/root/doris/contrib/openblas/lapack-netlib/SRC/dgesvd.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | 0 | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static integer c__6 = 6; |
516 | | static integer c__0 = 0; |
517 | | static integer c__2 = 2; |
518 | | static integer c_n1 = -1; |
519 | | static doublereal c_b57 = 0.; |
520 | | static integer c__1 = 1; |
521 | | static doublereal c_b79 = 1.; |
522 | | |
523 | | /* > \brief <b> DGESVD computes the singular value decomposition (SVD) for GE matrices</b> */ |
524 | | |
525 | | /* =========== DOCUMENTATION =========== */ |
526 | | |
527 | | /* Online html documentation available at */ |
528 | | /* http://www.netlib.org/lapack/explore-html/ */ |
529 | | |
530 | | /* > \htmlonly */ |
531 | | /* > Download DGESVD + dependencies */ |
532 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvd. |
533 | | f"> */ |
534 | | /* > [TGZ]</a> */ |
535 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvd. |
536 | | f"> */ |
537 | | /* > [ZIP]</a> */ |
538 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvd. |
539 | | f"> */ |
540 | | /* > [TXT]</a> */ |
541 | | /* > \endhtmlonly */ |
542 | | |
543 | | /* Definition: */ |
544 | | /* =========== */ |
545 | | |
546 | | /* SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */ |
547 | | /* WORK, LWORK, INFO ) */ |
548 | | |
549 | | /* CHARACTER JOBU, JOBVT */ |
550 | | /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */ |
551 | | /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */ |
552 | | /* $ VT( LDVT, * ), WORK( * ) */ |
553 | | |
554 | | |
555 | | /* > \par Purpose: */ |
556 | | /* ============= */ |
557 | | /* > */ |
558 | | /* > \verbatim */ |
559 | | /* > */ |
560 | | /* > DGESVD computes the singular value decomposition (SVD) of a real */ |
561 | | /* > M-by-N matrix A, optionally computing the left and/or right singular */ |
562 | | /* > vectors. The SVD is written */ |
563 | | /* > */ |
564 | | /* > A = U * SIGMA * transpose(V) */ |
565 | | /* > */ |
566 | | /* > where SIGMA is an M-by-N matrix which is zero except for its */ |
567 | | /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */ |
568 | | /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */ |
569 | | /* > are the singular values of A; they are real and non-negative, and */ |
570 | | /* > are returned in descending order. The first f2cmin(m,n) columns of */ |
571 | | /* > U and V are the left and right singular vectors of A. */ |
572 | | /* > */ |
573 | | /* > Note that the routine returns V**T, not V. */ |
574 | | /* > \endverbatim */ |
575 | | |
576 | | /* Arguments: */ |
577 | | /* ========== */ |
578 | | |
579 | | /* > \param[in] JOBU */ |
580 | | /* > \verbatim */ |
581 | | /* > JOBU is CHARACTER*1 */ |
582 | | /* > Specifies options for computing all or part of the matrix U: */ |
583 | | /* > = 'A': all M columns of U are returned in array U: */ |
584 | | /* > = 'S': the first f2cmin(m,n) columns of U (the left singular */ |
585 | | /* > vectors) are returned in the array U; */ |
586 | | /* > = 'O': the first f2cmin(m,n) columns of U (the left singular */ |
587 | | /* > vectors) are overwritten on the array A; */ |
588 | | /* > = 'N': no columns of U (no left singular vectors) are */ |
589 | | /* > computed. */ |
590 | | /* > \endverbatim */ |
591 | | /* > */ |
592 | | /* > \param[in] JOBVT */ |
593 | | /* > \verbatim */ |
594 | | /* > JOBVT is CHARACTER*1 */ |
595 | | /* > Specifies options for computing all or part of the matrix */ |
596 | | /* > V**T: */ |
597 | | /* > = 'A': all N rows of V**T are returned in the array VT; */ |
598 | | /* > = 'S': the first f2cmin(m,n) rows of V**T (the right singular */ |
599 | | /* > vectors) are returned in the array VT; */ |
600 | | /* > = 'O': the first f2cmin(m,n) rows of V**T (the right singular */ |
601 | | /* > vectors) are overwritten on the array A; */ |
602 | | /* > = 'N': no rows of V**T (no right singular vectors) are */ |
603 | | /* > computed. */ |
604 | | /* > */ |
605 | | /* > JOBVT and JOBU cannot both be 'O'. */ |
606 | | /* > \endverbatim */ |
607 | | /* > */ |
608 | | /* > \param[in] M */ |
609 | | /* > \verbatim */ |
610 | | /* > M is INTEGER */ |
611 | | /* > The number of rows of the input matrix A. M >= 0. */ |
612 | | /* > \endverbatim */ |
613 | | /* > */ |
614 | | /* > \param[in] N */ |
615 | | /* > \verbatim */ |
616 | | /* > N is INTEGER */ |
617 | | /* > The number of columns of the input matrix A. N >= 0. */ |
618 | | /* > \endverbatim */ |
619 | | /* > */ |
620 | | /* > \param[in,out] A */ |
621 | | /* > \verbatim */ |
622 | | /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ |
623 | | /* > On entry, the M-by-N matrix A. */ |
624 | | /* > On exit, */ |
625 | | /* > if JOBU = 'O', A is overwritten with the first f2cmin(m,n) */ |
626 | | /* > columns of U (the left singular vectors, */ |
627 | | /* > stored columnwise); */ |
628 | | /* > if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */ |
629 | | /* > rows of V**T (the right singular vectors, */ |
630 | | /* > stored rowwise); */ |
631 | | /* > if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */ |
632 | | /* > are destroyed. */ |
633 | | /* > \endverbatim */ |
634 | | /* > */ |
635 | | /* > \param[in] LDA */ |
636 | | /* > \verbatim */ |
637 | | /* > LDA is INTEGER */ |
638 | | /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ |
639 | | /* > \endverbatim */ |
640 | | /* > */ |
641 | | /* > \param[out] S */ |
642 | | /* > \verbatim */ |
643 | | /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */ |
644 | | /* > The singular values of A, sorted so that S(i) >= S(i+1). */ |
645 | | /* > \endverbatim */ |
646 | | /* > */ |
647 | | /* > \param[out] U */ |
648 | | /* > \verbatim */ |
649 | | /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */ |
650 | | /* > (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */ |
651 | | /* > If JOBU = 'A', U contains the M-by-M orthogonal matrix U; */ |
652 | | /* > if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */ |
653 | | /* > (the left singular vectors, stored columnwise); */ |
654 | | /* > if JOBU = 'N' or 'O', U is not referenced. */ |
655 | | /* > \endverbatim */ |
656 | | /* > */ |
657 | | /* > \param[in] LDU */ |
658 | | /* > \verbatim */ |
659 | | /* > LDU is INTEGER */ |
660 | | /* > The leading dimension of the array U. LDU >= 1; if */ |
661 | | /* > JOBU = 'S' or 'A', LDU >= M. */ |
662 | | /* > \endverbatim */ |
663 | | /* > */ |
664 | | /* > \param[out] VT */ |
665 | | /* > \verbatim */ |
666 | | /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */ |
667 | | /* > If JOBVT = 'A', VT contains the N-by-N orthogonal matrix */ |
668 | | /* > V**T; */ |
669 | | /* > if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */ |
670 | | /* > V**T (the right singular vectors, stored rowwise); */ |
671 | | /* > if JOBVT = 'N' or 'O', VT is not referenced. */ |
672 | | /* > \endverbatim */ |
673 | | /* > */ |
674 | | /* > \param[in] LDVT */ |
675 | | /* > \verbatim */ |
676 | | /* > LDVT is INTEGER */ |
677 | | /* > The leading dimension of the array VT. LDVT >= 1; if */ |
678 | | /* > JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */ |
679 | | /* > \endverbatim */ |
680 | | /* > */ |
681 | | /* > \param[out] WORK */ |
682 | | /* > \verbatim */ |
683 | | /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ |
684 | | /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */ |
685 | | /* > if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged */ |
686 | | /* > superdiagonal elements of an upper bidiagonal matrix B */ |
687 | | /* > whose diagonal is in S (not necessarily sorted). B */ |
688 | | /* > satisfies A = U * B * VT, so it has the same singular values */ |
689 | | /* > as A, and singular vectors related by U and VT. */ |
690 | | /* > \endverbatim */ |
691 | | /* > */ |
692 | | /* > \param[in] LWORK */ |
693 | | /* > \verbatim */ |
694 | | /* > LWORK is INTEGER */ |
695 | | /* > The dimension of the array WORK. */ |
696 | | /* > LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code): */ |
697 | | /* > - PATH 1 (M much larger than N, JOBU='N') */ |
698 | | /* > - PATH 1t (N much larger than M, JOBVT='N') */ |
699 | | /* > LWORK >= MAX(1,3*MIN(M,N) + MAX(M,N),5*MIN(M,N)) for the other paths */ |
700 | | /* > For good performance, LWORK should generally be larger. */ |
701 | | /* > */ |
702 | | /* > If LWORK = -1, then a workspace query is assumed; the routine */ |
703 | | /* > only calculates the optimal size of the WORK array, returns */ |
704 | | /* > this value as the first entry of the WORK array, and no error */ |
705 | | /* > message related to LWORK is issued by XERBLA. */ |
706 | | /* > \endverbatim */ |
707 | | /* > */ |
708 | | /* > \param[out] INFO */ |
709 | | /* > \verbatim */ |
710 | | /* > INFO is INTEGER */ |
711 | | /* > = 0: successful exit. */ |
712 | | /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ |
713 | | /* > > 0: if DBDSQR did not converge, INFO specifies how many */ |
714 | | /* > superdiagonals of an intermediate bidiagonal form B */ |
715 | | /* > did not converge to zero. See the description of WORK */ |
716 | | /* > above for details. */ |
717 | | /* > \endverbatim */ |
718 | | |
719 | | /* Authors: */ |
720 | | /* ======== */ |
721 | | |
722 | | /* > \author Univ. of Tennessee */ |
723 | | /* > \author Univ. of California Berkeley */ |
724 | | /* > \author Univ. of Colorado Denver */ |
725 | | /* > \author NAG Ltd. */ |
726 | | |
727 | | /* > \date April 2012 */ |
728 | | |
729 | | /* > \ingroup doubleGEsing */ |
730 | | |
731 | | /* ===================================================================== */ |
732 | | /* Subroutine */ void dgesvd_(char *jobu, char *jobvt, integer *m, integer *n, |
733 | | doublereal *a, integer *lda, doublereal *s, doublereal *u, integer * |
734 | | ldu, doublereal *vt, integer *ldvt, doublereal *work, integer *lwork, |
735 | | integer *info) |
736 | 0 | { |
737 | | /* System generated locals */ |
738 | 0 | address a__1[2]; |
739 | 0 | integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2], |
740 | 0 | i__2, i__3, i__4; |
741 | 0 | char ch__1[2]; |
742 | | |
743 | | /* Local variables */ |
744 | 0 | integer iscl; |
745 | 0 | doublereal anrm; |
746 | 0 | integer ierr, itau, ncvt, nrvt, lwork_dgebrd__, lwork_dgelqf__, |
747 | 0 | lwork_dgeqrf__, i__; |
748 | 0 | extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *, |
749 | 0 | integer *, doublereal *, doublereal *, integer *, doublereal *, |
750 | 0 | integer *, doublereal *, doublereal *, integer *); |
751 | 0 | extern logical lsame_(char *, char *); |
752 | 0 | integer chunk, minmn, wrkbl, itaup, itauq, mnthr, iwork; |
753 | 0 | logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs; |
754 | 0 | integer ie; |
755 | 0 | extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *, |
756 | 0 | integer *, doublereal *, doublereal *, doublereal *, doublereal *, |
757 | 0 | doublereal *, integer *, integer *); |
758 | 0 | extern doublereal dlamch_(char *), dlange_(char *, integer *, |
759 | 0 | integer *, doublereal *, integer *, doublereal *); |
760 | 0 | integer ir, bdspac, iu; |
761 | 0 | extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *, |
762 | 0 | integer *, doublereal *, doublereal *, integer *, integer *), |
763 | 0 | dlascl_(char *, integer *, integer *, doublereal *, doublereal *, |
764 | 0 | integer *, integer *, doublereal *, integer *, integer *), |
765 | 0 | dgeqrf_(integer *, integer *, doublereal *, integer *, |
766 | 0 | doublereal *, doublereal *, integer *, integer *), dlacpy_(char *, |
767 | 0 | integer *, integer *, doublereal *, integer *, doublereal *, |
768 | 0 | integer *), dlaset_(char *, integer *, integer *, |
769 | 0 | doublereal *, doublereal *, doublereal *, integer *), |
770 | 0 | dbdsqr_(char *, integer *, integer *, integer *, integer *, |
771 | 0 | doublereal *, doublereal *, doublereal *, integer *, doublereal *, |
772 | 0 | integer *, doublereal *, integer *, doublereal *, integer *), dorgbr_(char *, integer *, integer *, integer *, |
773 | 0 | doublereal *, integer *, doublereal *, doublereal *, integer *, |
774 | 0 | integer *); |
775 | 0 | doublereal bignum; |
776 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
777 | 0 | extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
778 | 0 | integer *, integer *, ftnlen, ftnlen); |
779 | 0 | extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *, |
780 | 0 | integer *, integer *, doublereal *, integer *, doublereal *, |
781 | 0 | doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *, |
782 | 0 | doublereal *, integer *, doublereal *, doublereal *, integer *, |
783 | 0 | integer *), dorgqr_(integer *, integer *, integer *, doublereal *, |
784 | 0 | integer *, doublereal *, doublereal *, integer *, integer *); |
785 | 0 | integer ldwrkr, minwrk, ldwrku, maxwrk; |
786 | 0 | doublereal smlnum; |
787 | 0 | logical lquery, wntuas, wntvas; |
788 | 0 | integer lwork_dorgbr_p__, lwork_dorgbr_q__, lwork_dorglq_m__, |
789 | 0 | lwork_dorglq_n__, lwork_dorgqr_m__, lwork_dorgqr_n__, blk, ncu; |
790 | 0 | doublereal dum[1], eps; |
791 | 0 | integer nru; |
792 | | |
793 | | |
794 | | /* -- LAPACK driver routine (version 3.7.0) -- */ |
795 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
796 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
797 | | /* April 2012 */ |
798 | | |
799 | | |
800 | | /* ===================================================================== */ |
801 | | |
802 | | |
803 | | /* Test the input arguments */ |
804 | | |
805 | | /* Parameter adjustments */ |
806 | 0 | a_dim1 = *lda; |
807 | 0 | a_offset = 1 + a_dim1 * 1; |
808 | 0 | a -= a_offset; |
809 | 0 | --s; |
810 | 0 | u_dim1 = *ldu; |
811 | 0 | u_offset = 1 + u_dim1 * 1; |
812 | 0 | u -= u_offset; |
813 | 0 | vt_dim1 = *ldvt; |
814 | 0 | vt_offset = 1 + vt_dim1 * 1; |
815 | 0 | vt -= vt_offset; |
816 | 0 | --work; |
817 | | |
818 | | /* Function Body */ |
819 | 0 | *info = 0; |
820 | 0 | minmn = f2cmin(*m,*n); |
821 | 0 | wntua = lsame_(jobu, "A"); |
822 | 0 | wntus = lsame_(jobu, "S"); |
823 | 0 | wntuas = wntua || wntus; |
824 | 0 | wntuo = lsame_(jobu, "O"); |
825 | 0 | wntun = lsame_(jobu, "N"); |
826 | 0 | wntva = lsame_(jobvt, "A"); |
827 | 0 | wntvs = lsame_(jobvt, "S"); |
828 | 0 | wntvas = wntva || wntvs; |
829 | 0 | wntvo = lsame_(jobvt, "O"); |
830 | 0 | wntvn = lsame_(jobvt, "N"); |
831 | 0 | lquery = *lwork == -1; |
832 | |
|
833 | 0 | if (! (wntua || wntus || wntuo || wntun)) { |
834 | 0 | *info = -1; |
835 | 0 | } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) { |
836 | 0 | *info = -2; |
837 | 0 | } else if (*m < 0) { |
838 | 0 | *info = -3; |
839 | 0 | } else if (*n < 0) { |
840 | 0 | *info = -4; |
841 | 0 | } else if (*lda < f2cmax(1,*m)) { |
842 | 0 | *info = -6; |
843 | 0 | } else if (*ldu < 1 || wntuas && *ldu < *m) { |
844 | 0 | *info = -9; |
845 | 0 | } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) { |
846 | 0 | *info = -11; |
847 | 0 | } |
848 | | |
849 | | /* Compute workspace */ |
850 | | /* (Note: Comments in the code beginning "Workspace:" describe the */ |
851 | | /* minimal amount of workspace needed at that point in the code, */ |
852 | | /* as well as the preferred amount for good performance. */ |
853 | | /* NB refers to the optimal block size for the immediately */ |
854 | | /* following subroutine, as returned by ILAENV.) */ |
855 | |
|
856 | 0 | if (*info == 0) { |
857 | 0 | minwrk = 1; |
858 | 0 | maxwrk = 1; |
859 | 0 | if (*m >= *n && minmn > 0) { |
860 | | |
861 | | /* Compute space needed for DBDSQR */ |
862 | | |
863 | | /* Writing concatenation */ |
864 | 0 | i__1[0] = 1, a__1[0] = jobu; |
865 | 0 | i__1[1] = 1, a__1[1] = jobvt; |
866 | 0 | s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); |
867 | 0 | mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, ( |
868 | 0 | ftnlen)6, (ftnlen)2); |
869 | 0 | bdspac = *n * 5; |
870 | | /* Compute space needed for DGEQRF */ |
871 | 0 | dgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
872 | 0 | lwork_dgeqrf__ = (integer) dum[0]; |
873 | | /* Compute space needed for DORGQR */ |
874 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
875 | 0 | lwork_dorgqr_n__ = (integer) dum[0]; |
876 | 0 | dorgqr_(m, m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
877 | 0 | lwork_dorgqr_m__ = (integer) dum[0]; |
878 | | /* Compute space needed for DGEBRD */ |
879 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, |
880 | 0 | &ierr); |
881 | 0 | lwork_dgebrd__ = (integer) dum[0]; |
882 | | /* Compute space needed for DORGBR P */ |
883 | 0 | dorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
884 | 0 | lwork_dorgbr_p__ = (integer) dum[0]; |
885 | | /* Compute space needed for DORGBR Q */ |
886 | 0 | dorgbr_("Q", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
887 | 0 | lwork_dorgbr_q__ = (integer) dum[0]; |
888 | |
|
889 | 0 | if (*m >= mnthr) { |
890 | 0 | if (wntun) { |
891 | | |
892 | | /* Path 1 (M much larger than N, JOBU='N') */ |
893 | |
|
894 | 0 | maxwrk = *n + lwork_dgeqrf__; |
895 | | /* Computing MAX */ |
896 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_dgebrd__; |
897 | 0 | maxwrk = f2cmax(i__2,i__3); |
898 | 0 | if (wntvo || wntvas) { |
899 | | /* Computing MAX */ |
900 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_p__; |
901 | 0 | maxwrk = f2cmax(i__2,i__3); |
902 | 0 | } |
903 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
904 | | /* Computing MAX */ |
905 | 0 | i__2 = *n << 2; |
906 | 0 | minwrk = f2cmax(i__2,bdspac); |
907 | 0 | } else if (wntuo && wntvn) { |
908 | | |
909 | | /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ |
910 | |
|
911 | 0 | wrkbl = *n + lwork_dgeqrf__; |
912 | | /* Computing MAX */ |
913 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__; |
914 | 0 | wrkbl = f2cmax(i__2,i__3); |
915 | | /* Computing MAX */ |
916 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
917 | 0 | wrkbl = f2cmax(i__2,i__3); |
918 | | /* Computing MAX */ |
919 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
920 | 0 | wrkbl = f2cmax(i__2,i__3); |
921 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
922 | | /* Computing MAX */ |
923 | 0 | i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n; |
924 | 0 | maxwrk = f2cmax(i__2,i__3); |
925 | | /* Computing MAX */ |
926 | 0 | i__2 = *n * 3 + *m; |
927 | 0 | minwrk = f2cmax(i__2,bdspac); |
928 | 0 | } else if (wntuo && wntvas) { |
929 | | |
930 | | /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */ |
931 | | /* 'A') */ |
932 | |
|
933 | 0 | wrkbl = *n + lwork_dgeqrf__; |
934 | | /* Computing MAX */ |
935 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__; |
936 | 0 | wrkbl = f2cmax(i__2,i__3); |
937 | | /* Computing MAX */ |
938 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
939 | 0 | wrkbl = f2cmax(i__2,i__3); |
940 | | /* Computing MAX */ |
941 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
942 | 0 | wrkbl = f2cmax(i__2,i__3); |
943 | | /* Computing MAX */ |
944 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__; |
945 | 0 | wrkbl = f2cmax(i__2,i__3); |
