Coverage Report

Created: 2025-09-15 19:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slabrd.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
239
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
240
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
241
#define sig_die(s, kill) { exit(1); }
242
#define s_stop(s, n) {exit(0);}
243
#define z_abs(z) (cabs(Cd(z)))
244
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
245
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
246
#define myexit_() break;
247
#define mycycle() continue;
248
#define myceiling(w) {ceil(w)}
249
#define myhuge(w) {HUGE_VAL}
250
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
251
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
252
253
/*  -- translated by f2c (version 20000121).
254
   You must link the resulting object file with the libraries:
255
  -lf2c -lm   (in that order)
256
*/
257
258
259
260
261
/* Table of constant values */
262
263
static real c_b4 = -1.f;
264
static real c_b5 = 1.f;
265
static integer c__1 = 1;
266
static real c_b16 = 0.f;
267
268
/* > \brief \b SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
269
270
/*  =========== DOCUMENTATION =========== */
271
272
/* Online html documentation available at */
273
/*            http://www.netlib.org/lapack/explore-html/ */
274
275
/* > \htmlonly */
276
/* > Download SLABRD + dependencies */
277
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slabrd.
278
f"> */
279
/* > [TGZ]</a> */
280
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slabrd.
281
f"> */
282
/* > [ZIP]</a> */
283
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slabrd.
284
f"> */
285
/* > [TXT]</a> */
286
/* > \endhtmlonly */
287
288
/*  Definition: */
289
/*  =========== */
290
291
/*       SUBROUTINE SLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
292
/*                          LDY ) */
293
294
/*       INTEGER            LDA, LDX, LDY, M, N, NB */
295
/*       REAL               A( LDA, * ), D( * ), E( * ), TAUP( * ), */
296
/*      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * ) */
297
298
299
/* > \par Purpose: */
300
/*  ============= */
301
/* > */
302
/* > \verbatim */
303
/* > */
304
/* > SLABRD reduces the first NB rows and columns of a real general */
305
/* > m by n matrix A to upper or lower bidiagonal form by an orthogonal */
306
/* > transformation Q**T * A * P, and returns the matrices X and Y which */
307
/* > are needed to apply the transformation to the unreduced part of A. */
308
/* > */
309
/* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
310
/* > bidiagonal form. */
311
/* > */
312
/* > This is an auxiliary routine called by SGEBRD */
313
/* > \endverbatim */
314
315
/*  Arguments: */
316
/*  ========== */
317
318
/* > \param[in] M */
319
/* > \verbatim */
320
/* >          M is INTEGER */
321
/* >          The number of rows in the matrix A. */
322
/* > \endverbatim */
323
/* > */
324
/* > \param[in] N */
325
/* > \verbatim */
326
/* >          N is INTEGER */
327
/* >          The number of columns in the matrix A. */
328
/* > \endverbatim */
329
/* > */
330
/* > \param[in] NB */
331
/* > \verbatim */
332
/* >          NB is INTEGER */
333
/* >          The number of leading rows and columns of A to be reduced. */
334
/* > \endverbatim */
335
/* > */
336
/* > \param[in,out] A */
337
/* > \verbatim */
338
/* >          A is REAL array, dimension (LDA,N) */
339
/* >          On entry, the m by n general matrix to be reduced. */
340
/* >          On exit, the first NB rows and columns of the matrix are */
341
/* >          overwritten; the rest of the array is unchanged. */
342
/* >          If m >= n, elements on and below the diagonal in the first NB */
343
/* >            columns, with the array TAUQ, represent the orthogonal */
344
/* >            matrix Q as a product of elementary reflectors; and */
345
/* >            elements above the diagonal in the first NB rows, with the */
346
/* >            array TAUP, represent the orthogonal matrix P as a product */
347
/* >            of elementary reflectors. */
348
/* >          If m < n, elements below the diagonal in the first NB */
349
/* >            columns, with the array TAUQ, represent the orthogonal */
350
/* >            matrix Q as a product of elementary reflectors, and */
351
/* >            elements on and above the diagonal in the first NB rows, */
352
/* >            with the array TAUP, represent the orthogonal matrix P as */
353
/* >            a product of elementary reflectors. */
354
/* >          See Further Details. */
355
/* > \endverbatim */
356
/* > */
357
/* > \param[in] LDA */
358
