creates a new group when generating a physical plan,
// then we need to derive statistics for it, e.g., logicalTopToPhysicalTopN rule:
// logicalTopN ==> GlobalPhysicalTopN
// -> localPhysicalTopN
// These implementation rules integrate rules for plan shape transformation.
deriveStatsJobs.add(new DeriveStatsJob(newGroupExpression, context));
} else {
newGroupExpression.setStatDerived(true);
}
}
NereidsTracer.logApplyRuleEvent(rule.toString(), plan, newGroupExpression.getPlan());
APPLY_RULE_TRACER.log(TransformEvent.of(groupExpression, plan, newPlans, rule.getRuleType()),
rule::isRewrite);
}
// we do derive stats job eager to avoid un derive stats due to merge group and optimize group
// consider:
// we have two groups burned by order: G1 and G2
// then we have job by order derive G2, optimize group expression in G2,
// derive G1, optimize group expression in G1
// if G1 merged into G2, then we maybe generated job optimize group G2 before derive G1
// in this case, we will do get stats from G1's child before derive G1's child stats
// then we will meet NPE in CostModel.
for (DeriveStatsJob deriveStatsJob : deriveStatsJobs) {
pushJob(deriveStatsJob);
}
}
groupExpression.setApplied(rule);
}
}