946 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
947 | | /* Computing MAX */ |
948 | 0 | i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n; |
949 | 0 | maxwrk = f2cmax(i__2,i__3); |
950 | | /* Computing MAX */ |
951 | 0 | i__2 = *n * 3 + *m; |
952 | 0 | minwrk = f2cmax(i__2,bdspac); |
953 | 0 | } else if (wntus && wntvn) { |
954 | | |
955 | | /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ |
956 | |
|
957 | 0 | wrkbl = *n + lwork_dgeqrf__; |
958 | | /* Computing MAX */ |
959 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__; |
960 | 0 | wrkbl = f2cmax(i__2,i__3); |
961 | | /* Computing MAX */ |
962 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
963 | 0 | wrkbl = f2cmax(i__2,i__3); |
964 | | /* Computing MAX */ |
965 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
966 | 0 | wrkbl = f2cmax(i__2,i__3); |
967 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
968 | 0 | maxwrk = *n * *n + wrkbl; |
969 | | /* Computing MAX */ |
970 | 0 | i__2 = *n * 3 + *m; |
971 | 0 | minwrk = f2cmax(i__2,bdspac); |
972 | 0 | } else if (wntus && wntvo) { |
973 | | |
974 | | /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ |
975 | |
|
976 | 0 | wrkbl = *n + lwork_dgeqrf__; |
977 | | /* Computing MAX */ |
978 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__; |
979 | 0 | wrkbl = f2cmax(i__2,i__3); |
980 | | /* Computing MAX */ |
981 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
982 | 0 | wrkbl = f2cmax(i__2,i__3); |
983 | | /* Computing MAX */ |
984 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
985 | 0 | wrkbl = f2cmax(i__2,i__3); |
986 | | /* Computing MAX */ |
987 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__; |
988 | 0 | wrkbl = f2cmax(i__2,i__3); |
989 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
990 | 0 | maxwrk = (*n << 1) * *n + wrkbl; |
991 | | /* Computing MAX */ |
992 | 0 | i__2 = *n * 3 + *m; |
993 | 0 | minwrk = f2cmax(i__2,bdspac); |
994 | 0 | } else if (wntus && wntvas) { |
995 | | |
996 | | /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */ |
997 | | /* 'A') */ |
998 | |
|
999 | 0 | wrkbl = *n + lwork_dgeqrf__; |
1000 | | /* Computing MAX */ |
1001 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__; |
1002 | 0 | wrkbl = f2cmax(i__2,i__3); |
1003 | | /* Computing MAX */ |
1004 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
1005 | 0 | wrkbl = f2cmax(i__2,i__3); |
1006 | | /* Computing MAX */ |
1007 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
1008 | 0 | wrkbl = f2cmax(i__2,i__3); |
1009 | | /* Computing MAX */ |
1010 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__; |
1011 | 0 | wrkbl = f2cmax(i__2,i__3); |
1012 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1013 | 0 | maxwrk = *n * *n + wrkbl; |
1014 | | /* Computing MAX */ |
1015 | 0 | i__2 = *n * 3 + *m; |
1016 | 0 | minwrk = f2cmax(i__2,bdspac); |
1017 | 0 | } else if (wntua && wntvn) { |
1018 | | |
1019 | | /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ |
1020 | |
|
1021 | 0 | wrkbl = *n + lwork_dgeqrf__; |
1022 | | /* Computing MAX */ |
1023 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__; |
1024 | 0 | wrkbl = f2cmax(i__2,i__3); |
1025 | | /* Computing MAX */ |
1026 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
1027 | 0 | wrkbl = f2cmax(i__2,i__3); |
1028 | | /* Computing MAX */ |
1029 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
1030 | 0 | wrkbl = f2cmax(i__2,i__3); |
1031 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1032 | 0 | maxwrk = *n * *n + wrkbl; |
1033 | | /* Computing MAX */ |
1034 | 0 | i__2 = *n * 3 + *m; |
1035 | 0 | minwrk = f2cmax(i__2,bdspac); |
1036 | 0 | } else if (wntua && wntvo) { |
1037 | | |
1038 | | /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ |
1039 | |
|
1040 | 0 | wrkbl = *n + lwork_dgeqrf__; |
1041 | | /* Computing MAX */ |
1042 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__; |
1043 | 0 | wrkbl = f2cmax(i__2,i__3); |
1044 | | /* Computing MAX */ |
1045 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
1046 | 0 | wrkbl = f2cmax(i__2,i__3); |
1047 | | /* Computing MAX */ |
1048 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
1049 | 0 | wrkbl = f2cmax(i__2,i__3); |
1050 | | /* Computing MAX */ |
1051 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__; |
1052 | 0 | wrkbl = f2cmax(i__2,i__3); |
1053 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1054 | 0 | maxwrk = (*n << 1) * *n + wrkbl; |
1055 | | /* Computing MAX */ |
1056 | 0 | i__2 = *n * 3 + *m; |
1057 | 0 | minwrk = f2cmax(i__2,bdspac); |
1058 | 0 | } else if (wntua && wntvas) { |
1059 | | |
1060 | | /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */ |
1061 | | /* 'A') */ |
1062 | |
|
1063 | 0 | wrkbl = *n + lwork_dgeqrf__; |
1064 | | /* Computing MAX */ |
1065 | 0 | i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__; |
1066 | 0 | wrkbl = f2cmax(i__2,i__3); |
1067 | | /* Computing MAX */ |
1068 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__; |
1069 | 0 | wrkbl = f2cmax(i__2,i__3); |
1070 | | /* Computing MAX */ |
1071 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__; |
1072 | 0 | wrkbl = f2cmax(i__2,i__3); |
1073 | | /* Computing MAX */ |
1074 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__; |
1075 | 0 | wrkbl = f2cmax(i__2,i__3); |
1076 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1077 | 0 | maxwrk = *n * *n + wrkbl; |
1078 | | /* Computing MAX */ |
1079 | 0 | i__2 = *n * 3 + *m; |
1080 | 0 | minwrk = f2cmax(i__2,bdspac); |
1081 | 0 | } |
1082 | 0 | } else { |
1083 | | |
1084 | | /* Path 10 (M at least N, but not much larger) */ |
1085 | |
|
1086 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, & |
1087 | 0 | c_n1, &ierr); |
1088 | 0 | lwork_dgebrd__ = (integer) dum[0]; |
1089 | 0 | maxwrk = *n * 3 + lwork_dgebrd__; |
1090 | 0 | if (wntus || wntuo) { |
1091 | 0 | dorgbr_("Q", m, n, n, &a[a_offset], lda, dum, dum, &c_n1, |
1092 | 0 | &ierr); |
1093 | 0 | lwork_dorgbr_q__ = (integer) dum[0]; |
1094 | | /* Computing MAX */ |
1095 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_q__; |
1096 | 0 | maxwrk = f2cmax(i__2,i__3); |
1097 | 0 | } |
1098 | 0 | if (wntua) { |
1099 | 0 | dorgbr_("Q", m, m, n, &a[a_offset], lda, dum, dum, &c_n1, |
1100 | 0 | &ierr); |
1101 | 0 | lwork_dorgbr_q__ = (integer) dum[0]; |
1102 | | /* Computing MAX */ |
1103 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_q__; |
1104 | 0 | maxwrk = f2cmax(i__2,i__3); |
1105 | 0 | } |
1106 | 0 | if (! wntvn) { |
1107 | | /* Computing MAX */ |
1108 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_p__; |
1109 | 0 | maxwrk = f2cmax(i__2,i__3); |
1110 | 0 | } |
1111 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
1112 | | /* Computing MAX */ |
1113 | 0 | i__2 = *n * 3 + *m; |
1114 | 0 | minwrk = f2cmax(i__2,bdspac); |
1115 | 0 | } |
1116 | 0 | } else if (minmn > 0) { |
1117 | | |
1118 | | /* Compute space needed for DBDSQR */ |
1119 | | |
1120 | | /* Writing concatenation */ |
1121 | 0 | i__1[0] = 1, a__1[0] = jobu; |
1122 | 0 | i__1[1] = 1, a__1[1] = jobvt; |
1123 | 0 | s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); |
1124 | 0 | mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, ( |
1125 | 0 | ftnlen)6, (ftnlen)2); |
1126 | 0 | bdspac = *m * 5; |
1127 | | /* Compute space needed for DGELQF */ |
1128 | 0 | dgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
1129 | 0 | lwork_dgelqf__ = (integer) dum[0]; |
1130 | | /* Compute space needed for DORGLQ */ |
1131 | 0 | dorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr); |
1132 | 0 | lwork_dorglq_n__ = (integer) dum[0]; |
1133 | 0 | dorglq_(m, n, m, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
1134 | 0 | lwork_dorglq_m__ = (integer) dum[0]; |
1135 | | /* Compute space needed for DGEBRD */ |
1136 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, |
1137 | 0 | &ierr); |
1138 | 0 | lwork_dgebrd__ = (integer) dum[0]; |
1139 | | /* Compute space needed for DORGBR P */ |
1140 | 0 | dorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr); |
1141 | 0 | lwork_dorgbr_p__ = (integer) dum[0]; |
1142 | | /* Compute space needed for DORGBR Q */ |
1143 | 0 | dorgbr_("Q", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr); |
1144 | 0 | lwork_dorgbr_q__ = (integer) dum[0]; |
1145 | 0 | if (*n >= mnthr) { |
1146 | 0 | if (wntvn) { |
1147 | | |
1148 | | /* Path 1t(N much larger than M, JOBVT='N') */ |
1149 | |
|
1150 | 0 | maxwrk = *m + lwork_dgelqf__; |
1151 | | /* Computing MAX */ |
1152 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_dgebrd__; |
1153 | 0 | maxwrk = f2cmax(i__2,i__3); |
1154 | 0 | if (wntuo || wntuas) { |
1155 | | /* Computing MAX */ |
1156 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_q__; |
1157 | 0 | maxwrk = f2cmax(i__2,i__3); |
1158 | 0 | } |
1159 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
1160 | | /* Computing MAX */ |
1161 | 0 | i__2 = *m << 2; |
1162 | 0 | minwrk = f2cmax(i__2,bdspac); |
1163 | 0 | } else if (wntvo && wntun) { |
1164 | | |
1165 | | /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ |
1166 | |
|
1167 | 0 | wrkbl = *m + lwork_dgelqf__; |
1168 | | /* Computing MAX */ |
1169 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__; |
1170 | 0 | wrkbl = f2cmax(i__2,i__3); |
1171 | | /* Computing MAX */ |
1172 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1173 | 0 | wrkbl = f2cmax(i__2,i__3); |
1174 | | /* Computing MAX */ |
1175 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1176 | 0 | wrkbl = f2cmax(i__2,i__3); |
1177 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1178 | | /* Computing MAX */ |
1179 | 0 | i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m; |
1180 | 0 | maxwrk = f2cmax(i__2,i__3); |
1181 | | /* Computing MAX */ |
1182 | 0 | i__2 = *m * 3 + *n; |
1183 | 0 | minwrk = f2cmax(i__2,bdspac); |
1184 | 0 | } else if (wntvo && wntuas) { |
1185 | | |
1186 | | /* Path 3t(N much larger than M, JOBU='S' or 'A', */ |
1187 | | /* JOBVT='O') */ |
1188 | |
|
1189 | 0 | wrkbl = *m + lwork_dgelqf__; |
1190 | | /* Computing MAX */ |
1191 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__; |
1192 | 0 | wrkbl = f2cmax(i__2,i__3); |
1193 | | /* Computing MAX */ |
1194 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1195 | 0 | wrkbl = f2cmax(i__2,i__3); |
1196 | | /* Computing MAX */ |
1197 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1198 | 0 | wrkbl = f2cmax(i__2,i__3); |
1199 | | /* Computing MAX */ |
1200 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__; |
1201 | 0 | wrkbl = f2cmax(i__2,i__3); |
1202 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1203 | | /* Computing MAX */ |
1204 | 0 | i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m; |
1205 | 0 | maxwrk = f2cmax(i__2,i__3); |
1206 | | /* Computing MAX */ |
1207 | 0 | i__2 = *m * 3 + *n; |
1208 | 0 | minwrk = f2cmax(i__2,bdspac); |
1209 | 0 | } else if (wntvs && wntun) { |
1210 | | |
1211 | | /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ |
1212 | |
|
1213 | 0 | wrkbl = *m + lwork_dgelqf__; |
1214 | | /* Computing MAX */ |
1215 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__; |
1216 | 0 | wrkbl = f2cmax(i__2,i__3); |
1217 | | /* Computing MAX */ |
1218 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1219 | 0 | wrkbl = f2cmax(i__2,i__3); |
1220 | | /* Computing MAX */ |
1221 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1222 | 0 | wrkbl = f2cmax(i__2,i__3); |
1223 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1224 | 0 | maxwrk = *m * *m + wrkbl; |
1225 | | /* Computing MAX */ |
1226 | 0 | i__2 = *m * 3 + *n; |
1227 | 0 | minwrk = f2cmax(i__2,bdspac); |
1228 | 0 | } else if (wntvs && wntuo) { |
1229 | | |
1230 | | /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ |
1231 | |
|
1232 | 0 | wrkbl = *m + lwork_dgelqf__; |
1233 | | /* Computing MAX */ |
1234 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__; |
1235 | 0 | wrkbl = f2cmax(i__2,i__3); |
1236 | | /* Computing MAX */ |
1237 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1238 | 0 | wrkbl = f2cmax(i__2,i__3); |
1239 | | /* Computing MAX */ |
1240 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1241 | 0 | wrkbl = f2cmax(i__2,i__3); |
1242 | | /* Computing MAX */ |
1243 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__; |
1244 | 0 | wrkbl = f2cmax(i__2,i__3); |
1245 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1246 | 0 | maxwrk = (*m << 1) * *m + wrkbl; |
1247 | | /* Computing MAX */ |
1248 | 0 | i__2 = *m * 3 + *n; |
1249 | 0 | minwrk = f2cmax(i__2,bdspac); |
1250 | 0 | } else if (wntvs && wntuas) { |
1251 | | |
1252 | | /* Path 6t(N much larger than M, JOBU='S' or 'A', */ |
1253 | | /* JOBVT='S') */ |
1254 | |
|
1255 | 0 | wrkbl = *m + lwork_dgelqf__; |
1256 | | /* Computing MAX */ |
1257 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__; |
1258 | 0 | wrkbl = f2cmax(i__2,i__3); |
1259 | | /* Computing MAX */ |
1260 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1261 | 0 | wrkbl = f2cmax(i__2,i__3); |
1262 | | /* Computing MAX */ |
1263 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1264 | 0 | wrkbl = f2cmax(i__2,i__3); |
1265 | | /* Computing MAX */ |
1266 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__; |
1267 | 0 | wrkbl = f2cmax(i__2,i__3); |
1268 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1269 | 0 | maxwrk = *m * *m + wrkbl; |
1270 | | /* Computing MAX */ |
1271 | 0 | i__2 = *m * 3 + *n; |
1272 | 0 | minwrk = f2cmax(i__2,bdspac); |
1273 | 0 | } else if (wntva && wntun) { |
1274 | | |
1275 | | /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ |
1276 | |
|
1277 | 0 | wrkbl = *m + lwork_dgelqf__; |
1278 | | /* Computing MAX */ |
1279 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__; |
1280 | 0 | wrkbl = f2cmax(i__2,i__3); |
1281 | | /* Computing MAX */ |
1282 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1283 | 0 | wrkbl = f2cmax(i__2,i__3); |
1284 | | /* Computing MAX */ |
1285 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1286 | 0 | wrkbl = f2cmax(i__2,i__3); |
1287 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1288 | 0 | maxwrk = *m * *m + wrkbl; |
1289 | | /* Computing MAX */ |
1290 | 0 | i__2 = *m * 3 + *n; |
1291 | 0 | minwrk = f2cmax(i__2,bdspac); |
1292 | 0 | } else if (wntva && wntuo) { |
1293 | | |
1294 | | /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ |
1295 | |
|
1296 | 0 | wrkbl = *m + lwork_dgelqf__; |
1297 | | /* Computing MAX */ |
1298 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__; |
1299 | 0 | wrkbl = f2cmax(i__2,i__3); |
1300 | | /* Computing MAX */ |
1301 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1302 | 0 | wrkbl = f2cmax(i__2,i__3); |
1303 | | /* Computing MAX */ |
1304 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1305 | 0 | wrkbl = f2cmax(i__2,i__3); |
1306 | | /* Computing MAX */ |
1307 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__; |
1308 | 0 | wrkbl = f2cmax(i__2,i__3); |
1309 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1310 | 0 | maxwrk = (*m << 1) * *m + wrkbl; |
1311 | | /* Computing MAX */ |
1312 | 0 | i__2 = *m * 3 + *n; |
1313 | 0 | minwrk = f2cmax(i__2,bdspac); |
1314 | 0 | } else if (wntva && wntuas) { |
1315 | | |
1316 | | /* Path 9t(N much larger than M, JOBU='S' or 'A', */ |
1317 | | /* JOBVT='A') */ |
1318 | |
|
1319 | 0 | wrkbl = *m + lwork_dgelqf__; |
1320 | | /* Computing MAX */ |
1321 | 0 | i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__; |
1322 | 0 | wrkbl = f2cmax(i__2,i__3); |
1323 | | /* Computing MAX */ |
1324 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__; |
1325 | 0 | wrkbl = f2cmax(i__2,i__3); |
1326 | | /* Computing MAX */ |
1327 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__; |
1328 | 0 | wrkbl = f2cmax(i__2,i__3); |
1329 | | /* Computing MAX */ |
1330 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__; |
1331 | 0 | wrkbl = f2cmax(i__2,i__3); |
1332 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1333 | 0 | maxwrk = *m * *m + wrkbl; |
1334 | | /* Computing MAX */ |
1335 | 0 | i__2 = *m * 3 + *n; |
1336 | 0 | minwrk = f2cmax(i__2,bdspac); |
1337 | 0 | } |
1338 | 0 | } else { |
1339 | | |
1340 | | /* Path 10t(N greater than M, but not much larger) */ |
1341 | |
|
1342 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, & |
1343 | 0 | c_n1, &ierr); |
1344 | 0 | lwork_dgebrd__ = (integer) dum[0]; |
1345 | 0 | maxwrk = *m * 3 + lwork_dgebrd__; |
1346 | 0 | if (wntvs || wntvo) { |
1347 | | /* Compute space needed for DORGBR P */ |
1348 | 0 | dorgbr_("P", m, n, m, &a[a_offset], n, dum, dum, &c_n1, & |
1349 | 0 | ierr); |
1350 | 0 | lwork_dorgbr_p__ = (integer) dum[0]; |
1351 | | /* Computing MAX */ |
1352 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_p__; |
1353 | 0 | maxwrk = f2cmax(i__2,i__3); |
1354 | 0 | } |
1355 | 0 | if (wntva) { |
1356 | 0 | dorgbr_("P", n, n, m, &a[a_offset], n, dum, dum, &c_n1, & |
1357 | 0 | ierr); |
1358 | 0 | lwork_dorgbr_p__ = (integer) dum[0]; |
1359 | | /* Computing MAX */ |
1360 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_p__; |
1361 | 0 | maxwrk = f2cmax(i__2,i__3); |
1362 | 0 | } |
1363 | 0 | if (! wntun) { |
1364 | | /* Computing MAX */ |
1365 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_q__; |
1366 | 0 | maxwrk = f2cmax(i__2,i__3); |
1367 | 0 | } |
1368 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
1369 | | /* Computing MAX */ |
1370 | 0 | i__2 = *m * 3 + *n; |
1371 | 0 | minwrk = f2cmax(i__2,bdspac); |
1372 | 0 | } |
1373 | 0 | } |
1374 | 0 | maxwrk = f2cmax(maxwrk,minwrk); |
1375 | 0 | work[1] = (doublereal) maxwrk; |
1376 | |
|
1377 | 0 | if (*lwork < minwrk && ! lquery) { |
1378 | 0 | *info = -13; |
1379 | 0 | } |
1380 | 0 | } |
1381 | |
|
1382 | 0 | if (*info != 0) { |
1383 | 0 | i__2 = -(*info); |
1384 | 0 | xerbla_("DGESVD", &i__2, (ftnlen)6); |
1385 | 0 | return; |
1386 | 0 | } else if (lquery) { |
1387 | 0 | return; |
1388 | 0 | } |
1389 | | |
1390 | | /* Quick return if possible */ |
1391 | | |
1392 | 0 | if (*m == 0 || *n == 0) { |
1393 | 0 | return; |
1394 | 0 | } |
1395 | | |
1396 | | /* Get machine constants */ |
1397 | | |
1398 | 0 | eps = dlamch_("P"); |
1399 | 0 | smlnum = sqrt(dlamch_("S")) / eps; |
1400 | 0 | bignum = 1. / smlnum; |
1401 | | |
1402 | | /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */ |
1403 | |
|
1404 | 0 | anrm = dlange_("M", m, n, &a[a_offset], lda, dum); |
1405 | 0 | iscl = 0; |
1406 | 0 | if (anrm > 0. && anrm < smlnum) { |
1407 | 0 | iscl = 1; |
1408 | 0 | dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & |
1409 | 0 | ierr); |
1410 | 0 | } else if (anrm > bignum) { |
1411 | 0 | iscl = 1; |
1412 | 0 | dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & |
1413 | 0 | ierr); |
1414 | 0 | } |
1415 | |
|
1416 | 0 | if (*m >= *n) { |
1417 | | |
1418 | | /* A has at least as many rows as columns. If A has sufficiently */ |
1419 | | /* more rows than columns, first reduce using the QR */ |
1420 | | /* decomposition (if sufficient workspace available) */ |
1421 | |
|
1422 | 0 | if (*m >= mnthr) { |
1423 | |
|
1424 | 0 | if (wntun) { |
1425 | | |
1426 | | /* Path 1 (M much larger than N, JOBU='N') */ |