/* > \verbatim */
359
/* >          LDA is INTEGER */
360
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
361
/* > \endverbatim */
362
/* > */
363
/* > \param[out] D */
364
/* > \verbatim */
365
/* >          D is REAL array, dimension (NB) */
366
/* >          The diagonal elements of the first NB rows and columns of */
367
/* >          the reduced matrix.  D(i) = A(i,i). */
368
/* > \endverbatim */
369
/* > */
370
/* > \param[out] E */
371
/* > \verbatim */
372
/* >          E is REAL array, dimension (NB) */
373
/* >          The off-diagonal elements of the first NB rows and columns of */
374
/* >          the reduced matrix. */
375
/* > \endverbatim */
376
/* > */
377
/* > \param[out] TAUQ */
378
/* > \verbatim */
379
/* >          TAUQ is REAL array, dimension (NB) */
380
/* >          The scalar factors of the elementary reflectors which */
381
/* >          represent the orthogonal matrix Q. See Further Details. */
382
/* > \endverbatim */
383
/* > */
384
/* > \param[out] TAUP */
385
/* > \verbatim */
386
/* >          TAUP is REAL array, dimension (NB) */
387
/* >          The scalar factors of the elementary reflectors which */
388
/* >          represent the orthogonal matrix P. See Further Details. */
389
/* > \endverbatim */
390
/* > */
391
/* > \param[out] X */
392
/* > \verbatim */
393
/* >          X is REAL array, dimension (LDX,NB) */
394
/* >          The m-by-nb matrix X required to update the unreduced part */
395
/* >          of A. */
396
/* > \endverbatim */
397
/* > */
398
/* > \param[in] LDX */
399
/* > \verbatim */
400
/* >          LDX is INTEGER */
401
/* >          The leading dimension of the array X. LDX >= f2cmax(1,M). */
402
/* > \endverbatim */
403
/* > */
404
/* > \param[out] Y */
405
/* > \verbatim */
406
/* >          Y is REAL array, dimension (LDY,NB) */
407
/* >          The n-by-nb matrix Y required to update the unreduced part */
408
/* >          of A. */
409
/* > \endverbatim */
410
/* > */
411
/* > \param[in] LDY */
412
/* > \verbatim */
413
/* >          LDY is INTEGER */
414
/* >          The leading dimension of the array Y. LDY >= f2cmax(1,N). */
415
/* > \endverbatim */
416
417
/*  Authors: */
418
/*  ======== */
419
420
/* > \author Univ. of Tennessee */
421
/* > \author Univ. of California Berkeley */
422
/* > \author Univ. of Colorado Denver */
423
/* > \author NAG Ltd. */
424
425
/* > \date June 2017 */
426
427
/* > \ingroup realOTHERauxiliary */
428
429
/* > \par Further Details: */
430
/*  ===================== */
431
/* > */
432
/* > \verbatim */
433
/* > */
434
/* >  The matrices Q and P are represented as products of elementary */
435
/* >  reflectors: */
436
/* > */
437
/* >     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb) */
438
/* > */
439
/* >  Each H(i) and G(i) has the form: */
440
/* > */
441
/* >     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T */
442
/* > */
443
/* >  where tauq and taup are real scalars, and v and u are real vectors. */
444
/* > */
445
/* >  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
446
/* >  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
447
/* >  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
448
/* > */
449
/* >  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
450
/* >  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
451
/* >  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
452
/* > */
453
/* >  The elements of the vectors v and u together form the m-by-nb matrix */
454
/* >  V and the nb-by-n matrix U**T which are needed, with X and Y, to apply */
455
/* >  the transformation to the unreduced part of the matrix, using a block */
456
/* >  update of the form:  A := A - V*Y**T - X*U**T. */
457
/* > */
458
/* >  The contents of A on exit are illustrated by the following examples */
459
/* >  with nb = 2: */
460
/* > */
461
/* >  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
462
/* > */
463
/* >    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 ) */
464
/* >    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 ) */
465
/* >    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  ) */
466
/* >    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
467
/* >    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
468
/* >    (  v1  v2  a   a   a  ) */
469
/* > */
470
/* >  where a denotes an element of the original matrix which is unchanged, */
471
/* >  vi denotes an element of the vector defining H(i), and ui an element */
472
/* >  of the vector defining G(i). */
473
/* > \endverbatim */
474
/* > */
475
/*  ===================================================================== */
476