1427 | | /* No left singular vectors to be computed */ |
1428 | |
|
1429 | 0 | itau = 1; |
1430 | 0 | iwork = itau + *n; |
1431 | | |
1432 | | /* Compute A=Q*R */ |
1433 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
1434 | |
|
1435 | 0 | i__2 = *lwork - iwork + 1; |
1436 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & |
1437 | 0 | i__2, &ierr); |
1438 | | |
1439 | | /* Zero out below R */ |
1440 | |
|
1441 | 0 | if (*n > 1) { |
1442 | 0 | i__2 = *n - 1; |
1443 | 0 | i__3 = *n - 1; |
1444 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[a_dim1 + 2], |
1445 | 0 | lda); |
1446 | 0 | } |
1447 | 0 | ie = 1; |
1448 | 0 | itauq = ie + *n; |
1449 | 0 | itaup = itauq + *n; |
1450 | 0 | iwork = itaup + *n; |
1451 | | |
1452 | | /* Bidiagonalize R in A */ |
1453 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
1454 | |
|
1455 | 0 | i__2 = *lwork - iwork + 1; |
1456 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
1457 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
1458 | 0 | ncvt = 0; |
1459 | 0 | if (wntvo || wntvas) { |
1460 | | |
1461 | | /* If right singular vectors desired, generate P'. */ |
1462 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
1463 | |
|
1464 | 0 | i__2 = *lwork - iwork + 1; |
1465 | 0 | dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], & |
1466 | 0 | work[iwork], &i__2, &ierr); |
1467 | 0 | ncvt = *n; |
1468 | 0 | } |
1469 | 0 | iwork = ie + *n; |
1470 | | |
1471 | | /* Perform bidiagonal QR iteration, computing right */ |
1472 | | /* singular vectors of A in A if desired */ |
1473 | | /* (Workspace: need BDSPAC) */ |
1474 | |
|
1475 | 0 | dbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &work[ie], &a[ |
1476 | 0 | a_offset], lda, dum, &c__1, dum, &c__1, &work[iwork], |
1477 | 0 | info); |
1478 | | |
1479 | | /* If right singular vectors desired in VT, copy them there */ |
1480 | |
|
1481 | 0 | if (wntvas) { |
1482 | 0 | dlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], |
1483 | 0 | ldvt); |
1484 | 0 | } |
1485 | |
|
1486 | 0 | } else if (wntuo && wntvn) { |
1487 | | |
1488 | | /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ |
1489 | | /* N left singular vectors to be overwritten on A and */ |
1490 | | /* no right singular vectors to be computed */ |
1491 | | |
1492 | | /* Computing MAX */ |
1493 | 0 | i__2 = *n << 2; |
1494 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
1495 | | |
1496 | | /* Sufficient workspace for a fast algorithm */ |
1497 | |
|
1498 | 0 | ir = 1; |
1499 | | /* Computing MAX */ |
1500 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *n; |
1501 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) { |
1502 | | |
1503 | | /* WORK(IU) is LDA by N, WORK(IR) is LDA by N */ |
1504 | |
|
1505 | 0 | ldwrku = *lda; |
1506 | 0 | ldwrkr = *lda; |
1507 | 0 | } else /* if(complicated condition) */ { |
1508 | | /* Computing MAX */ |
1509 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *n; |
1510 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *n * *n) { |
1511 | | |
1512 | | /* WORK(IU) is LDA by N, WORK(IR) is N by N */ |
1513 | |
|
1514 | 0 | ldwrku = *lda; |
1515 | 0 | ldwrkr = *n; |
1516 | 0 | } else { |
1517 | | |
1518 | | /* WORK(IU) is LDWRKU by N, WORK(IR) is N by N */ |
1519 | |
|
1520 | 0 | ldwrku = (*lwork - *n * *n - *n) / *n; |
1521 | 0 | ldwrkr = *n; |
1522 | 0 | } |
1523 | 0 | } |
1524 | 0 | itau = ir + ldwrkr * *n; |
1525 | 0 | iwork = itau + *n; |
1526 | | |
1527 | | /* Compute A=Q*R */ |
1528 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1529 | |
|
1530 | 0 | i__2 = *lwork - iwork + 1; |
1531 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1532 | 0 | , &i__2, &ierr); |
1533 | | |
1534 | | /* Copy R to WORK(IR) and zero out below it */ |
1535 | |
|
1536 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); |
1537 | 0 | i__2 = *n - 1; |
1538 | 0 | i__3 = *n - 1; |
1539 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + 1], |
1540 | 0 | &ldwrkr); |
1541 | | |
1542 | | /* Generate Q in A */ |
1543 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1544 | |
|
1545 | 0 | i__2 = *lwork - iwork + 1; |
1546 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1547 | 0 | iwork], &i__2, &ierr); |
1548 | 0 | ie = itau; |
1549 | 0 | itauq = ie + *n; |
1550 | 0 | itaup = itauq + *n; |
1551 | 0 | iwork = itaup + *n; |
1552 | | |
1553 | | /* Bidiagonalize R in WORK(IR) */ |
1554 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
1555 | |
|
1556 | 0 | i__2 = *lwork - iwork + 1; |
1557 | 0 | dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
1558 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
1559 | | |
1560 | | /* Generate left vectors bidiagonalizing R */ |
1561 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
1562 | |
|
1563 | 0 | i__2 = *lwork - iwork + 1; |
1564 | 0 | dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & |
1565 | 0 | work[iwork], &i__2, &ierr); |
1566 | 0 | iwork = ie + *n; |
1567 | | |
1568 | | /* Perform bidiagonal QR iteration, computing left */ |
1569 | | /* singular vectors of R in WORK(IR) */ |
1570 | | /* (Workspace: need N*N + BDSPAC) */ |
1571 | |
|
1572 | 0 | dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], dum, & |
1573 | 0 | c__1, &work[ir], &ldwrkr, dum, &c__1, &work[iwork] |
1574 | 0 | , info); |
1575 | 0 | iu = ie + *n; |
1576 | | |
1577 | | /* Multiply Q in A by left singular vectors of R in */ |
1578 | | /* WORK(IR), storing result in WORK(IU) and copying to A */ |
1579 | | /* (Workspace: need N*N + 2*N, prefer N*N + M*N + N) */ |
1580 | |
|
1581 | 0 | i__2 = *m; |
1582 | 0 | i__3 = ldwrku; |
1583 | 0 | for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
1584 | 0 | i__3) { |
1585 | | /* Computing MIN */ |
1586 | 0 | i__4 = *m - i__ + 1; |
1587 | 0 | chunk = f2cmin(i__4,ldwrku); |
1588 | 0 | dgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ + |
1589 | 0 | a_dim1], lda, &work[ir], &ldwrkr, &c_b57, & |
1590 | 0 | work[iu], &ldwrku); |
1591 | 0 | dlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + |
1592 | 0 | a_dim1], lda); |
1593 | | /* L10: */ |
1594 | 0 | } |
1595 | |
|
1596 | 0 | } else { |
1597 | | |
1598 | | /* Insufficient workspace for a fast algorithm */ |
1599 | |
|
1600 | 0 | ie = 1; |
1601 | 0 | itauq = ie + *n; |
1602 | 0 | itaup = itauq + *n; |
1603 | 0 | iwork = itaup + *n; |
1604 | | |
1605 | | /* Bidiagonalize A */ |
1606 | | /* (Workspace: need 3*N + M, prefer 3*N + (M + N)*NB) */ |
1607 | |
|
1608 | 0 | i__3 = *lwork - iwork + 1; |
1609 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
1610 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
1611 | | |
1612 | | /* Generate left vectors bidiagonalizing A */ |
1613 | | /* (Workspace: need 4*N, prefer 3*N + N*NB) */ |
1614 | |
|
1615 | 0 | i__3 = *lwork - iwork + 1; |
1616 | 0 | dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & |
1617 | 0 | work[iwork], &i__3, &ierr); |
1618 | 0 | iwork = ie + *n; |
1619 | | |
1620 | | /* Perform bidiagonal QR iteration, computing left */ |
1621 | | /* singular vectors of A in A */ |
1622 | | /* (Workspace: need BDSPAC) */ |
1623 | |
|
1624 | 0 | dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], dum, & |
1625 | 0 | c__1, &a[a_offset], lda, dum, &c__1, &work[iwork], |
1626 | 0 | info); |
1627 | |
|
1628 | 0 | } |
1629 | |
|
1630 | 0 | } else if (wntuo && wntvas) { |
1631 | | |
1632 | | /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */ |
1633 | | /* N left singular vectors to be overwritten on A and */ |
1634 | | /* N right singular vectors to be computed in VT */ |
1635 | | |
1636 | | /* Computing MAX */ |
1637 | 0 | i__3 = *n << 2; |
1638 | 0 | if (*lwork >= *n * *n + f2cmax(i__3,bdspac)) { |
1639 | | |
1640 | | /* Sufficient workspace for a fast algorithm */ |
1641 | |
|
1642 | 0 | ir = 1; |
1643 | | /* Computing MAX */ |
1644 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *n; |
1645 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) { |
1646 | | |
1647 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
1648 | |
|
1649 | 0 | ldwrku = *lda; |
1650 | 0 | ldwrkr = *lda; |
1651 | 0 | } else /* if(complicated condition) */ { |
1652 | | /* Computing MAX */ |
1653 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *n; |
1654 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *n * *n) { |
1655 | | |
1656 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
1657 | |
|
1658 | 0 | ldwrku = *lda; |
1659 | 0 | ldwrkr = *n; |
1660 | 0 | } else { |
1661 | | |
1662 | | /* WORK(IU) is LDWRKU by N and WORK(IR) is N by N */ |
1663 | |
|
1664 | 0 | ldwrku = (*lwork - *n * *n - *n) / *n; |
1665 | 0 | ldwrkr = *n; |
1666 | 0 | } |
1667 | 0 | } |
1668 | 0 | itau = ir + ldwrkr * *n; |
1669 | 0 | iwork = itau + *n; |
1670 | | |
1671 | | /* Compute A=Q*R */ |
1672 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1673 | |
|
1674 | 0 | i__3 = *lwork - iwork + 1; |
1675 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1676 | 0 | , &i__3, &ierr); |
1677 | | |
1678 | | /* Copy R to VT, zeroing out below it */ |
1679 | |
|
1680 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
1681 | 0 | ldvt); |
1682 | 0 | if (*n > 1) { |
1683 | 0 | i__3 = *n - 1; |
1684 | 0 | i__2 = *n - 1; |
1685 | 0 | dlaset_("L", &i__3, &i__2, &c_b57, &c_b57, &vt[ |
1686 | 0 | vt_dim1 + 2], ldvt); |
1687 | 0 | } |
1688 | | |
1689 | | /* Generate Q in A */ |
1690 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1691 | |
|
1692 | 0 | i__3 = *lwork - iwork + 1; |
1693 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1694 | 0 | iwork], &i__3, &ierr); |
1695 | 0 | ie = itau; |
1696 | 0 | itauq = ie + *n; |
1697 | 0 | itaup = itauq + *n; |
1698 | 0 | iwork = itaup + *n; |
1699 | | |
1700 | | /* Bidiagonalize R in VT, copying result to WORK(IR) */ |
1701 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
1702 | |
|
1703 | 0 | i__3 = *lwork - iwork + 1; |
1704 | 0 | dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], & |
1705 | 0 | work[itauq], &work[itaup], &work[iwork], &i__3, & |
1706 | 0 | ierr); |
1707 | 0 | dlacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], & |
1708 | 0 | ldwrkr); |
1709 | | |
1710 | | /* Generate left vectors bidiagonalizing R in WORK(IR) */ |
1711 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
1712 | |
|
1713 | 0 | i__3 = *lwork - iwork + 1; |
1714 | 0 | dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & |
1715 | 0 | work[iwork], &i__3, &ierr); |
1716 | | |
1717 | | /* Generate right vectors bidiagonalizing R in VT */ |
1718 | | /* (Workspace: need N*N + 4*N-1, prefer N*N + 3*N + (N-1)*NB) */ |
1719 | |
|
1720 | 0 | i__3 = *lwork - iwork + 1; |
1721 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], |
1722 | 0 | &work[iwork], &i__3, &ierr); |
1723 | 0 | iwork = ie + *n; |
1724 | | |
1725 | | /* Perform bidiagonal QR iteration, computing left */ |
1726 | | /* singular vectors of R in WORK(IR) and computing right */ |
1727 | | /* singular vectors of R in VT */ |
1728 | | /* (Workspace: need N*N + BDSPAC) */ |
1729 | |
|
1730 | 0 | dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
1731 | 0 | vt_offset], ldvt, &work[ir], &ldwrkr, dum, &c__1, |
1732 | 0 | &work[iwork], info); |
1733 | 0 | iu = ie + *n; |
1734 | | |
1735 | | /* Multiply Q in A by left singular vectors of R in */ |
1736 | | /* WORK(IR), storing result in WORK(IU) and copying to A */ |
1737 | | /* (Workspace: need N*N + 2*N, prefer N*N + M*N + N) */ |
1738 | |
|
1739 | 0 | i__3 = *m; |
1740 | 0 | i__2 = ldwrku; |
1741 | 0 | for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += |
1742 | 0 | i__2) { |
1743 | | /* Computing MIN */ |
1744 | 0 | i__4 = *m - i__ + 1; |
1745 | 0 | chunk = f2cmin(i__4,ldwrku); |
1746 | 0 | dgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ + |
1747 | 0 | a_dim1], lda, &work[ir], &ldwrkr, &c_b57, & |
1748 | 0 | work[iu], &ldwrku); |
1749 | 0 | dlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + |
1750 | 0 | a_dim1], lda); |
1751 | | /* L20: */ |
1752 | 0 | } |
1753 | |
|
1754 | 0 | } else { |
1755 | | |
1756 | | /* Insufficient workspace for a fast algorithm */ |
1757 | |
|
1758 | 0 | itau = 1; |
1759 | 0 | iwork = itau + *n; |
1760 | | |
1761 | | /* Compute A=Q*R */ |
1762 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
1763 | |
|
1764 | 0 | i__2 = *lwork - iwork + 1; |
1765 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1766 | 0 | , &i__2, &ierr); |
1767 | | |
1768 | | /* Copy R to VT, zeroing out below it */ |
1769 | |
|
1770 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
1771 | 0 | ldvt); |
1772 | 0 | if (*n > 1) { |
1773 | 0 | i__2 = *n - 1; |
1774 | 0 | i__3 = *n - 1; |
1775 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
1776 | 0 | vt_dim1 + 2], ldvt); |
1777 | 0 | } |
1778 | | |
1779 | | /* Generate Q in A */ |
1780 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
1781 | |
|
1782 | 0 | i__2 = *lwork - iwork + 1; |
1783 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1784 | 0 | iwork], &i__2, &ierr); |
1785 | 0 | ie = itau; |
1786 | 0 | itauq = ie + *n; |
1787 | 0 | itaup = itauq + *n; |
1788 | 0 | iwork = itaup + *n; |
1789 | | |
1790 | | /* Bidiagonalize R in VT */ |
1791 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
1792 | |
|
1793 | 0 | i__2 = *lwork - iwork + 1; |
1794 | 0 | dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], & |
1795 | 0 | work[itauq], &work[itaup], &work[iwork], &i__2, & |
1796 | 0 | ierr); |
1797 | | |
1798 | | /* Multiply Q in A by left vectors bidiagonalizing R */ |
1799 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
1800 | |
|
1801 | 0 | i__2 = *lwork - iwork + 1; |
1802 | 0 | dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, & |
1803 | 0 | work[itauq], &a[a_offset], lda, &work[iwork], & |
1804 | 0 | i__2, &ierr); |
1805 | | |
1806 | | /* Generate right vectors bidiagonalizing R in VT */ |
1807 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
1808 | |
|
1809 | 0 | i__2 = *lwork - iwork + 1; |
1810 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], |
1811 | 0 | &work[iwork], &i__2, &ierr); |
1812 | 0 | iwork = ie + *n; |
1813 | | |
1814 | | /* Perform bidiagonal QR iteration, computing left */ |
1815 | | /* singular vectors of A in A and computing right */ |
1816 | | /* singular vectors of A in VT */ |
1817 | | /* (Workspace: need BDSPAC) */ |
1818 | |
|
1819 | 0 | dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
1820 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
1821 | 0 | work[iwork], info); |
1822 | |
|
1823 | 0 | } |
1824 | |
|
1825 | 0 | } else if (wntus) { |
1826 | |
|
1827 | 0 | if (wntvn) { |
1828 | | |
1829 | | /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ |
1830 | | /* N left singular vectors to be computed in U and */ |
1831 | | /* no right singular vectors to be computed */ |
1832 | | |
1833 | | /* Computing MAX */ |
1834 | 0 | i__2 = *n << 2; |
1835 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
1836 | | |
1837 | | /* Sufficient workspace for a fast algorithm */ |
1838 | |
|
1839 | 0 | ir = 1; |
1840 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
1841 | | |
1842 | | /* WORK(IR) is LDA by N */ |
1843 | |
|
1844 | 0 | ldwrkr = *lda; |
1845 | 0 | } else { |
1846 | | |
1847 | | /* WORK(IR) is N by N */ |
1848 | |
|
1849 | 0 | ldwrkr = *n; |
1850 | 0 | } |
1851 | 0 | itau = ir + ldwrkr * *n; |
1852 | 0 | iwork = itau + *n; |
1853 | | |
1854 | | /* Compute A=Q*R */ |
1855 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1856 | |
|
1857 | 0 | i__2 = *lwork - iwork + 1; |
1858 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1859 | 0 | iwork], &i__2, &ierr); |
1860 | | |
1861 | | /* Copy R to WORK(IR), zeroing out below it */ |
1862 | |
|
1863 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], & |
1864 | 0 | ldwrkr); |
1865 | 0 | i__2 = *n - 1; |
1866 | 0 | i__3 = *n - 1; |
1867 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
1868 | 0 | 1], &ldwrkr); |
1869 | | |
1870 | | /* Generate Q in A */ |
1871 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
1872 | |
|
1873 | 0 | i__2 = *lwork - iwork + 1; |
1874 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
1875 | 0 | work[iwork], &i__2, &ierr); |
1876 | 0 | ie = itau; |
1877 | 0 | itauq = ie + *n; |
1878 | 0 | itaup = itauq + *n; |
1879 | 0 | iwork = itaup + *n; |
1880 | | |
1881 | | /* Bidiagonalize R in WORK(IR) */ |
1882 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
1883 | |
|
1884 | 0 | i__2 = *lwork - iwork + 1; |
1885 | 0 | dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], & |
1886 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1887 | 0 | i__2, &ierr); |
1888 | | |
1889 | | /* Generate left vectors bidiagonalizing R in WORK(IR) */ |
1890 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
1891 | |
|
1892 | 0 | i__2 = *lwork - iwork + 1; |
1893 | 0 | dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] |
1894 | 0 | , &work[iwork], &i__2, &ierr); |
1895 | 0 | iwork = ie + *n; |
1896 | | |
1897 | | /* Perform bidiagonal QR iteration, computing left */ |
1898 | | /* singular vectors of R in WORK(IR) */ |
1899 | | /* (Workspace: need N*N + BDSPAC) */ |
1900 | |
|
1901 | 0 | dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], |
1902 | 0 | dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, & |
1903 | 0 | work[iwork], info); |
1904 | | |
1905 | | /* Multiply Q in A by left singular vectors of R in */ |
1906 | | /* WORK(IR), storing result in U */ |
1907 | | /* (Workspace: need N*N) */ |
1908 | |
|
1909 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
1910 | 0 | work[ir], &ldwrkr, &c_b57, &u[u_offset], ldu); |
1911 | |
|
1912 | 0 | } else { |
1913 | | |
1914 | | /* Insufficient workspace for a fast algorithm */ |
1915 | |
|
1916 | 0 | itau = 1; |
1917 | 0 | iwork = itau + *n; |
1918 | | |
1919 | | /* Compute A=Q*R, copying result to U */ |
1920 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
1921 | |
|
1922 | 0 | i__2 = *lwork - iwork + 1; |
1923 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1924 | 0 | iwork], &i__2, &ierr); |
1925 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
1926 | 0 | ldu); |
1927 | | |
1928 | | /* Generate Q in U */ |
1929 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
1930 | |
|
1931 | 0 | i__2 = *lwork - iwork + 1; |
1932 | 0 | dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
1933 | 0 | work[iwork], &i__2, &ierr); |
1934 | 0 | ie = itau; |
1935 | 0 | itauq = ie + *n; |
1936 | 0 | itaup = itauq + *n; |
1937 | 0 | iwork = itaup + *n; |
1938 | | |
1939 | | /* Zero out below R in A */ |
1940 | |
|
1941 | 0 | if (*n > 1) { |
1942 | 0 | i__2 = *n - 1; |
1943 | 0 | i__3 = *n - 1; |
1944 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
1945 | 0 | a_dim1 + 2], lda); |
1946 | 0 | } |
1947 | | |
1948 | | /* Bidiagonalize R in A */ |
1949 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
1950 | |
|
1951 | 0 | i__2 = *lwork - iwork + 1; |
1952 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
1953 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1954 | 0 | i__2, &ierr); |
1955 | | |
1956 | | /* Multiply Q in U by left vectors bidiagonalizing R */ |
1957 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
1958 | |
|
1959 | 0 | i__2 = *lwork - iwork + 1; |
1960 | 0 | dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
1961 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
1962 | 0 | &i__2, &ierr) |
1963 | 0 | ; |
1964 | 0 | iwork = ie + *n; |
1965 | | |
1966 | | /* Perform bidiagonal QR iteration, computing left */ |
1967 | | /* singular vectors of A in U */ |
1968 | | /* (Workspace: need BDSPAC) */ |
1969 | |
|
1970 | 0 | dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], |
1971 | 0 | dum, &c__1, &u[u_offset], ldu, dum, &c__1, & |
1972 | 0 | work[iwork], info); |
1973 | |
|
1974 | 0 | } |
1975 | |
|
1976 | 0 | } else if (wntvo) { |
1977 | | |
1978 | | /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ |
1979 | | /* N left singular vectors to be computed in U and */ |
1980 | | /* N right singular vectors to be overwritten on A */ |
1981 | | |
1982 | | /* Computing MAX */ |
1983 | 0 | i__2 = *n << 2; |
1984 | 0 | if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) { |
1985 | | |
1986 | | /* Sufficient workspace for a fast algorithm */ |
1987 | |
|
1988 | 0 | iu = 1; |
1989 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *n) { |
1990 | | |
1991 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
1992 | |
|
1993 | 0 | ldwrku = *lda; |
1994 | 0 | ir = iu + ldwrku * *n; |
1995 | 0 | ldwrkr = *lda; |
1996 | 0 | } else if (*lwork >= wrkbl + (*lda + *n) * *n) { |
1997 | | |
1998 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
1999 | |
|
2000 | 0 | ldwrku = *lda; |
2001 | 0 | ir = iu + ldwrku * *n; |
2002 | 0 | ldwrkr = *n; |
2003 | 0 | } else { |
2004 | | |
2005 | | /* WORK(IU) is N by N and WORK(IR) is N by N */ |
2006 | |
|
2007 | 0 | ldwrku = *n; |
2008 | 0 | ir = iu + ldwrku * *n; |
2009 | 0 | ldwrkr = *n; |
2010 | 0 | } |
2011 | 0 | itau = ir + ldwrkr * *n; |
2012 | 0 | iwork = itau + *n; |
2013 | | |
2014 | | /* Compute A=Q*R */ |
2015 | | /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */ |
2016 | |
|
2017 | 0 | i__2 = *lwork - iwork + 1; |
2018 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2019 | 0 | iwork], &i__2, &ierr); |
2020 | | |
2021 | | /* Copy R to WORK(IU), zeroing out below it */ |
2022 | |
|
2023 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2024 | 0 | ldwrku); |
2025 | 0 | i__2 = *n - 1; |
2026 | 0 | i__3 = *n - 1; |
2027 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2028 | 0 | 1], &ldwrku); |
2029 | | |
2030 | | /* Generate Q in A */ |
2031 | | /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */ |
2032 | |
|
2033 | 0 | i__2 = *lwork - iwork + 1; |
2034 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
2035 | 0 | work[iwork], &i__2, &ierr); |
2036 | 0 | ie = itau; |
2037 | 0 | itauq = ie + *n; |
2038 | 0 | itaup = itauq + *n; |
2039 | 0 | iwork = itaup + *n; |
2040 | | |
2041 | | /* Bidiagonalize R in WORK(IU), copying result to */ |
2042 | | /* WORK(IR) */ |
2043 | | /* (Workspace: need 2*N*N + 4*N, */ |
2044 | | /* prefer 2*N*N+3*N+2*N*NB) */ |
2045 | |
|
2046 | 0 | i__2 = *lwork - iwork + 1; |
2047 | 0 | dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2048 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2049 | 0 | i__2, &ierr); |
2050 | 0 | dlacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & |
2051 | 0 | ldwrkr); |
2052 | | |
2053 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2054 | | /* (Workspace: need 2*N*N + 4*N, prefer 2*N*N + 3*N + N*NB) */ |
2055 | |
|
2056 | 0 | i__2 = *lwork - iwork + 1; |
2057 | 0 | dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2058 | 0 | , &work[iwork], &i__2, &ierr); |
2059 | | |
2060 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
2061 | | /* (Workspace: need 2*N*N + 4*N-1, */ |
2062 | | /* prefer 2*N*N+3*N+(N-1)*NB) */ |
2063 | |
|
2064 | 0 | i__2 = *lwork - iwork + 1; |
2065 | 0 | dorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] |
2066 | 0 | , &work[iwork], &i__2, &ierr); |
2067 | 0 | iwork = ie + *n; |
2068 | | |
2069 | | /* Perform bidiagonal QR iteration, computing left */ |
2070 | | /* singular vectors of R in WORK(IU) and computing */ |
2071 | | /* right singular vectors of R in WORK(IR) */ |
2072 | | /* (Workspace: need 2*N*N + BDSPAC) */ |
2073 | |
|
2074 | 0 | dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[ |
2075 | 0 | ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1, |
2076 | 0 | &work[iwork], info); |
2077 | | |
2078 | | /* Multiply Q in A by left singular vectors of R in */ |
2079 | | /* WORK(IU), storing result in U */ |
2080 | | /* (Workspace: need N*N) */ |
2081 | |
|
2082 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
2083 | 0 | work[iu], &ldwrku, &c_b57, &u[u_offset], ldu); |
2084 | | |
2085 | | /* Copy right singular vectors of R to A */ |
2086 | | /* (Workspace: need N*N) */ |
2087 | |
|
2088 | 0 | dlacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], |
2089 | 0 | lda); |
2090 | |
|
2091 | 0 | } else { |
2092 | | |
2093 | | /* Insufficient workspace for a fast algorithm */ |
2094 | |
|
2095 | 0 | itau = 1; |
2096 | 0 | iwork = itau + *n; |
2097 | | |
2098 | | /* Compute A=Q*R, copying result to U */ |
2099 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2100 | |
|
2101 | 0 | i__2 = *lwork - iwork + 1; |
2102 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2103 | 0 | iwork], &i__2, &ierr); |
2104 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2105 | 0 | ldu); |
2106 | | |
2107 | | /* Generate Q in U */ |
2108 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2109 | |
|
2110 | 0 | i__2 = *lwork - iwork + 1; |
2111 | 0 | dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
2112 | 0 | work[iwork], &i__2, &ierr); |
2113 | 0 | ie = itau; |
2114 | 0 | itauq = ie + *n; |
2115 | 0 | itaup = itauq + *n; |
2116 | 0 | iwork = itaup + *n; |
2117 | | |
2118 | | /* Zero out below R in A */ |
2119 | |
|
2120 | 0 | if (*n > 1) { |
2121 | 0 | i__2 = *n - 1; |
2122 | 0 | i__3 = *n - 1; |
2123 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
2124 | 0 | a_dim1 + 2], lda); |
2125 | 0 | } |
2126 | | |
2127 | | /* Bidiagonalize R in A */ |
2128 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
2129 | |
|
2130 | 0 | i__2 = *lwork - iwork + 1; |
2131 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
2132 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2133 | 0 | i__2, &ierr); |
2134 | | |
2135 | | /* Multiply Q in U by left vectors bidiagonalizing R */ |
2136 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
2137 | |
|
2138 | 0 | i__2 = *lwork - iwork + 1; |
2139 | 0 | dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
2140 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
2141 | 0 | &i__2, &ierr) |
2142 | 0 | ; |
2143 | | |
2144 | | /* Generate right vectors bidiagonalizing R in A */ |
2145 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2146 | |
|
2147 | 0 | i__2 = *lwork - iwork + 1; |
2148 | 0 | dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], |
2149 | 0 | &work[iwork], &i__2, &ierr); |
2150 | 0 | iwork = ie + *n; |
2151 | | |
2152 | | /* Perform bidiagonal QR iteration, computing left */ |
2153 | | /* singular vectors of A in U and computing right */ |
2154 | | /* singular vectors of A in A */ |
2155 | | /* (Workspace: need BDSPAC) */ |
2156 | |
|
2157 | 0 | dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[ |
2158 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, |
2159 | 0 | &work[iwork], info); |
2160 | |
|
2161 | 0 | } |
2162 | |
|
2163 | 0 | } else if (wntvas) { |
2164 | | |
2165 | | /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' */ |
2166 | | /* or 'A') */ |
2167 | | /* N left singular vectors to be computed in U and */ |
2168 | | /* N right singular vectors to be computed in VT */ |
2169 | | |
2170 | | /* Computing MAX */ |
2171 | 0 | i__2 = *n << 2; |
2172 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
2173 | | |
2174 | | /* Sufficient workspace for a fast algorithm */ |
2175 | |
|
2176 | 0 | iu = 1; |
2177 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
2178 | | |
2179 | | /* WORK(IU) is LDA by N */ |
2180 | |
|
2181 | 0 | ldwrku = *lda; |
2182 | 0 | } else { |
2183 | | |
2184 | | /* WORK(IU) is N by N */ |
2185 | |
|
2186 | 0 | ldwrku = *n; |
2187 | 0 | } |
2188 | 0 | itau = iu + ldwrku * *n; |
2189 | 0 | iwork = itau + *n; |
2190 | | |
2191 | | /* Compute A=Q*R */ |
2192 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
2193 | |
|
2194 | 0 | i__2 = *lwork - iwork + 1; |
2195 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2196 | 0 | iwork], &i__2, &ierr); |
2197 | | |
2198 | | /* Copy R to WORK(IU), zeroing out below it */ |
2199 | |
|
2200 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2201 | 0 | ldwrku); |
2202 | 0 | i__2 = *n - 1; |
2203 | 0 | i__3 = *n - 1; |
2204 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2205 | 0 | 1], &ldwrku); |
2206 | | |
2207 | | /* Generate Q in A */ |
2208 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
2209 | |
|
2210 | 0 | i__2 = *lwork - iwork + 1; |
2211 | 0 | dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
2212 | 0 | work[iwork], &i__2, &ierr); |
2213 | 0 | ie = itau; |
2214 | 0 | itauq = ie + *n; |
2215 | 0 | itaup = itauq + *n; |
2216 | 0 | iwork = itaup + *n; |
2217 | | |
2218 | | /* Bidiagonalize R in WORK(IU), copying result to VT */ |
2219 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
2220 | |
|
2221 | 0 | i__2 = *lwork - iwork + 1; |
2222 | 0 | dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2223 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2224 | 0 | i__2, &ierr); |
2225 | 0 | dlacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], |
2226 | 0 | ldvt); |
2227 | | |
2228 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2229 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
2230 | |
|
2231 | 0 | i__2 = *lwork - iwork + 1; |
2232 | 0 | dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2233 | 0 | , &work[iwork], &i__2, &ierr); |
2234 | | |
2235 | | /* Generate right bidiagonalizing vectors in VT */ |
2236 | | /* (Workspace: need N*N + 4*N-1, */ |
2237 | | /* prefer N*N+3*N+(N-1)*NB) */ |
2238 | |
|
2239 | 0 | i__2 = *lwork - iwork + 1; |
2240 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2241 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2242 | 0 | ; |
2243 | 0 | iwork = ie + *n; |
2244 | | |
2245 | | /* Perform bidiagonal QR iteration, computing left */ |
2246 | | /* singular vectors of R in WORK(IU) and computing */ |
2247 | | /* right singular vectors of R in VT */ |
2248 | | /* (Workspace: need N*N + BDSPAC) */ |
2249 | |
|
2250 | 0 | dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
2251 | 0 | vt_offset], ldvt, &work[iu], &ldwrku, dum, & |
2252 | 0 | c__1, &work[iwork], info); |
2253 | | |
2254 | | /* Multiply Q in A by left singular vectors of R in */ |
2255 | | /* WORK(IU), storing result in U */ |
2256 | | /* (Workspace: need N*N) */ |
2257 | |
|
2258 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
2259 | 0 | work[iu], &ldwrku, &c_b57, &u[u_offset], ldu); |
2260 | |
|
2261 | 0 | } else { |
2262 | | |
2263 | | /* Insufficient workspace for a fast algorithm */ |
2264 | |
|
2265 | 0 | itau = 1; |
2266 | 0 | iwork = itau + *n; |
2267 | | |
2268 | | /* Compute A=Q*R, copying result to U */ |
2269 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2270 | |
|
2271 | 0 | i__2 = *lwork - iwork + 1; |
2272 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2273 | 0 | iwork], &i__2, &ierr); |
2274 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2275 | 0 | ldu); |
2276 | | |
2277 | | /* Generate Q in U */ |
2278 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2279 | |
|
2280 | 0 | i__2 = *lwork - iwork + 1; |
2281 | 0 | dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
2282 | 0 | work[iwork], &i__2, &ierr); |
2283 | | |
2284 | | /* Copy R to VT, zeroing out below it */ |
2285 | |
|
2286 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
2287 | 0 | ldvt); |
2288 | 0 | if (*n > 1) { |
2289 | 0 | i__2 = *n - 1; |
2290 | 0 | i__3 = *n - 1; |
2291 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
2292 | 0 | vt_dim1 + 2], ldvt); |
2293 | 0 | } |
2294 | 0 | ie = itau; |
2295 | 0 | itauq = ie + *n; |
2296 | 0 | itaup = itauq + *n; |
2297 | 0 | iwork = itaup + *n; |
2298 | | |
2299 | | /* Bidiagonalize R in VT */ |
2300 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
2301 | |
|
2302 | 0 | i__2 = *lwork - iwork + 1; |
2303 | 0 | dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], |
2304 | 0 | &work[itauq], &work[itaup], &work[iwork], & |
2305 | 0 | i__2, &ierr); |
2306 | | |
2307 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2308 | | /* in VT */ |
2309 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
2310 | |
|
2311 | 0 | i__2 = *lwork - iwork + 1; |
2312 | 0 | dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, |
2313 | 0 | &work[itauq], &u[u_offset], ldu, &work[iwork], |
2314 | 0 | &i__2, &ierr); |
2315 | | |
2316 | | /* Generate right bidiagonalizing vectors in VT */ |
2317 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2318 | |
|
2319 | 0 | i__2 = *lwork - iwork + 1; |
2320 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2321 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2322 | 0 | ; |
2323 | 0 | iwork = ie + *n; |
2324 | | |
2325 | | /* Perform bidiagonal QR iteration, computing left */ |
2326 | | /* singular vectors of A in U and computing right */ |
2327 | | /* singular vectors of A in VT */ |
2328 | | /* (Workspace: need BDSPAC) */ |
2329 | |
|
2330 | 0 | dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
2331 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
2332 | 0 | c__1, &work[iwork], info); |
2333 | |
|
2334 | 0 | } |
2335 | |
|
2336 | 0 | } |
2337 | |
|
2338 | 0 | } else if (wntua) { |
2339 | |
|
2340 | 0 | if (wntvn) { |
2341 | | |
2342 | | /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ |
2343 | | /* M left singular vectors to be computed in U and */ |
2344 | | /* no right singular vectors to be computed */ |
2345 | | |
2346 | | /* Computing MAX */ |
2347 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2348 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
2349 | | |
2350 | | /* Sufficient workspace for a fast algorithm */ |
2351 | |
|
2352 | 0 | ir = 1; |
2353 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
2354 | | |
2355 | | /* WORK(IR) is LDA by N */ |
2356 | |
|
2357 | 0 | ldwrkr = *lda; |
2358 | 0 | } else { |
2359 | | |
2360 | | /* WORK(IR) is N by N */ |
2361 | |
|
2362 | 0 | ldwrkr = *n; |
2363 | 0 | } |
2364 | 0 | itau = ir + ldwrkr * *n; |
2365 | 0 | iwork = itau + *n; |
2366 | | |
2367 | | /* Compute A=Q*R, copying result to U */ |
2368 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
2369 | |
|
2370 | 0 | i__2 = *lwork - iwork + 1; |
2371 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2372 | 0 | iwork], &i__2, &ierr); |
2373 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2374 | 0 | ldu); |
2375 | | |
2376 | | /* Copy R to WORK(IR), zeroing out below it */ |
2377 | |
|
2378 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], & |
2379 | 0 | ldwrkr); |
2380 | 0 | i__2 = *n - 1; |
2381 | 0 | i__3 = *n - 1; |
2382 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
2383 | 0 | 1], &ldwrkr); |
2384 | | |
2385 | | /* Generate Q in U */ |
2386 | | /* (Workspace: need N*N + N + M, prefer N*N + N + M*NB) */ |
2387 | |
|
2388 | 0 | i__2 = *lwork - iwork + 1; |
2389 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2390 | 0 | work[iwork], &i__2, &ierr); |
2391 | 0 | ie = itau; |
2392 | 0 | itauq = ie + *n; |
2393 | 0 | itaup = itauq + *n; |
2394 | 0 | iwork = itaup + *n; |
2395 | | |
2396 | | /* Bidiagonalize R in WORK(IR) */ |
2397 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
2398 | |
|
2399 | 0 | i__2 = *lwork - iwork + 1; |
2400 | 0 | dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], & |
2401 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2402 | 0 | i__2, &ierr); |
2403 | | |
2404 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
2405 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
2406 | |
|
2407 | 0 | i__2 = *lwork - iwork + 1; |
2408 | 0 | dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] |
2409 | 0 | , &work[iwork], &i__2, &ierr); |
2410 | 0 | iwork = ie + *n; |
2411 | | |
2412 | | /* Perform bidiagonal QR iteration, computing left */ |
2413 | | /* singular vectors of R in WORK(IR) */ |
2414 | | /* (Workspace: need N*N + BDSPAC) */ |
2415 | |
|
2416 | 0 | dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], |
2417 | 0 | dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, & |
2418 | 0 | work[iwork], info); |
2419 | | |
2420 | | /* Multiply Q in U by left singular vectors of R in */ |
2421 | | /* WORK(IR), storing result in A */ |
2422 | | /* (Workspace: need N*N) */ |
2423 | |
|
2424 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2425 | 0 | work[ir], &ldwrkr, &c_b57, &a[a_offset], lda); |
2426 | | |
2427 | | /* Copy left singular vectors of A from A to U */ |
2428 | |
|
2429 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2430 | 0 | ldu); |
2431 | |
|
2432 | 0 | } else { |
2433 | | |
2434 | | /* Insufficient workspace for a fast algorithm */ |
2435 | |
|
2436 | 0 | itau = 1; |
2437 | 0 | iwork = itau + *n; |
2438 | | |
2439 | | /* Compute A=Q*R, copying result to U */ |
2440 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2441 | |
|
2442 | 0 | i__2 = *lwork - iwork + 1; |
2443 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2444 | 0 | iwork], &i__2, &ierr); |
2445 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2446 | 0 | ldu); |
2447 | | |
2448 | | /* Generate Q in U */ |
2449 | | /* (Workspace: need N + M, prefer N + M*NB) */ |
2450 | |
|
2451 | 0 | i__2 = *lwork - iwork + 1; |
2452 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2453 | 0 | work[iwork], &i__2, &ierr); |
2454 | 0 | ie = itau; |
2455 | 0 | itauq = ie + *n; |
2456 | 0 | itaup = itauq + *n; |
2457 | 0 | iwork = itaup + *n; |
2458 | | |
2459 | | /* Zero out below R in A */ |
2460 | |
|
2461 | 0 | if (*n > 1) { |
2462 | 0 | i__2 = *n - 1; |
2463 | 0 | i__3 = *n - 1; |
2464 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
2465 | 0 | a_dim1 + 2], lda); |
2466 | 0 | } |
2467 | | |
2468 | | /* Bidiagonalize R in A */ |
2469 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
2470 | |
|
2471 | 0 | i__2 = *lwork - iwork + 1; |
2472 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
2473 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2474 | 0 | i__2, &ierr); |
2475 | | |
2476 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2477 | | /* in A */ |
2478 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
2479 | |
|
2480 | 0 | i__2 = *lwork - iwork + 1; |
2481 | 0 | dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
2482 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
2483 | 0 | &i__2, &ierr) |
2484 | 0 | ; |
2485 | 0 | iwork = ie + *n; |
2486 | | |
2487 | | /* Perform bidiagonal QR iteration, computing left */ |
2488 | | /* singular vectors of A in U */ |
2489 | | /* (Workspace: need BDSPAC) */ |
2490 | |
|
2491 | 0 | dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], |
2492 | 0 | dum, &c__1, &u[u_offset], ldu, dum, &c__1, & |
2493 | 0 | work[iwork], info); |
2494 | |
|
2495 | 0 | } |
2496 | |
|
2497 | 0 | } else if (wntvo) { |
2498 | | |
2499 | | /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ |
2500 | | /* M left singular vectors to be computed in U and */ |
2501 | | /* N right singular vectors to be overwritten on A */ |
2502 | | |
2503 | | /* Computing MAX */ |
2504 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2505 | 0 | if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) { |
2506 | | |
2507 | | /* Sufficient workspace for a fast algorithm */ |
2508 | |
|
2509 | 0 | iu = 1; |
2510 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *n) { |
2511 | | |
2512 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
2513 | |
|
2514 | 0 | ldwrku = *lda; |
2515 | 0 | ir = iu + ldwrku * *n; |
2516 | 0 | ldwrkr = *lda; |
2517 | 0 | } else if (*lwork >= wrkbl + (*lda + *n) * *n) { |
2518 | | |
2519 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
2520 | |
|
2521 | 0 | ldwrku = *lda; |
2522 | 0 | ir = iu + ldwrku * *n; |
2523 | 0 | ldwrkr = *n; |
2524 | 0 | } else { |
2525 | | |
2526 | | /* WORK(IU) is N by N and WORK(IR) is N by N */ |
2527 | |
|
2528 | 0 | ldwrku = *n; |
2529 | 0 | ir = iu + ldwrku * *n; |
2530 | 0 | ldwrkr = *n; |
2531 | 0 | } |
2532 | 0 | itau = ir + ldwrkr * *n; |
2533 | 0 | iwork = itau + *n; |
2534 | | |
2535 | | /* Compute A=Q*R, copying result to U */ |
2536 | | /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */ |
2537 | |
|
2538 | 0 | i__2 = *lwork - iwork + 1; |
2539 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2540 | 0 | iwork], &i__2, &ierr); |
2541 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2542 | 0 | ldu); |
2543 | | |
2544 | | /* Generate Q in U */ |
2545 | | /* (Workspace: need 2*N*N + N + M, prefer 2*N*N + N + M*NB) */ |
2546 | |
|
2547 | 0 | i__2 = *lwork - iwork + 1; |
2548 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2549 | 0 | work[iwork], &i__2, &ierr); |
2550 | | |
2551 | | /* Copy R to WORK(IU), zeroing out below it */ |
2552 | |
|
2553 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2554 | 0 | ldwrku); |
2555 | 0 | i__2 = *n - 1; |
2556 | 0 | i__3 = *n - 1; |
2557 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2558 | 0 | 1], &ldwrku); |
2559 | 0 | ie = itau; |
2560 | 0 | itauq = ie + *n; |
2561 | 0 | itaup = itauq + *n; |
2562 | 0 | iwork = itaup + *n; |
2563 | | |
2564 | | /* Bidiagonalize R in WORK(IU), copying result to */ |
2565 | | /* WORK(IR) */ |
2566 | | /* (Workspace: need 2*N*N + 4*N, */ |
2567 | | /* prefer 2*N*N+3*N+2*N*NB) */ |
2568 | |
|
2569 | 0 | i__2 = *lwork - iwork + 1; |
2570 | 0 | dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2571 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2572 | 0 | i__2, &ierr); |
2573 | 0 | dlacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & |
2574 | 0 | ldwrkr); |
2575 | | |
2576 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2577 | | /* (Workspace: need 2*N*N + 4*N, prefer 2*N*N + 3*N + N*NB) */ |
2578 | |
|
2579 | 0 | i__2 = *lwork - iwork + 1; |
2580 | 0 | dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2581 | 0 | , &work[iwork], &i__2, &ierr); |
2582 | | |
2583 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
2584 | | /* (Workspace: need 2*N*N + 4*N-1, */ |
2585 | | /* prefer 2*N*N+3*N+(N-1)*NB) */ |
2586 | |
|
2587 | 0 | i__2 = *lwork - iwork + 1; |
2588 | 0 | dorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] |
2589 | 0 | , &work[iwork], &i__2, &ierr); |
2590 | 0 | iwork = ie + *n; |
2591 | | |
2592 | | /* Perform bidiagonal QR iteration, computing left */ |
2593 | | /* singular vectors of R in WORK(IU) and computing */ |
2594 | | /* right singular vectors of R in WORK(IR) */ |
2595 | | /* (Workspace: need 2*N*N + BDSPAC) */ |
2596 | |
|
2597 | 0 | dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[ |
2598 | 0 | ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1, |
2599 | 0 | &work[iwork], info); |
2600 | | |
2601 | | /* Multiply Q in U by left singular vectors of R in */ |
2602 | | /* WORK(IU), storing result in A */ |
2603 | | /* (Workspace: need N*N) */ |
2604 | |
|
2605 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2606 | 0 | work[iu], &ldwrku, &c_b57, &a[a_offset], lda); |
2607 | | |
2608 | | /* Copy left singular vectors of A from A to U */ |
2609 | |
|
2610 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2611 | 0 | ldu); |
2612 | | |
2613 | | /* Copy right singular vectors of R from WORK(IR) to A */ |
2614 | |
|
2615 | 0 | dlacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], |
2616 | 0 | lda); |
2617 | |
|
2618 | 0 | } else { |
2619 | | |
2620 | | /* Insufficient workspace for a fast algorithm */ |
2621 | |
|
2622 | 0 | itau = 1; |
2623 | 0 | iwork = itau + *n; |
2624 | | |
2625 | | /* Compute A=Q*R, copying result to U */ |
2626 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2627 | |
|
2628 | 0 | i__2 = *lwork - iwork + 1; |
2629 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2630 | 0 | iwork], &i__2, &ierr); |
2631 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2632 | 0 | ldu); |
2633 | | |
2634 | | /* Generate Q in U */ |
2635 | | /* (Workspace: need N + M, prefer N + M*NB) */ |
2636 | |
|
2637 | 0 | i__2 = *lwork - iwork + 1; |
2638 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2639 | 0 | work[iwork], &i__2, &ierr); |
2640 | 0 | ie = itau; |
2641 | 0 | itauq = ie + *n; |
2642 | 0 | itaup = itauq + *n; |
2643 | 0 | iwork = itaup + *n; |
2644 | | |
2645 | | /* Zero out below R in A */ |
2646 | |
|
2647 | 0 | if (*n > 1) { |
2648 | 0 | i__2 = *n - 1; |
2649 | 0 | i__3 = *n - 1; |
2650 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
2651 | 0 | a_dim1 + 2], lda); |
2652 | 0 | } |
2653 | | |
2654 | | /* Bidiagonalize R in A */ |
2655 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
2656 | |
|
2657 | 0 | i__2 = *lwork - iwork + 1; |
2658 | 0 | dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
2659 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2660 | 0 | i__2, &ierr); |
2661 | | |
2662 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2663 | | /* in A */ |
2664 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
2665 | |
|
2666 | 0 | i__2 = *lwork - iwork + 1; |
2667 | 0 | dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
2668 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
2669 | 0 | &i__2, &ierr) |
2670 | 0 | ; |
2671 | | |
2672 | | /* Generate right bidiagonalizing vectors in A */ |
2673 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2674 | |
|
2675 | 0 | i__2 = *lwork - iwork + 1; |
2676 | 0 | dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], |
2677 | 0 | &work[iwork], &i__2, &ierr); |
2678 | 0 | iwork = ie + *n; |
2679 | | |
2680 | | /* Perform bidiagonal QR iteration, computing left */ |
2681 | | /* singular vectors of A in U and computing right */ |
2682 | | /* singular vectors of A in A */ |
2683 | | /* (Workspace: need BDSPAC) */ |
2684 | |
|
2685 | 0 | dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[ |
2686 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, |
2687 | 0 | &work[iwork], info); |
2688 | |
|
2689 | 0 | } |
2690 | |
|
2691 | 0 | } else if (wntvas) { |
2692 | | |
2693 | | /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' */ |
2694 | | /* or 'A') */ |
2695 | | /* M left singular vectors to be computed in U and */ |
2696 | | /* N right singular vectors to be computed in VT */ |
2697 | | |
2698 | | /* Computing MAX */ |
2699 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2700 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
2701 | | |
2702 | | /* Sufficient workspace for a fast algorithm */ |
2703 | |
|
2704 | 0 | iu = 1; |
2705 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
2706 | | |
2707 | | /* WORK(IU) is LDA by N */ |
2708 | |
|
2709 | 0 | ldwrku = *lda; |
2710 | 0 | } else { |
2711 | | |
2712 | | /* WORK(IU) is N by N */ |
2713 | |
|
2714 | 0 | ldwrku = *n; |
2715 | 0 | } |
2716 | 0 | itau = iu + ldwrku * *n; |
2717 | 0 | iwork = itau + *n; |
2718 | | |
2719 | | /* Compute A=Q*R, copying result to U */ |
2720 | | /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */ |
2721 | |
|
2722 | 0 | i__2 = *lwork - iwork + 1; |
2723 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2724 | 0 | iwork], &i__2, &ierr); |
2725 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2726 | 0 | ldu); |
2727 | | |
2728 | | /* Generate Q in U */ |
2729 | | /* (Workspace: need N*N + N + M, prefer N*N + N + M*NB) */ |
2730 | |
|
2731 | 0 | i__2 = *lwork - iwork + 1; |
2732 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2733 | 0 | work[iwork], &i__2, &ierr); |
2734 | | |
2735 | | /* Copy R to WORK(IU), zeroing out below it */ |
2736 | |
|
2737 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2738 | 0 | ldwrku); |
2739 | 0 | i__2 = *n - 1; |
2740 | 0 | i__3 = *n - 1; |
2741 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2742 | 0 | 1], &ldwrku); |
2743 | 0 | ie = itau; |
2744 | 0 | itauq = ie + *n; |
2745 | 0 | itaup = itauq + *n; |
2746 | 0 | iwork = itaup + *n; |
2747 | | |
2748 | | /* Bidiagonalize R in WORK(IU), copying result to VT */ |
2749 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */ |
2750 | |
|
2751 | 0 | i__2 = *lwork - iwork + 1; |
2752 | 0 | dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2753 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2754 | 0 | i__2, &ierr); |
2755 | 0 | dlacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], |
2756 | 0 | ldvt); |
2757 | | |
2758 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2759 | | /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */ |
2760 | |
|
2761 | 0 | i__2 = *lwork - iwork + 1; |
2762 | 0 | dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2763 | 0 | , &work[iwork], &i__2, &ierr); |
2764 | | |
2765 | | /* Generate right bidiagonalizing vectors in VT */ |
2766 | | /* (Workspace: need N*N + 4*N-1, */ |
2767 | | /* prefer N*N+3*N+(N-1)*NB) */ |
2768 | |
|
2769 | 0 | i__2 = *lwork - iwork + 1; |
2770 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2771 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2772 | 0 | ; |
2773 | 0 | iwork = ie + *n; |
2774 | | |
2775 | | /* Perform bidiagonal QR iteration, computing left */ |
2776 | | /* singular vectors of R in WORK(IU) and computing */ |
2777 | | /* right singular vectors of R in VT */ |
2778 | | /* (Workspace: need N*N + BDSPAC) */ |
2779 | |
|
2780 | 0 | dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
2781 | 0 | vt_offset], ldvt, &work[iu], &ldwrku, dum, & |
2782 | 0 | c__1, &work[iwork], info); |
2783 | | |
2784 | | /* Multiply Q in U by left singular vectors of R in */ |
2785 | | /* WORK(IU), storing result in A */ |
2786 | | /* (Workspace: need N*N) */ |
2787 | |
|
2788 | 0 | dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2789 | 0 | work[iu], &ldwrku, &c_b57, &a[a_offset], lda); |
2790 | | |
2791 | | /* Copy left singular vectors of A from A to U */ |
2792 | |
|
2793 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2794 | 0 | ldu); |
2795 | |
|
2796 | 0 | } else { |
2797 | | |
2798 | | /* Insufficient workspace for a fast algorithm */ |
2799 | |
|
2800 | 0 | itau = 1; |
2801 | 0 | iwork = itau + *n; |
2802 | | |
2803 | | /* Compute A=Q*R, copying result to U */ |
2804 | | /* (Workspace: need 2*N, prefer N + N*NB) */ |
2805 | |
|
2806 | 0 | i__2 = *lwork - iwork + 1; |
2807 | 0 | dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2808 | 0 | iwork], &i__2, &ierr); |
2809 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2810 | 0 | ldu); |
2811 | | |
2812 | | /* Generate Q in U */ |
2813 | | /* (Workspace: need N + M, prefer N + M*NB) */ |
2814 | |
|
2815 | 0 | i__2 = *lwork - iwork + 1; |
2816 | 0 | dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2817 | 0 | work[iwork], &i__2, &ierr); |
2818 | | |
2819 | | /* Copy R from A to VT, zeroing out below it */ |
2820 | |
|
2821 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
2822 | 0 | ldvt); |
2823 | 0 | if (*n > 1) { |
2824 | 0 | i__2 = *n - 1; |
2825 | 0 | i__3 = *n - 1; |
2826 | 0 | dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
2827 | 0 | vt_dim1 + 2], ldvt); |
2828 | 0 | } |
2829 | 0 | ie = itau; |
2830 | 0 | itauq = ie + *n; |
2831 | 0 | itaup = itauq + *n; |
2832 | 0 | iwork = itaup + *n; |
2833 | | |
2834 | | /* Bidiagonalize R in VT */ |
2835 | | /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */ |
2836 | |
|
2837 | 0 | i__2 = *lwork - iwork + 1; |
2838 | 0 | dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], |
2839 | 0 | &work[itauq], &work[itaup], &work[iwork], & |
2840 | 0 | i__2, &ierr); |
2841 | | |
2842 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2843 | | /* in VT */ |
2844 | | /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */ |
2845 | |
|
2846 | 0 | i__2 = *lwork - iwork + 1; |
2847 | 0 | dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, |
2848 | 0 | &work[itauq], &u[u_offset], ldu, &work[iwork], |
2849 | 0 | &i__2, &ierr); |
2850 | | |
2851 | | /* Generate right bidiagonalizing vectors in VT */ |
2852 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2853 | |
|
2854 | 0 | i__2 = *lwork - iwork + 1; |
2855 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2856 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2857 | 0 | ; |
2858 | 0 | iwork = ie + *n; |
2859 | | |
2860 | | /* Perform bidiagonal QR iteration, computing left */ |
2861 | | /* singular vectors of A in U and computing right */ |
2862 | | /* singular vectors of A in VT */ |
2863 | | /* (Workspace: need BDSPAC) */ |
2864 | |
|
2865 | 0 | dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
2866 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
2867 | 0 | c__1, &work[iwork], info); |
2868 | |
|
2869 | 0 | } |
2870 | |
|
2871 | 0 | } |
2872 | |
|
2873 | 0 | } |
2874 | |
|
2875 | 0 | } else { |
2876 | | |
2877 | | /* M .LT. MNTHR */ |
2878 | | |
2879 | | /* Path 10 (M at least N, but not much larger) */ |
2880 | | /* Reduce to bidiagonal form without QR decomposition */ |
2881 | |
|
2882 | 0 | ie = 1; |
2883 | 0 | itauq = ie + *n; |
2884 | 0 | itaup = itauq + *n; |
2885 | 0 | iwork = itaup + *n; |
2886 | | |
2887 | | /* Bidiagonalize A */ |
2888 | | /* (Workspace: need 3*N + M, prefer 3*N + (M + N)*NB) */ |
2889 | |
|
2890 | 0 | i__2 = *lwork - iwork + 1; |
2891 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
2892 | 0 | work[itaup], &work[iwork], &i__2, &ierr); |
2893 | 0 | if (wntuas) { |
2894 | | |
2895 | | /* If left singular vectors desired in U, copy result to U */ |
2896 | | /* and generate left bidiagonalizing vectors in U */ |
2897 | | /* (Workspace: need 3*N + NCU, prefer 3*N + NCU*NB) */ |
2898 | |
|
2899 | 0 | dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); |
2900 | 0 | if (wntus) { |
2901 | 0 | ncu = *n; |
2902 | 0 | } |
2903 | 0 | if (wntua) { |
2904 | 0 | ncu = *m; |
2905 | 0 | } |
2906 | 0 | i__2 = *lwork - iwork + 1; |
2907 | 0 | dorgbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], & |
2908 | 0 | work[iwork], &i__2, &ierr); |
2909 | 0 | } |
2910 | 0 | if (wntvas) { |
2911 | | |
2912 | | /* If right singular vectors desired in VT, copy result to */ |
2913 | | /* VT and generate right bidiagonalizing vectors in VT */ |
2914 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2915 | |
|
2916 | 0 | dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
2917 | 0 | i__2 = *lwork - iwork + 1; |
2918 | 0 | dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & |
2919 | 0 | work[iwork], &i__2, &ierr); |
2920 | 0 | } |
2921 | 0 | if (wntuo) { |
2922 | | |
2923 | | /* If left singular vectors desired in A, generate left */ |
2924 | | /* bidiagonalizing vectors in A */ |
2925 | | /* (Workspace: need 4*N, prefer 3*N + N*NB) */ |
2926 | |
|
2927 | 0 | i__2 = *lwork - iwork + 1; |
2928 | 0 | dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[ |
2929 | 0 | iwork], &i__2, &ierr); |
2930 | 0 | } |
2931 | 0 | if (wntvo) { |
2932 | | |
2933 | | /* If right singular vectors desired in A, generate right */ |
2934 | | /* bidiagonalizing vectors in A */ |
2935 | | /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */ |
2936 | |
|
2937 | 0 | i__2 = *lwork - iwork + 1; |
2938 | 0 | dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[ |
2939 | 0 | iwork], &i__2, &ierr); |
2940 | 0 | } |
2941 | 0 | iwork = ie + *n; |
2942 | 0 | if (wntuas || wntuo) { |
2943 | 0 | nru = *m; |
2944 | 0 | } |
2945 | 0 | if (wntun) { |
2946 | 0 | nru = 0; |
2947 | 0 | } |
2948 | 0 | if (wntvas || wntvo) { |
2949 | 0 | ncvt = *n; |
2950 | 0 | } |
2951 | 0 | if (wntvn) { |
2952 | 0 | ncvt = 0; |
2953 | 0 | } |
2954 | 0 | if (! wntuo && ! wntvo) { |
2955 | | |
2956 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2957 | | /* left singular vectors in U and computing right singular */ |
2958 | | /* vectors in VT */ |
2959 | | /* (Workspace: need BDSPAC) */ |
2960 | |
|
2961 | 0 | dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
2962 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, & |
2963 | 0 | work[iwork], info); |
2964 | 0 | } else if (! wntuo && wntvo) { |
2965 | | |
2966 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2967 | | /* left singular vectors in U and computing right singular */ |
2968 | | /* vectors in A */ |
2969 | | /* (Workspace: need BDSPAC) */ |
2970 | |
|
2971 | 0 | dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[ |
2972 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[ |
2973 | 0 | iwork], info); |
2974 | 0 | } else { |
2975 | | |
2976 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2977 | | /* left singular vectors in A and computing right singular */ |
2978 | | /* vectors in VT */ |
2979 | | /* (Workspace: need BDSPAC) */ |
2980 | |
|
2981 | 0 | dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
2982 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
2983 | 0 | work[iwork], info); |
2984 | 0 | } |
2985 | |
|
2986 | 0 | } |
2987 | |
|
2988 | 0 | } else { |
2989 | | |
2990 | | /* A has more columns than rows. If A has sufficiently more */ |
2991 | | /* columns than rows, first reduce using the LQ decomposition (if */ |
2992 | | /* sufficient workspace available) */ |
2993 | |
|
2994 | 0 | if (*n >= mnthr) { |
2995 | |
|
2996 | 0 | if (wntvn) { |
2997 | | |
2998 | | /* Path 1t(N much larger than M, JOBVT='N') */ |
2999 | | /* No right singular vectors to be computed */ |
3000 | |
|
3001 | 0 | itau = 1; |
3002 | 0 | iwork = itau + *m; |
3003 | | |
3004 | | /* Compute A=L*Q */ |
3005 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3006 | |
|
3007 | 0 | i__2 = *lwork - iwork + 1; |
3008 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & |
3009 | 0 | i__2, &ierr); |
3010 | | |
3011 | | /* Zero out above L */ |
3012 | |
|
3013 | 0 | i__2 = *m - 1; |
3014 | 0 | i__3 = *m - 1; |
3015 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 << 1) + |
3016 | 0 | 1], lda); |
3017 | 0 | ie = 1; |
3018 | 0 | itauq = ie + *m; |
3019 | 0 | itaup = itauq + *m; |
3020 | 0 | iwork = itaup + *m; |
3021 | | |
3022 | | /* Bidiagonalize L in A */ |
3023 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
3024 | |
|
3025 | 0 | i__2 = *lwork - iwork + 1; |
3026 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ |
3027 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
3028 | 0 | if (wntuo || wntuas) { |
3029 | | |
3030 | | /* If left singular vectors desired, generate Q */ |
3031 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
3032 | |
|
3033 | 0 | i__2 = *lwork - iwork + 1; |
3034 | 0 | dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], & |
3035 | 0 | work[iwork], &i__2, &ierr); |
3036 | 0 | } |
3037 | 0 | iwork = ie + *m; |
3038 | 0 | nru = 0; |
3039 | 0 | if (wntuo || wntuas) { |
3040 | 0 | nru = *m; |
3041 | 0 | } |
3042 | | |
3043 | | /* Perform bidiagonal QR iteration, computing left singular */ |
3044 | | /* vectors of A in A if desired */ |
3045 | | /* (Workspace: need BDSPAC) */ |
3046 | |
|
3047 | 0 | dbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &work[ie], dum, & |
3048 | 0 | c__1, &a[a_offset], lda, dum, &c__1, &work[iwork], |
3049 | 0 | info); |
3050 | | |
3051 | | /* If left singular vectors desired in U, copy them there */ |
3052 | |
|
3053 | 0 | if (wntuas) { |
3054 | 0 | dlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
3055 | 0 | } |
3056 | |
|
3057 | 0 | } else if (wntvo && wntun) { |
3058 | | |
3059 | | /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ |
3060 | | /* M right singular vectors to be overwritten on A and */ |
3061 | | /* no left singular vectors to be computed */ |
3062 | | |
3063 | | /* Computing MAX */ |
3064 | 0 | i__2 = *m << 2; |
3065 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3066 | | |
3067 | | /* Sufficient workspace for a fast algorithm */ |
3068 | |
|
3069 | 0 | ir = 1; |
3070 | | /* Computing MAX */ |
3071 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *m; |
3072 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) { |
3073 | | |
3074 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ |
3075 | |
|
3076 | 0 | ldwrku = *lda; |
3077 | 0 | chunk = *n; |
3078 | 0 | ldwrkr = *lda; |
3079 | 0 | } else /* if(complicated condition) */ { |
3080 | | /* Computing MAX */ |
3081 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *m; |
3082 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *m * *m) { |
3083 | | |
3084 | | /* WORK(IU) is LDA by N and WORK(IR) is M by M */ |
3085 | |
|
3086 | 0 | ldwrku = *lda; |
3087 | 0 | chunk = *n; |
3088 | 0 | ldwrkr = *m; |
3089 | 0 | } else { |
3090 | | |
3091 | | /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ |
3092 | |
|
3093 | 0 | ldwrku = *m; |
3094 | 0 | chunk = (*lwork - *m * *m - *m) / *m; |
3095 | 0 | ldwrkr = *m; |
3096 | 0 | } |
3097 | 0 | } |
3098 | 0 | itau = ir + ldwrkr * *m; |
3099 | 0 | iwork = itau + *m; |
3100 | | |
3101 | | /* Compute A=L*Q */ |
3102 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3103 | |
|
3104 | 0 | i__2 = *lwork - iwork + 1; |
3105 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
3106 | 0 | , &i__2, &ierr); |
3107 | | |
3108 | | /* Copy L to WORK(IR) and zero out above it */ |
3109 | |
|
3110 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr); |
3111 | 0 | i__2 = *m - 1; |
3112 | 0 | i__3 = *m - 1; |
3113 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
3114 | 0 | ldwrkr], &ldwrkr); |
3115 | | |
3116 | | /* Generate Q in A */ |
3117 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3118 | |
|
3119 | 0 | i__2 = *lwork - iwork + 1; |
3120 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
3121 | 0 | iwork], &i__2, &ierr); |
3122 | 0 | ie = itau; |
3123 | 0 | itauq = ie + *m; |
3124 | 0 | itaup = itauq + *m; |
3125 | 0 | iwork = itaup + *m; |
3126 | | |
3127 | | /* Bidiagonalize L in WORK(IR) */ |
3128 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
3129 | |
|
3130 | 0 | i__2 = *lwork - iwork + 1; |
3131 | 0 | dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
3132 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
3133 | | |
3134 | | /* Generate right vectors bidiagonalizing L */ |
3135 | | /* (Workspace: need M*M + 4*M-1, prefer M*M + 3*M + (M-1)*NB) */ |
3136 | |
|
3137 | 0 | i__2 = *lwork - iwork + 1; |
3138 | 0 | dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & |
3139 | 0 | work[iwork], &i__2, &ierr); |
3140 | 0 | iwork = ie + *m; |
3141 | | |
3142 | | /* Perform bidiagonal QR iteration, computing right */ |
3143 | | /* singular vectors of L in WORK(IR) */ |
3144 | | /* (Workspace: need M*M + BDSPAC) */ |
3145 | |
|
3146 | 0 | dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], &work[ |
3147 | 0 | ir], &ldwrkr, dum, &c__1, dum, &c__1, &work[iwork] |
3148 | 0 | , info); |
3149 | 0 | iu = ie + *m; |
3150 | | |
3151 | | /* Multiply right singular vectors of L in WORK(IR) by Q */ |
3152 | | /* in A, storing result in WORK(IU) and copying to A */ |
3153 | | /* (Workspace: need M*M + 2*M, prefer M*M + M*N + M) */ |
3154 | |
|
3155 | 0 | i__2 = *n; |
3156 | 0 | i__3 = chunk; |
3157 | 0 | for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
3158 | 0 | i__3) { |
3159 | | /* Computing MIN */ |
3160 | 0 | i__4 = *n - i__ + 1; |
3161 | 0 | blk = f2cmin(i__4,chunk); |
3162 | 0 | dgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], & |
3163 | 0 | ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, & |
3164 | 0 | work[iu], &ldwrku); |
3165 | 0 | dlacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * |
3166 | 0 | a_dim1 + 1], lda); |
3167 | | /* L30: */ |
3168 | 0 | } |
3169 | |
|
3170 | 0 | } else { |
3171 | | |
3172 | | /* Insufficient workspace for a fast algorithm */ |
3173 | |
|
3174 | 0 | ie = 1; |
3175 | 0 | itauq = ie + *m; |
3176 | 0 | itaup = itauq + *m; |
3177 | 0 | iwork = itaup + *m; |
3178 | | |
3179 | | /* Bidiagonalize A */ |
3180 | | /* (Workspace: need 3*M + N, prefer 3*M + (M + N)*NB) */ |
3181 | |
|
3182 | 0 | i__3 = *lwork - iwork + 1; |
3183 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
3184 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
3185 | | |
3186 | | /* Generate right vectors bidiagonalizing A */ |
3187 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
3188 | |
|
3189 | 0 | i__3 = *lwork - iwork + 1; |
3190 | 0 | dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & |
3191 | 0 | work[iwork], &i__3, &ierr); |
3192 | 0 | iwork = ie + *m; |
3193 | | |
3194 | | /* Perform bidiagonal QR iteration, computing right */ |
3195 | | /* singular vectors of A in A */ |
3196 | | /* (Workspace: need BDSPAC) */ |
3197 | |
|
3198 | 0 | dbdsqr_("L", m, n, &c__0, &c__0, &s[1], &work[ie], &a[ |
3199 | 0 | a_offset], lda, dum, &c__1, dum, &c__1, &work[ |
3200 | 0 | iwork], info); |
3201 | |
|
3202 | 0 | } |
3203 | |
|
3204 | 0 | } else if (wntvo && wntuas) { |
3205 | | |
3206 | | /* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */ |
3207 | | /* M right singular vectors to be overwritten on A and */ |
3208 | | /* M left singular vectors to be computed in U */ |
3209 | | |
3210 | | /* Computing MAX */ |
3211 | 0 | i__3 = *m << 2; |
3212 | 0 | if (*lwork >= *m * *m + f2cmax(i__3,bdspac)) { |
3213 | | |
3214 | | /* Sufficient workspace for a fast algorithm */ |
3215 | |
|
3216 | 0 | ir = 1; |
3217 | | /* Computing MAX */ |
3218 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *m; |
3219 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) { |
3220 | | |
3221 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ |
3222 | |
|
3223 | 0 | ldwrku = *lda; |
3224 | 0 | chunk = *n; |
3225 | 0 | ldwrkr = *lda; |
3226 | 0 | } else /* if(complicated condition) */ { |
3227 | | /* Computing MAX */ |
3228 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *m; |
3229 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *m * *m) { |
3230 | | |
3231 | | /* WORK(IU) is LDA by N and WORK(IR) is M by M */ |
3232 | |
|
3233 | 0 | ldwrku = *lda; |
3234 | 0 | chunk = *n; |
3235 | 0 | ldwrkr = *m; |
3236 | 0 | } else { |
3237 | | |
3238 | | /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ |
3239 | |
|
3240 | 0 | ldwrku = *m; |
3241 | 0 | chunk = (*lwork - *m * *m - *m) / *m; |
3242 | 0 | ldwrkr = *m; |
3243 | 0 | } |
3244 | 0 | } |
3245 | 0 | itau = ir + ldwrkr * *m; |
3246 | 0 | iwork = itau + *m; |
3247 | | |
3248 | | /* Compute A=L*Q */ |
3249 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3250 | |
|
3251 | 0 | i__3 = *lwork - iwork + 1; |
3252 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
3253 | 0 | , &i__3, &ierr); |
3254 | | |
3255 | | /* Copy L to U, zeroing about above it */ |
3256 | |
|
3257 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
3258 | 0 | i__3 = *m - 1; |
3259 | 0 | i__2 = *m - 1; |
3260 | 0 | dlaset_("U", &i__3, &i__2, &c_b57, &c_b57, &u[(u_dim1 << |
3261 | 0 | 1) + 1], ldu); |
3262 | | |
3263 | | /* Generate Q in A */ |
3264 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3265 | |
|
3266 | 0 | i__3 = *lwork - iwork + 1; |
3267 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
3268 | 0 | iwork], &i__3, &ierr); |
3269 | 0 | ie = itau; |
3270 | 0 | itauq = ie + *m; |
3271 | 0 | itaup = itauq + *m; |
3272 | 0 | iwork = itaup + *m; |
3273 | | |
3274 | | /* Bidiagonalize L in U, copying result to WORK(IR) */ |
3275 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
3276 | |
|
3277 | 0 | i__3 = *lwork - iwork + 1; |
3278 | 0 | dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[ |
3279 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
3280 | 0 | dlacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr); |
3281 | | |
3282 | | /* Generate right vectors bidiagonalizing L in WORK(IR) */ |
3283 | | /* (Workspace: need M*M + 4*M-1, prefer M*M + 3*M + (M-1)*NB) */ |
3284 | |
|
3285 | 0 | i__3 = *lwork - iwork + 1; |
3286 | 0 | dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & |
3287 | 0 | work[iwork], &i__3, &ierr); |
3288 | | |
3289 | | /* Generate left vectors bidiagonalizing L in U */ |
3290 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */ |
3291 | |
|
3292 | 0 | i__3 = *lwork - iwork + 1; |
3293 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & |
3294 | 0 | work[iwork], &i__3, &ierr); |
3295 | 0 | iwork = ie + *m; |
3296 | | |
3297 | | /* Perform bidiagonal QR iteration, computing left */ |
3298 | | /* singular vectors of L in U, and computing right */ |
3299 | | /* singular vectors of L in WORK(IR) */ |
3300 | | /* (Workspace: need M*M + BDSPAC) */ |
3301 | |
|
3302 | 0 | dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ir], |
3303 | 0 | &ldwrkr, &u[u_offset], ldu, dum, &c__1, &work[ |
3304 | 0 | iwork], info); |
3305 | 0 | iu = ie + *m; |
3306 | | |
3307 | | /* Multiply right singular vectors of L in WORK(IR) by Q */ |
3308 | | /* in A, storing result in WORK(IU) and copying to A */ |
3309 | | /* (Workspace: need M*M + 2*M, prefer M*M + M*N + M)) */ |
3310 | |
|
3311 | 0 | i__3 = *n; |
3312 | 0 | i__2 = chunk; |
3313 | 0 | for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += |
3314 | 0 | i__2) { |
3315 | | /* Computing MIN */ |
3316 | 0 | i__4 = *n - i__ + 1; |
3317 | 0 | blk = f2cmin(i__4,chunk); |
3318 | 0 | dgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], & |
3319 | 0 | ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, & |
3320 | 0 | work[iu], &ldwrku); |
3321 | 0 | dlacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * |
3322 | 0 | a_dim1 + 1], lda); |
3323 | | /* L40: */ |
3324 | 0 | } |
3325 | |
|
3326 | 0 | } else { |
3327 | | |
3328 | | /* Insufficient workspace for a fast algorithm */ |
3329 | |
|
3330 | 0 | itau = 1; |
3331 | 0 | iwork = itau + *m; |
3332 | | |
3333 | | /* Compute A=L*Q */ |
3334 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3335 | |
|
3336 | 0 | i__2 = *lwork - iwork + 1; |
3337 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
3338 | 0 | , &i__2, &ierr); |
3339 | | |
3340 | | /* Copy L to U, zeroing out above it */ |
3341 | |
|
3342 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
3343 | 0 | i__2 = *m - 1; |
3344 | 0 | i__3 = *m - 1; |
3345 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 << |
3346 | 0 | 1) + 1], ldu); |
3347 | | |
3348 | | /* Generate Q in A */ |
3349 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3350 | |
|
3351 | 0 | i__2 = *lwork - iwork + 1; |
3352 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
3353 | 0 | iwork], &i__2, &ierr); |
3354 | 0 | ie = itau; |
3355 | 0 | itauq = ie + *m; |
3356 | 0 | itaup = itauq + *m; |
3357 | 0 | iwork = itaup + *m; |
3358 | | |
3359 | | /* Bidiagonalize L in U */ |
3360 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
3361 | |
|
3362 | 0 | i__2 = *lwork - iwork + 1; |
3363 | 0 | dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[ |
3364 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
3365 | | |
3366 | | /* Multiply right vectors bidiagonalizing L by Q in A */ |
3367 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
3368 | |
|
3369 | 0 | i__2 = *lwork - iwork + 1; |
3370 | 0 | dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, &work[ |
3371 | 0 | itaup], &a[a_offset], lda, &work[iwork], &i__2, & |
3372 | 0 | ierr); |
3373 | | |
3374 | | /* Generate left vectors bidiagonalizing L in U */ |
3375 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
3376 | |
|
3377 | 0 | i__2 = *lwork - iwork + 1; |
3378 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & |
3379 | 0 | work[iwork], &i__2, &ierr); |
3380 | 0 | iwork = ie + *m; |
3381 | | |
3382 | | /* Perform bidiagonal QR iteration, computing left */ |
3383 | | /* singular vectors of A in U and computing right */ |
3384 | | /* singular vectors of A in A */ |
3385 | | /* (Workspace: need BDSPAC) */ |
3386 | |
|
3387 | 0 | dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &a[ |
3388 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, & |
3389 | 0 | work[iwork], info); |
3390 | |
|
3391 | 0 | } |
3392 | |
|
3393 | 0 | } else if (wntvs) { |
3394 | |
|
3395 | 0 | if (wntun) { |
3396 | | |
3397 | | /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ |
3398 | | /* M right singular vectors to be computed in VT and */ |
3399 | | /* no left singular vectors to be computed */ |
3400 | | |
3401 | | /* Computing MAX */ |
3402 | 0 | i__2 = *m << 2; |
3403 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3404 | | |
3405 | | /* Sufficient workspace for a fast algorithm */ |
3406 | |
|
3407 | 0 | ir = 1; |
3408 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3409 | | |
3410 | | /* WORK(IR) is LDA by M */ |
3411 | |
|
3412 | 0 | ldwrkr = *lda; |
3413 | 0 | } else { |
3414 | | |
3415 | | /* WORK(IR) is M by M */ |
3416 | |
|
3417 | 0 | ldwrkr = *m; |
3418 | 0 | } |
3419 | 0 | itau = ir + ldwrkr * *m; |
3420 | 0 | iwork = itau + *m; |
3421 | | |
3422 | | /* Compute A=L*Q */ |
3423 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3424 | |
|
3425 | 0 | i__2 = *lwork - iwork + 1; |
3426 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3427 | 0 | iwork], &i__2, &ierr); |
3428 | | |
3429 | | /* Copy L to WORK(IR), zeroing out above it */ |
3430 | |
|
3431 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], & |
3432 | 0 | ldwrkr); |
3433 | 0 | i__2 = *m - 1; |
3434 | 0 | i__3 = *m - 1; |
3435 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
3436 | 0 | ldwrkr], &ldwrkr); |
3437 | | |
3438 | | /* Generate Q in A */ |
3439 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3440 | |
|
3441 | 0 | i__2 = *lwork - iwork + 1; |
3442 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3443 | 0 | work[iwork], &i__2, &ierr); |
3444 | 0 | ie = itau; |
3445 | 0 | itauq = ie + *m; |
3446 | 0 | itaup = itauq + *m; |
3447 | 0 | iwork = itaup + *m; |
3448 | | |
3449 | | /* Bidiagonalize L in WORK(IR) */ |
3450 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
3451 | |
|
3452 | 0 | i__2 = *lwork - iwork + 1; |
3453 | 0 | dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], & |
3454 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3455 | 0 | i__2, &ierr); |
3456 | | |
3457 | | /* Generate right vectors bidiagonalizing L in */ |
3458 | | /* WORK(IR) */ |
3459 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + (M-1)*NB) */ |
3460 | |
|
3461 | 0 | i__2 = *lwork - iwork + 1; |
3462 | 0 | dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] |
3463 | 0 | , &work[iwork], &i__2, &ierr); |
3464 | 0 | iwork = ie + *m; |
3465 | | |
3466 | | /* Perform bidiagonal QR iteration, computing right */ |
3467 | | /* singular vectors of L in WORK(IR) */ |
3468 | | /* (Workspace: need M*M + BDSPAC) */ |
3469 | |
|
3470 | 0 | dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], & |
3471 | 0 | work[ir], &ldwrkr, dum, &c__1, dum, &c__1, & |
3472 | 0 | work[iwork], info); |
3473 | | |
3474 | | /* Multiply right singular vectors of L in WORK(IR) by */ |
3475 | | /* Q in A, storing result in VT */ |
3476 | | /* (Workspace: need M*M) */ |
3477 | |
|
3478 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr, |
3479 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3480 | 0 | ldvt); |
3481 | |
|
3482 | 0 | } else { |
3483 | | |
3484 | | /* Insufficient workspace for a fast algorithm */ |
3485 | |
|
3486 | 0 | itau = 1; |
3487 | 0 | iwork = itau + *m; |
3488 | | |
3489 | | /* Compute A=L*Q */ |
3490 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3491 | |
|
3492 | 0 | i__2 = *lwork - iwork + 1; |
3493 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3494 | 0 | iwork], &i__2, &ierr); |
3495 | | |
3496 | | /* Copy result to VT */ |
3497 | |
|
3498 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3499 | 0 | ldvt); |
3500 | | |
3501 | | /* Generate Q in VT */ |
3502 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3503 | |
|
3504 | 0 | i__2 = *lwork - iwork + 1; |
3505 | 0 | dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3506 | 0 | work[iwork], &i__2, &ierr); |
3507 | 0 | ie = itau; |
3508 | 0 | itauq = ie + *m; |
3509 | 0 | itaup = itauq + *m; |
3510 | 0 | iwork = itaup + *m; |
3511 | | |
3512 | | /* Zero out above L in A */ |
3513 | |
|
3514 | 0 | i__2 = *m - 1; |
3515 | 0 | i__3 = *m - 1; |
3516 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3517 | 0 | << 1) + 1], lda); |
3518 | | |
3519 | | /* Bidiagonalize L in A */ |
3520 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
3521 | |
|
3522 | 0 | i__2 = *lwork - iwork + 1; |
3523 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3524 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3525 | 0 | i__2, &ierr); |
3526 | | |
3527 | | /* Multiply right vectors bidiagonalizing L by Q in VT */ |
3528 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
3529 | |
|
3530 | 0 | i__2 = *lwork - iwork + 1; |
3531 | 0 | dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3532 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3533 | 0 | iwork], &i__2, &ierr); |
3534 | 0 | iwork = ie + *m; |
3535 | | |
3536 | | /* Perform bidiagonal QR iteration, computing right */ |
3537 | | /* singular vectors of A in VT */ |
3538 | | /* (Workspace: need BDSPAC) */ |
3539 | |
|
3540 | 0 | dbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], & |
3541 | 0 | vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, & |
3542 | 0 | work[iwork], info); |
3543 | |
|
3544 | 0 | } |
3545 | |
|
3546 | 0 | } else if (wntuo) { |
3547 | | |
3548 | | /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ |
3549 | | /* M right singular vectors to be computed in VT and */ |
3550 | | /* M left singular vectors to be overwritten on A */ |
3551 | | |
3552 | | /* Computing MAX */ |
3553 | 0 | i__2 = *m << 2; |
3554 | 0 | if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) { |
3555 | | |
3556 | | /* Sufficient workspace for a fast algorithm */ |
3557 | |
|
3558 | 0 | iu = 1; |
3559 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *m) { |
3560 | | |
3561 | | /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ |
3562 | |
|
3563 | 0 | ldwrku = *lda; |
3564 | 0 | ir = iu + ldwrku * *m; |
3565 | 0 | ldwrkr = *lda; |
3566 | 0 | } else if (*lwork >= wrkbl + (*lda + *m) * *m) { |
3567 | | |
3568 | | /* WORK(IU) is LDA by M and WORK(IR) is M by M */ |
3569 | |
|
3570 | 0 | ldwrku = *lda; |
3571 | 0 | ir = iu + ldwrku * *m; |
3572 | 0 | ldwrkr = *m; |
3573 | 0 | } else { |
3574 | | |
3575 | | /* WORK(IU) is M by M and WORK(IR) is M by M */ |
3576 | |
|
3577 | 0 | ldwrku = *m; |
3578 | 0 | ir = iu + ldwrku * *m; |
3579 | 0 | ldwrkr = *m; |
3580 | 0 | } |
3581 | 0 | itau = ir + ldwrkr * *m; |
3582 | 0 | iwork = itau + *m; |
3583 | | |
3584 | | /* Compute A=L*Q */ |
3585 | | /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */ |
3586 | |
|
3587 | 0 | i__2 = *lwork - iwork + 1; |
3588 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3589 | 0 | iwork], &i__2, &ierr); |
3590 | | |
3591 | | /* Copy L to WORK(IU), zeroing out below it */ |
3592 | |
|
3593 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
3594 | 0 | ldwrku); |
3595 | 0 | i__2 = *m - 1; |
3596 | 0 | i__3 = *m - 1; |
3597 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
3598 | 0 | ldwrku], &ldwrku); |
3599 | | |
3600 | | /* Generate Q in A */ |
3601 | | /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */ |
3602 | |
|
3603 | 0 | i__2 = *lwork - iwork + 1; |
3604 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3605 | 0 | work[iwork], &i__2, &ierr); |
3606 | 0 | ie = itau; |
3607 | 0 | itauq = ie + *m; |
3608 | 0 | itaup = itauq + *m; |
3609 | 0 | iwork = itaup + *m; |
3610 | | |
3611 | | /* Bidiagonalize L in WORK(IU), copying result to */ |
3612 | | /* WORK(IR) */ |
3613 | | /* (Workspace: need 2*M*M + 4*M, */ |
3614 | | /* prefer 2*M*M+3*M+2*M*NB) */ |
3615 | |
|
3616 | 0 | i__2 = *lwork - iwork + 1; |
3617 | 0 | dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
3618 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3619 | 0 | i__2, &ierr); |
3620 | 0 | dlacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & |
3621 | 0 | ldwrkr); |
3622 | | |
3623 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
3624 | | /* (Workspace: need 2*M*M + 4*M-1, */ |
3625 | | /* prefer 2*M*M+3*M+(M-1)*NB) */ |
3626 | |
|
3627 | 0 | i__2 = *lwork - iwork + 1; |
3628 | 0 | dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
3629 | 0 | , &work[iwork], &i__2, &ierr); |
3630 | | |
3631 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
3632 | | /* (Workspace: need 2*M*M + 4*M, prefer 2*M*M + 3*M + M*NB) */ |
3633 | |
|
3634 | 0 | i__2 = *lwork - iwork + 1; |
3635 | 0 | dorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] |
3636 | 0 | , &work[iwork], &i__2, &ierr); |
3637 | 0 | iwork = ie + *m; |
3638 | | |
3639 | | /* Perform bidiagonal QR iteration, computing left */ |
3640 | | /* singular vectors of L in WORK(IR) and computing */ |
3641 | | /* right singular vectors of L in WORK(IU) */ |
3642 | | /* (Workspace: need 2*M*M + BDSPAC) */ |
3643 | |
|
3644 | 0 | dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
3645 | 0 | iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1, |
3646 | 0 | &work[iwork], info); |
3647 | | |
3648 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
3649 | | /* Q in A, storing result in VT */ |
3650 | | /* (Workspace: need M*M) */ |
3651 | |
|
3652 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
3653 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3654 | 0 | ldvt); |
3655 | | |
3656 | | /* Copy left singular vectors of L to A */ |
3657 | | /* (Workspace: need M*M) */ |
3658 | |
|
3659 | 0 | dlacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], |
3660 | 0 | lda); |
3661 | |
|
3662 | 0 | } else { |
3663 | | |
3664 | | /* Insufficient workspace for a fast algorithm */ |
3665 | |
|
3666 | 0 | itau = 1; |
3667 | 0 | iwork = itau + *m; |
3668 | | |
3669 | | /* Compute A=L*Q, copying result to VT */ |
3670 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3671 | |
|
3672 | 0 | i__2 = *lwork - iwork + 1; |
3673 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3674 | 0 | iwork], &i__2, &ierr); |
3675 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3676 | 0 | ldvt); |
3677 | | |
3678 | | /* Generate Q in VT */ |
3679 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3680 | |
|
3681 | 0 | i__2 = *lwork - iwork + 1; |
3682 | 0 | dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3683 | 0 | work[iwork], &i__2, &ierr); |
3684 | 0 | ie = itau; |
3685 | 0 | itauq = ie + *m; |
3686 | 0 | itaup = itauq + *m; |
3687 | 0 | iwork = itaup + *m; |
3688 | | |
3689 | | /* Zero out above L in A */ |
3690 | |
|
3691 | 0 | i__2 = *m - 1; |
3692 | 0 | i__3 = *m - 1; |
3693 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3694 | 0 | << 1) + 1], lda); |
3695 | | |
3696 | | /* Bidiagonalize L in A */ |
3697 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
3698 | |
|
3699 | 0 | i__2 = *lwork - iwork + 1; |
3700 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3701 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3702 | 0 | i__2, &ierr); |
3703 | | |
3704 | | /* Multiply right vectors bidiagonalizing L by Q in VT */ |
3705 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
3706 | |
|
3707 | 0 | i__2 = *lwork - iwork + 1; |
3708 | 0 | dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3709 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3710 | 0 | iwork], &i__2, &ierr); |
3711 | | |
3712 | | /* Generate left bidiagonalizing vectors of L in A */ |
3713 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
3714 | |
|
3715 | 0 | i__2 = *lwork - iwork + 1; |
3716 | 0 | dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], |
3717 | 0 | &work[iwork], &i__2, &ierr); |
3718 | 0 | iwork = ie + *m; |
3719 | | |
3720 | | /* Perform bidiagonal QR iteration, compute left */ |
3721 | | /* singular vectors of A in A and compute right */ |
3722 | | /* singular vectors of A in VT */ |
3723 | | /* (Workspace: need BDSPAC) */ |
3724 | |
|
3725 | 0 | dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
3726 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, & |
3727 | 0 | c__1, &work[iwork], info); |
3728 | |
|
3729 | 0 | } |
3730 | |
|
3731 | 0 | } else if (wntuas) { |
3732 | | |
3733 | | /* Path 6t(N much larger than M, JOBU='S' or 'A', */ |
3734 | | /* JOBVT='S') */ |
3735 | | /* M right singular vectors to be computed in VT and */ |
3736 | | /* M left singular vectors to be computed in U */ |
3737 | | |
3738 | | /* Computing MAX */ |
3739 | 0 | i__2 = *m << 2; |
3740 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3741 | | |
3742 | | /* Sufficient workspace for a fast algorithm */ |
3743 | |
|
3744 | 0 | iu = 1; |
3745 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3746 | | |
3747 | | /* WORK(IU) is LDA by N */ |
3748 | |
|
3749 | 0 | ldwrku = *lda; |
3750 | 0 | } else { |
3751 | | |
3752 | | /* WORK(IU) is LDA by M */ |
3753 | |
|
3754 | 0 | ldwrku = *m; |
3755 | 0 | } |
3756 | 0 | itau = iu + ldwrku * *m; |
3757 | 0 | iwork = itau + *m; |
3758 | | |
3759 | | /* Compute A=L*Q */ |
3760 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3761 | |
|
3762 | 0 | i__2 = *lwork - iwork + 1; |
3763 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3764 | 0 | iwork], &i__2, &ierr); |
3765 | | |
3766 | | /* Copy L to WORK(IU), zeroing out above it */ |
3767 | |
|
3768 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
3769 | 0 | ldwrku); |
3770 | 0 | i__2 = *m - 1; |
3771 | 0 | i__3 = *m - 1; |
3772 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
3773 | 0 | ldwrku], &ldwrku); |
3774 | | |
3775 | | /* Generate Q in A */ |
3776 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3777 | |
|
3778 | 0 | i__2 = *lwork - iwork + 1; |
3779 | 0 | dorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3780 | 0 | work[iwork], &i__2, &ierr); |
3781 | 0 | ie = itau; |
3782 | 0 | itauq = ie + *m; |
3783 | 0 | itaup = itauq + *m; |
3784 | 0 | iwork = itaup + *m; |
3785 | | |
3786 | | /* Bidiagonalize L in WORK(IU), copying result to U */ |
3787 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
3788 | |
|
3789 | 0 | i__2 = *lwork - iwork + 1; |
3790 | 0 | dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
3791 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3792 | 0 | i__2, &ierr); |
3793 | 0 | dlacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], |
3794 | 0 | ldu); |
3795 | | |
3796 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
3797 | | /* (Workspace: need M*M + 4*M-1, */ |
3798 | | /* prefer M*M+3*M+(M-1)*NB) */ |
3799 | |
|
3800 | 0 | i__2 = *lwork - iwork + 1; |
3801 | 0 | dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
3802 | 0 | , &work[iwork], &i__2, &ierr); |
3803 | | |
3804 | | /* Generate left bidiagonalizing vectors in U */ |
3805 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */ |
3806 | |
|
3807 | 0 | i__2 = *lwork - iwork + 1; |
3808 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
3809 | 0 | &work[iwork], &i__2, &ierr); |
3810 | 0 | iwork = ie + *m; |
3811 | | |
3812 | | /* Perform bidiagonal QR iteration, computing left */ |
3813 | | /* singular vectors of L in U and computing right */ |
3814 | | /* singular vectors of L in WORK(IU) */ |
3815 | | /* (Workspace: need M*M + BDSPAC) */ |
3816 | |
|
3817 | 0 | dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
3818 | 0 | iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, & |
3819 | 0 | work[iwork], info); |
3820 | | |
3821 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
3822 | | /* Q in A, storing result in VT */ |
3823 | | /* (Workspace: need M*M) */ |
3824 | |
|
3825 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
3826 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3827 | 0 | ldvt); |
3828 | |
|
3829 | 0 | } else { |
3830 | | |
3831 | | /* Insufficient workspace for a fast algorithm */ |
3832 | |
|
3833 | 0 | itau = 1; |
3834 | 0 | iwork = itau + *m; |
3835 | | |
3836 | | /* Compute A=L*Q, copying result to VT */ |
3837 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3838 | |
|
3839 | 0 | i__2 = *lwork - iwork + 1; |
3840 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3841 | 0 | iwork], &i__2, &ierr); |
3842 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3843 | 0 | ldvt); |
3844 | | |
3845 | | /* Generate Q in VT */ |
3846 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
3847 | |
|
3848 | 0 | i__2 = *lwork - iwork + 1; |
3849 | 0 | dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3850 | 0 | work[iwork], &i__2, &ierr); |
3851 | | |
3852 | | /* Copy L to U, zeroing out above it */ |
3853 | |
|
3854 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], |
3855 | 0 | ldu); |
3856 | 0 | i__2 = *m - 1; |
3857 | 0 | i__3 = *m - 1; |
3858 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 |
3859 | 0 | << 1) + 1], ldu); |
3860 | 0 | ie = itau; |
3861 | 0 | itauq = ie + *m; |
3862 | 0 | itaup = itauq + *m; |
3863 | 0 | iwork = itaup + *m; |
3864 | | |
3865 | | /* Bidiagonalize L in U */ |
3866 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
3867 | |
|
3868 | 0 | i__2 = *lwork - iwork + 1; |
3869 | 0 | dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], & |
3870 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3871 | 0 | i__2, &ierr); |
3872 | | |
3873 | | /* Multiply right bidiagonalizing vectors in U by Q */ |
3874 | | /* in VT */ |
3875 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
3876 | |
|
3877 | 0 | i__2 = *lwork - iwork + 1; |
3878 | 0 | dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, & |
3879 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3880 | 0 | iwork], &i__2, &ierr); |
3881 | | |
3882 | | /* Generate left bidiagonalizing vectors in U */ |
3883 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
3884 | |
|
3885 | 0 | i__2 = *lwork - iwork + 1; |
3886 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
3887 | 0 | &work[iwork], &i__2, &ierr); |
3888 | 0 | iwork = ie + *m; |
3889 | | |
3890 | | /* Perform bidiagonal QR iteration, computing left */ |
3891 | | /* singular vectors of A in U and computing right */ |
3892 | | /* singular vectors of A in VT */ |
3893 | | /* (Workspace: need BDSPAC) */ |
3894 | |
|
3895 | 0 | dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
3896 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
3897 | 0 | c__1, &work[iwork], info); |
3898 | |
|
3899 | 0 | } |
3900 | |
|
3901 | 0 | } |
3902 | |
|
3903 | 0 | } else if (wntva) { |
3904 | |
|
3905 | 0 | if (wntun) { |
3906 | | |
3907 | | /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ |
3908 | | /* N right singular vectors to be computed in VT and */ |
3909 | | /* no left singular vectors to be computed */ |
3910 | | |
3911 | | /* Computing MAX */ |
3912 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
3913 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3914 | | |
3915 | | /* Sufficient workspace for a fast algorithm */ |
3916 | |
|
3917 | 0 | ir = 1; |
3918 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3919 | | |
3920 | | /* WORK(IR) is LDA by M */ |
3921 | |
|
3922 | 0 | ldwrkr = *lda; |
3923 | 0 | } else { |
3924 | | |
3925 | | /* WORK(IR) is M by M */ |
3926 | |
|
3927 | 0 | ldwrkr = *m; |
3928 | 0 | } |
3929 | 0 | itau = ir + ldwrkr * *m; |
3930 | 0 | iwork = itau + *m; |
3931 | | |
3932 | | /* Compute A=L*Q, copying result to VT */ |
3933 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
3934 | |
|
3935 | 0 | i__2 = *lwork - iwork + 1; |
3936 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3937 | 0 | iwork], &i__2, &ierr); |
3938 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3939 | 0 | ldvt); |
3940 | | |
3941 | | /* Copy L to WORK(IR), zeroing out above it */ |
3942 | |
|
3943 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], & |
3944 | 0 | ldwrkr); |
3945 | 0 | i__2 = *m - 1; |
3946 | 0 | i__3 = *m - 1; |
3947 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
3948 | 0 | ldwrkr], &ldwrkr); |
3949 | | |
3950 | | /* Generate Q in VT */ |
3951 | | /* (Workspace: need M*M + M + N, prefer M*M + M + N*NB) */ |
3952 | |
|
3953 | 0 | i__2 = *lwork - iwork + 1; |
3954 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3955 | 0 | work[iwork], &i__2, &ierr); |
3956 | 0 | ie = itau; |
3957 | 0 | itauq = ie + *m; |
3958 | 0 | itaup = itauq + *m; |
3959 | 0 | iwork = itaup + *m; |
3960 | | |
3961 | | /* Bidiagonalize L in WORK(IR) */ |
3962 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
3963 | |
|
3964 | 0 | i__2 = *lwork - iwork + 1; |
3965 | 0 | dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], & |
3966 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3967 | 0 | i__2, &ierr); |
3968 | | |
3969 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
3970 | | /* (Workspace: need M*M + 4*M-1, */ |
3971 | | /* prefer M*M+3*M+(M-1)*NB) */ |
3972 | |
|
3973 | 0 | i__2 = *lwork - iwork + 1; |
3974 | 0 | dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] |
3975 | 0 | , &work[iwork], &i__2, &ierr); |
3976 | 0 | iwork = ie + *m; |
3977 | | |
3978 | | /* Perform bidiagonal QR iteration, computing right */ |
3979 | | /* singular vectors of L in WORK(IR) */ |
3980 | | /* (Workspace: need M*M + BDSPAC) */ |
3981 | |
|
3982 | 0 | dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], & |
3983 | 0 | work[ir], &ldwrkr, dum, &c__1, dum, &c__1, & |
3984 | 0 | work[iwork], info); |
3985 | | |
3986 | | /* Multiply right singular vectors of L in WORK(IR) by */ |
3987 | | /* Q in VT, storing result in A */ |
3988 | | /* (Workspace: need M*M) */ |
3989 | |
|
3990 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr, |
3991 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
3992 | 0 | lda); |
3993 | | |
3994 | | /* Copy right singular vectors of A from A to VT */ |
3995 | |
|
3996 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
3997 | 0 | ldvt); |
3998 | |
|
3999 | 0 | } else { |
4000 | | |
4001 | | /* Insufficient workspace for a fast algorithm */ |
4002 | |
|
4003 | 0 | itau = 1; |
4004 | 0 | iwork = itau + *m; |
4005 | | |
4006 | | /* Compute A=L*Q, copying result to VT */ |
4007 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
4008 | |
|
4009 | 0 | i__2 = *lwork - iwork + 1; |
4010 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4011 | 0 | iwork], &i__2, &ierr); |
4012 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4013 | 0 | ldvt); |
4014 | | |
4015 | | /* Generate Q in VT */ |
4016 | | /* (Workspace: need M + N, prefer M + N*NB) */ |
4017 | |
|
4018 | 0 | i__2 = *lwork - iwork + 1; |
4019 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4020 | 0 | work[iwork], &i__2, &ierr); |
4021 | 0 | ie = itau; |
4022 | 0 | itauq = ie + *m; |
4023 | 0 | itaup = itauq + *m; |
4024 | 0 | iwork = itaup + *m; |
4025 | | |
4026 | | /* Zero out above L in A */ |
4027 | |
|
4028 | 0 | i__2 = *m - 1; |
4029 | 0 | i__3 = *m - 1; |
4030 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
4031 | 0 | << 1) + 1], lda); |
4032 | | |
4033 | | /* Bidiagonalize L in A */ |
4034 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
4035 | |
|
4036 | 0 | i__2 = *lwork - iwork + 1; |
4037 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
4038 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4039 | 0 | i__2, &ierr); |
4040 | | |
4041 | | /* Multiply right bidiagonalizing vectors in A by Q */ |
4042 | | /* in VT */ |
4043 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
4044 | |
|
4045 | 0 | i__2 = *lwork - iwork + 1; |
4046 | 0 | dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
4047 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
4048 | 0 | iwork], &i__2, &ierr); |
4049 | 0 | iwork = ie + *m; |
4050 | | |
4051 | | /* Perform bidiagonal QR iteration, computing right */ |
4052 | | /* singular vectors of A in VT */ |
4053 | | /* (Workspace: need BDSPAC) */ |
4054 | |
|
4055 | 0 | dbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], & |
4056 | 0 | vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, & |
4057 | 0 | work[iwork], info); |
4058 | |
|
4059 | 0 | } |
4060 | |
|
4061 | 0 | } else if (wntuo) { |
4062 | | |
4063 | | /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ |
4064 | | /* N right singular vectors to be computed in VT and */ |
4065 | | /* M left singular vectors to be overwritten on A */ |
4066 | | |
4067 | | /* Computing MAX */ |
4068 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
4069 | 0 | if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) { |
4070 | | |
4071 | | /* Sufficient workspace for a fast algorithm */ |
4072 | |
|
4073 | 0 | iu = 1; |
4074 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *m) { |
4075 | | |
4076 | | /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ |
4077 | |
|
4078 | 0 | ldwrku = *lda; |
4079 | 0 | ir = iu + ldwrku * *m; |
4080 | 0 | ldwrkr = *lda; |
4081 | 0 | } else if (*lwork >= wrkbl + (*lda + *m) * *m) { |
4082 | | |
4083 | | /* WORK(IU) is LDA by M and WORK(IR) is M by M */ |
4084 | |
|
4085 | 0 | ldwrku = *lda; |
4086 | 0 | ir = iu + ldwrku * *m; |
4087 | 0 | ldwrkr = *m; |
4088 | 0 | } else { |
4089 | | |
4090 | | /* WORK(IU) is M by M and WORK(IR) is M by M */ |
4091 | |
|
4092 | 0 | ldwrku = *m; |
4093 | 0 | ir = iu + ldwrku * *m; |
4094 | 0 | ldwrkr = *m; |
4095 | 0 | } |
4096 | 0 | itau = ir + ldwrkr * *m; |
4097 | 0 | iwork = itau + *m; |
4098 | | |
4099 | | /* Compute A=L*Q, copying result to VT */ |
4100 | | /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */ |
4101 | |
|
4102 | 0 | i__2 = *lwork - iwork + 1; |
4103 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4104 | 0 | iwork], &i__2, &ierr); |
4105 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4106 | 0 | ldvt); |
4107 | | |
4108 | | /* Generate Q in VT */ |
4109 | | /* (Workspace: need 2*M*M + M + N, prefer 2*M*M + M + N*NB) */ |
4110 | |
|
4111 | 0 | i__2 = *lwork - iwork + 1; |
4112 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4113 | 0 | work[iwork], &i__2, &ierr); |
4114 | | |
4115 | | /* Copy L to WORK(IU), zeroing out above it */ |
4116 | |
|
4117 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
4118 | 0 | ldwrku); |
4119 | 0 | i__2 = *m - 1; |
4120 | 0 | i__3 = *m - 1; |
4121 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
4122 | 0 | ldwrku], &ldwrku); |
4123 | 0 | ie = itau; |
4124 | 0 | itauq = ie + *m; |
4125 | 0 | itaup = itauq + *m; |
4126 | 0 | iwork = itaup + *m; |
4127 | | |
4128 | | /* Bidiagonalize L in WORK(IU), copying result to */ |
4129 | | /* WORK(IR) */ |
4130 | | /* (Workspace: need 2*M*M + 4*M, */ |
4131 | | /* prefer 2*M*M+3*M+2*M*NB) */ |
4132 | |
|
4133 | 0 | i__2 = *lwork - iwork + 1; |
4134 | 0 | dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
4135 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4136 | 0 | i__2, &ierr); |
4137 | 0 | dlacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & |
4138 | 0 | ldwrkr); |
4139 | | |
4140 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
4141 | | /* (Workspace: need 2*M*M + 4*M-1, */ |
4142 | | /* prefer 2*M*M+3*M+(M-1)*NB) */ |
4143 | |
|
4144 | 0 | i__2 = *lwork - iwork + 1; |
4145 | 0 | dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
4146 | 0 | , &work[iwork], &i__2, &ierr); |
4147 | | |
4148 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
4149 | | /* (Workspace: need 2*M*M + 4*M, prefer 2*M*M + 3*M + M*NB) */ |
4150 | |
|
4151 | 0 | i__2 = *lwork - iwork + 1; |
4152 | 0 | dorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] |
4153 | 0 | , &work[iwork], &i__2, &ierr); |
4154 | 0 | iwork = ie + *m; |
4155 | | |
4156 | | /* Perform bidiagonal QR iteration, computing left */ |
4157 | | /* singular vectors of L in WORK(IR) and computing */ |
4158 | | /* right singular vectors of L in WORK(IU) */ |
4159 | | /* (Workspace: need 2*M*M + BDSPAC) */ |
4160 | |
|
4161 | 0 | dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
4162 | 0 | iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1, |
4163 | 0 | &work[iwork], info); |
4164 | | |
4165 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
4166 | | /* Q in VT, storing result in A */ |
4167 | | /* (Workspace: need M*M) */ |
4168 | |
|
4169 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
4170 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
4171 | 0 | lda); |
4172 | | |
4173 | | /* Copy right singular vectors of A from A to VT */ |
4174 | |
|
4175 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
4176 | 0 | ldvt); |
4177 | | |
4178 | | /* Copy left singular vectors of A from WORK(IR) to A */ |
4179 | |
|
4180 | 0 | dlacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], |
4181 | 0 | lda); |
4182 | |
|
4183 | 0 | } else { |
4184 | | |
4185 | | /* Insufficient workspace for a fast algorithm */ |
4186 | |
|
4187 | 0 | itau = 1; |
4188 | 0 | iwork = itau + *m; |
4189 | | |
4190 | | /* Compute A=L*Q, copying result to VT */ |
4191 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
4192 | |
|
4193 | 0 | i__2 = *lwork - iwork + 1; |
4194 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4195 | 0 | iwork], &i__2, &ierr); |
4196 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4197 | 0 | ldvt); |
4198 | | |
4199 | | /* Generate Q in VT */ |
4200 | | /* (Workspace: need M + N, prefer M + N*NB) */ |
4201 | |
|
4202 | 0 | i__2 = *lwork - iwork + 1; |
4203 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4204 | 0 | work[iwork], &i__2, &ierr); |
4205 | 0 | ie = itau; |
4206 | 0 | itauq = ie + *m; |
4207 | 0 | itaup = itauq + *m; |
4208 | 0 | iwork = itaup + *m; |
4209 | | |
4210 | | /* Zero out above L in A */ |
4211 | |
|
4212 | 0 | i__2 = *m - 1; |
4213 | 0 | i__3 = *m - 1; |
4214 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
4215 | 0 | << 1) + 1], lda); |
4216 | | |
4217 | | /* Bidiagonalize L in A */ |
4218 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
4219 | |
|
4220 | 0 | i__2 = *lwork - iwork + 1; |
4221 | 0 | dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
4222 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4223 | 0 | i__2, &ierr); |
4224 | | |
4225 | | /* Multiply right bidiagonalizing vectors in A by Q */ |
4226 | | /* in VT */ |
4227 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
4228 | |
|
4229 | 0 | i__2 = *lwork - iwork + 1; |
4230 | 0 | dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
4231 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
4232 | 0 | iwork], &i__2, &ierr); |
4233 | | |
4234 | | /* Generate left bidiagonalizing vectors in A */ |
4235 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
4236 | |
|
4237 | 0 | i__2 = *lwork - iwork + 1; |
4238 | 0 | dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], |
4239 | 0 | &work[iwork], &i__2, &ierr); |
4240 | 0 | iwork = ie + *m; |
4241 | | |
4242 | | /* Perform bidiagonal QR iteration, computing left */ |
4243 | | /* singular vectors of A in A and computing right */ |
4244 | | /* singular vectors of A in VT */ |
4245 | | /* (Workspace: need BDSPAC) */ |
4246 | |
|
4247 | 0 | dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
4248 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, & |
4249 | 0 | c__1, &work[iwork], info); |
4250 | |
|
4251 | 0 | } |
4252 | |
|
4253 | 0 | } else if (wntuas) { |
4254 | | |
4255 | | /* Path 9t(N much larger than M, JOBU='S' or 'A', */ |
4256 | | /* JOBVT='A') */ |
4257 | | /* N right singular vectors to be computed in VT and */ |
4258 | | /* M left singular vectors to be computed in U */ |
4259 | | |
4260 | | /* Computing MAX */ |
4261 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
4262 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
4263 | | |
4264 | | /* Sufficient workspace for a fast algorithm */ |
4265 | |
|
4266 | 0 | iu = 1; |
4267 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
4268 | | |
4269 | | /* WORK(IU) is LDA by M */ |
4270 | |
|
4271 | 0 | ldwrku = *lda; |
4272 | 0 | } else { |
4273 | | |
4274 | | /* WORK(IU) is M by M */ |
4275 | |
|
4276 | 0 | ldwrku = *m; |
4277 | 0 | } |
4278 | 0 | itau = iu + ldwrku * *m; |
4279 | 0 | iwork = itau + *m; |
4280 | | |
4281 | | /* Compute A=L*Q, copying result to VT */ |
4282 | | /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */ |
4283 | |
|
4284 | 0 | i__2 = *lwork - iwork + 1; |
4285 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4286 | 0 | iwork], &i__2, &ierr); |
4287 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4288 | 0 | ldvt); |
4289 | | |
4290 | | /* Generate Q in VT */ |
4291 | | /* (Workspace: need M*M + M + N, prefer M*M + M + N*NB) */ |
4292 | |
|
4293 | 0 | i__2 = *lwork - iwork + 1; |
4294 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4295 | 0 | work[iwork], &i__2, &ierr); |
4296 | | |
4297 | | /* Copy L to WORK(IU), zeroing out above it */ |
4298 | |
|
4299 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
4300 | 0 | ldwrku); |
4301 | 0 | i__2 = *m - 1; |
4302 | 0 | i__3 = *m - 1; |
4303 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
4304 | 0 | ldwrku], &ldwrku); |
4305 | 0 | ie = itau; |
4306 | 0 | itauq = ie + *m; |
4307 | 0 | itaup = itauq + *m; |
4308 | 0 | iwork = itaup + *m; |
4309 | | |
4310 | | /* Bidiagonalize L in WORK(IU), copying result to U */ |
4311 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */ |
4312 | |
|
4313 | 0 | i__2 = *lwork - iwork + 1; |
4314 | 0 | dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
4315 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4316 | 0 | i__2, &ierr); |
4317 | 0 | dlacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], |
4318 | 0 | ldu); |
4319 | | |
4320 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
4321 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + (M-1)*NB) */ |
4322 | |
|
4323 | 0 | i__2 = *lwork - iwork + 1; |
4324 | 0 | dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
4325 | 0 | , &work[iwork], &i__2, &ierr); |
4326 | | |
4327 | | /* Generate left bidiagonalizing vectors in U */ |
4328 | | /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */ |
4329 | |
|
4330 | 0 | i__2 = *lwork - iwork + 1; |
4331 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
4332 | 0 | &work[iwork], &i__2, &ierr); |
4333 | 0 | iwork = ie + *m; |
4334 | | |
4335 | | /* Perform bidiagonal QR iteration, computing left */ |
4336 | | /* singular vectors of L in U and computing right */ |
4337 | | /* singular vectors of L in WORK(IU) */ |
4338 | | /* (Workspace: need M*M + BDSPAC) */ |
4339 | |
|
4340 | 0 | dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
4341 | 0 | iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, & |
4342 | 0 | work[iwork], info); |
4343 | | |
4344 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
4345 | | /* Q in VT, storing result in A */ |
4346 | | /* (Workspace: need M*M) */ |
4347 | |
|
4348 | 0 | dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
4349 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
4350 | 0 | lda); |
4351 | | |
4352 | | /* Copy right singular vectors of A from A to VT */ |
4353 | |
|
4354 | 0 | dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
4355 | 0 | ldvt); |
4356 | |
|
4357 | 0 | } else { |
4358 | | |
4359 | | /* Insufficient workspace for a fast algorithm */ |
4360 | |
|
4361 | 0 | itau = 1; |
4362 | 0 | iwork = itau + *m; |
4363 | | |
4364 | | /* Compute A=L*Q, copying result to VT */ |
4365 | | /* (Workspace: need 2*M, prefer M + M*NB) */ |
4366 | |
|
4367 | 0 | i__2 = *lwork - iwork + 1; |
4368 | 0 | dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4369 | 0 | iwork], &i__2, &ierr); |
4370 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4371 | 0 | ldvt); |
4372 | | |
4373 | | /* Generate Q in VT */ |
4374 | | /* (Workspace: need M + N, prefer M + N*NB) */ |
4375 | |
|
4376 | 0 | i__2 = *lwork - iwork + 1; |
4377 | 0 | dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4378 | 0 | work[iwork], &i__2, &ierr); |
4379 | | |
4380 | | /* Copy L to U, zeroing out above it */ |
4381 | |
|
4382 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], |
4383 | 0 | ldu); |
4384 | 0 | i__2 = *m - 1; |
4385 | 0 | i__3 = *m - 1; |
4386 | 0 | dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 |
4387 | 0 | << 1) + 1], ldu); |
4388 | 0 | ie = itau; |
4389 | 0 | itauq = ie + *m; |
4390 | 0 | itaup = itauq + *m; |
4391 | 0 | iwork = itaup + *m; |
4392 | | |
4393 | | /* Bidiagonalize L in U */ |
4394 | | /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */ |
4395 | |
|
4396 | 0 | i__2 = *lwork - iwork + 1; |
4397 | 0 | dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], & |
4398 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4399 | 0 | i__2, &ierr); |
4400 | | |
4401 | | /* Multiply right bidiagonalizing vectors in U by Q */ |
4402 | | /* in VT */ |
4403 | | /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */ |
4404 | |
|
4405 | 0 | i__2 = *lwork - iwork + 1; |
4406 | 0 | dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, & |
4407 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
4408 | 0 | iwork], &i__2, &ierr); |
4409 | | |
4410 | | /* Generate left bidiagonalizing vectors in U */ |
4411 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
4412 | |
|
4413 | 0 | i__2 = *lwork - iwork + 1; |
4414 | 0 | dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
4415 | 0 | &work[iwork], &i__2, &ierr); |
4416 | 0 | iwork = ie + *m; |
4417 | | |
4418 | | /* Perform bidiagonal QR iteration, computing left */ |
4419 | | /* singular vectors of A in U and computing right */ |
4420 | | /* singular vectors of A in VT */ |
4421 | | /* (Workspace: need BDSPAC) */ |
4422 | |
|
4423 | 0 | dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
4424 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
4425 | 0 | c__1, &work[iwork], info); |
4426 | |
|
4427 | 0 | } |
4428 | |
|
4429 | 0 | } |
4430 | |
|
4431 | 0 | } |
4432 | |
|
4433 | 0 | } else { |
4434 | | |
4435 | | /* N .LT. MNTHR */ |
4436 | | |
4437 | | /* Path 10t(N greater than M, but not much larger) */ |
4438 | | /* Reduce to bidiagonal form without LQ decomposition */ |
4439 | |
|
4440 | 0 | ie = 1; |
4441 | 0 | itauq = ie + *m; |
4442 | 0 | itaup = itauq + *m; |
4443 | 0 | iwork = itaup + *m; |
4444 | | |
4445 | | /* Bidiagonalize A */ |
4446 | | /* (Workspace: need 3*M + N, prefer 3*M + (M + N)*NB) */ |
4447 | |
|
4448 | 0 | i__2 = *lwork - iwork + 1; |
4449 | 0 | dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
4450 | 0 | work[itaup], &work[iwork], &i__2, &ierr); |
4451 | 0 | if (wntuas) { |
4452 | | |
4453 | | /* If left singular vectors desired in U, copy result to U */ |
4454 | | /* and generate left bidiagonalizing vectors in U */ |
4455 | | /* (Workspace: need 4*M-1, prefer 3*M + (M-1)*NB) */ |
4456 | |
|
4457 | 0 | dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
4458 | 0 | i__2 = *lwork - iwork + 1; |
4459 | 0 | dorgbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ |
4460 | 0 | iwork], &i__2, &ierr); |
4461 | 0 | } |
4462 | 0 | if (wntvas) { |
4463 | | |
4464 | | /* If right singular vectors desired in VT, copy result to */ |
4465 | | /* VT and generate right bidiagonalizing vectors in VT */ |
4466 | | /* (Workspace: need 3*M + NRVT, prefer 3*M + NRVT*NB) */ |
4467 | |
|
4468 | 0 | dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
4469 | 0 | if (wntva) { |
4470 | 0 | nrvt = *n; |
4471 | 0 | } |
4472 | 0 | if (wntvs) { |
4473 | 0 | nrvt = *m; |
4474 | 0 | } |
4475 | 0 | i__2 = *lwork - iwork + 1; |
4476 | 0 | dorgbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup], |
4477 | 0 | &work[iwork], &i__2, &ierr); |
4478 | 0 | } |
4479 | 0 | if (wntuo) { |
4480 | | |
4481 | | /* If left singular vectors desired in A, generate left */ |
4482 | | /* bidiagonalizing vectors in A */ |
4483 | | /* (Workspace: need 4*M-1, prefer 3*M + (M-1)*NB) */ |
4484 | |
|
4485 | 0 | i__2 = *lwork - iwork + 1; |
4486 | 0 | dorgbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[ |
4487 | 0 | iwork], &i__2, &ierr); |
4488 | 0 | } |
4489 | 0 | if (wntvo) { |
4490 | | |
4491 | | /* If right singular vectors desired in A, generate right */ |
4492 | | /* bidiagonalizing vectors in A */ |
4493 | | /* (Workspace: need 4*M, prefer 3*M + M*NB) */ |
4494 | |
|
4495 | 0 | i__2 = *lwork - iwork + 1; |
4496 | 0 | dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ |
4497 | 0 | iwork], &i__2, &ierr); |
4498 | 0 | } |
4499 | 0 | iwork = ie + *m; |
4500 | 0 | if (wntuas || wntuo) { |
4501 | 0 | nru = *m; |
4502 | 0 | } |
4503 | 0 | if (wntun) { |
4504 | 0 | nru = 0; |
4505 | 0 | } |
4506 | 0 | if (wntvas || wntvo) { |
4507 | 0 | ncvt = *n; |
4508 | 0 | } |
4509 | 0 | if (wntvn) { |
4510 | 0 | ncvt = 0; |
4511 | 0 | } |
4512 | 0 | if (! wntuo && ! wntvo) { |
4513 | | |
4514 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4515 | | /* left singular vectors in U and computing right singular */ |
4516 | | /* vectors in VT */ |
4517 | | /* (Workspace: need BDSPAC) */ |
4518 | |
|
4519 | 0 | dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
4520 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, & |
4521 | 0 | work[iwork], info); |
4522 | 0 | } else if (! wntuo && wntvo) { |
4523 | | |
4524 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4525 | | /* left singular vectors in U and computing right singular */ |
4526 | | /* vectors in A */ |
4527 | | /* (Workspace: need BDSPAC) */ |
4528 | |
|
4529 | 0 | dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[ |
4530 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[ |
4531 | 0 | iwork], info); |
4532 | 0 | } else { |
4533 | | |
4534 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4535 | | /* left singular vectors in A and computing right singular */ |
4536 | | /* vectors in VT */ |
4537 | | /* (Workspace: need BDSPAC) */ |
4538 | |
|
4539 | 0 | dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
4540 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
4541 | 0 | work[iwork], info); |
4542 | 0 | } |
4543 | |
|
4544 | 0 | } |
4545 | |
|
4546 | 0 | } |
4547 | | |
4548 | | /* If DBDSQR failed to converge, copy unconverged superdiagonals */ |
4549 | | /* to WORK( 2:MINMN ) */ |
4550 | |
|
4551 | 0 | if (*info != 0) { |
4552 | 0 | if (ie > 2) { |
4553 | 0 | i__2 = minmn - 1; |
4554 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
4555 | 0 | work[i__ + 1] = work[i__ + ie - 1]; |
4556 | | /* L50: */ |
4557 | 0 | } |
4558 | 0 | } |
4559 | 0 | if (ie < 2) { |
4560 | 0 | for (i__ = minmn - 1; i__ >= 1; --i__) { |
4561 | 0 | work[i__ + 1] = work[i__ + ie - 1]; |
4562 | | /* L60: */ |
4563 | 0 | } |
4564 | 0 | } |
4565 | 0 | } |
4566 | | |
4567 | | /* Undo scaling if necessary */ |
4568 | |
|
4569 | 0 | if (iscl == 1) { |
4570 | 0 | if (anrm > bignum) { |
4571 | 0 | dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & |
4572 | 0 | minmn, &ierr); |
4573 | 0 | } |
4574 | 0 | if (*info != 0 && anrm > bignum) { |
4575 | 0 | i__2 = minmn - 1; |
4576 | 0 | dlascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &work[2], |
4577 | 0 | &minmn, &ierr); |
4578 | 0 | } |
4579 | 0 | if (anrm < smlnum) { |
4580 | 0 | dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & |
4581 | 0 | minmn, &ierr); |
4582 | 0 | } |
4583 | 0 | if (*info != 0 && anrm < smlnum) { |
4584 | 0 | i__2 = minmn - 1; |
4585 | 0 | dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &work[2], |
4586 | 0 | &minmn, &ierr); |
4587 | 0 | } |
4588 | 0 | } |
4589 | | |
4590 | | /* Return optimal workspace in WORK(1) */ |
4591 | |
|
4592 | 0 | work[1] = (doublereal) maxwrk; |
4593 | |
|
4594 | 0 | return; |
4595 | | |
4596 | | /* End of DGESVD */ |
4597 | |
|
4598 | 0 | } /* dgesvd_ */ |
4599 | | |