/* Subroutine */ void slabrd_(integer *m, integer *n, integer *nb, real *a, 
477
  integer *lda, real *d__, real *e, real *tauq, real *taup, real *x, 
478
  integer *ldx, real *y, integer *ldy)
479
0
{
480
    /* System generated locals */
481
0
    integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, 
482
0
      i__3;
483
484
    /* Local variables */
485
0
    integer i__;
486
0
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *), 
487
0
      sgemv_(char *, integer *, integer *, real *, real *, integer *, 
488
0
      real *, integer *, real *, real *, integer *), slarfg_(
489
0
      integer *, real *, real *, integer *, real *);
490
491
492
/*  -- LAPACK auxiliary routine (version 3.7.1) -- */
493
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
494
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
495
/*     June 2017 */
496
497
498
/*  ===================================================================== */
499
500
501
/*     Quick return if possible */
502
503
    /* Parameter adjustments */
504
0
    a_dim1 = *lda;
505
0
    a_offset = 1 + a_dim1 * 1;
506
0
    a -= a_offset;
507
0
    --d__;
508
0
    --e;
509
0
    --tauq;
510
0
    --taup;
511
0
    x_dim1 = *ldx;
512
0
    x_offset = 1 + x_dim1 * 1;
513
0
    x -= x_offset;
514
0
    y_dim1 = *ldy;
515
0
    y_offset = 1 + y_dim1 * 1;
516
0
    y -= y_offset;
517
518
    /* Function Body */
519
0
    if (*m <= 0 || *n <= 0) {
520
0
  return;
521
0
    }
522
523
0
    if (*m >= *n) {
524
525
/*        Reduce to upper bidiagonal form */
526
527
0
  i__1 = *nb;
528
0
  for (i__ = 1; i__ <= i__1; ++i__) {
529
530
/*           Update A(i:m,i) */
531
532
0
      i__2 = *m - i__ + 1;
533
0
      i__3 = i__ - 1;
534
0
      sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda,
535
0
         &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
536
0
        c__1);
537
0
      i__2 = *m - i__ + 1;
538
0
      i__3 = i__ - 1;
539
0
      sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx,
540
0
         &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * 
541
0
        a_dim1], &c__1);
542
543
/*           Generate reflection Q(i) to annihilate A(i+1:m,i) */
544
545
0
      i__2 = *m - i__ + 1;
546
/* Computing MIN */
547
0
      i__3 = i__ + 1;
548
0
      slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ * 
549
0
        a_dim1], &c__1, &tauq[i__]);
550
0
      d__[i__] = a[i__ + i__ * a_dim1];
551
0
      if (i__ < *n) {
552
0
    a[i__ + i__ * a_dim1] = 1.f;
553
554
/*              Compute Y(i+1:n,i) */
555
556
0
    i__2 = *m - i__ + 1;
557
0
    i__3 = *n - i__;
558
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * 
559
0
      a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
560
0
      y[i__ + 1 + i__ * y_dim1], &c__1);
561
0
    i__2 = *m - i__ + 1;
562
0
    i__3 = i__ - 1;
563
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], 
564
0
      lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 
565
0
      y_dim1 + 1], &c__1);
566
0
    i__2 = *n - i__;
567
0
    i__3 = i__ - 1;
568
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 
569
0
      y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
570
0
      i__ + 1 + i__ * y_dim1], &c__1);
571
0
    i__2 = *m - i__ + 1;
572
0
    i__3 = i__ - 1;
573
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], 
574
0
      ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 
575
0
      y_dim1 + 1], &c__1);
576
0
    i__2 = i__ - 1;
577
0
    i__3 = *n - i__;
578
0
    sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 
579
0
      a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, 
580
0
      &y[i__ + 1 + i__ * y_dim1], &c__1);
581
0
    i__2 = *n - i__;
582
0
    sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
583
584
/*              Update A(i,i+1:n) */
585
586
0
    i__2 = *n - i__;
587
0
    sgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + 
588
0
      y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
589
0
      i__ + 1) * a_dim1], lda);
590
0
    i__2 = i__ - 1;
591
0
    i__3 = *n - i__;
592
0
    sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 
593
0
      a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
594
0
      i__ + (i__ + 1) * a_dim1], lda);
595
596
/*              Generate reflection P(i) to annihilate A(i,i+2:n) */
597
598
0
    i__2 = *n - i__;
599
/* Computing MIN */
600
0
    i__3 = i__ + 2;
601
0
    slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + f2cmin(
602
0
      i__3,*n) * a_dim1], lda, &taup[i__]);
603
0
    e[i__] = a[i__ + (i__ + 1) * a_dim1];
604
0
    a[i__ + (i__ + 1) * a_dim1] = 1.f;
605
606
/*              Compute X(i+1:m,i) */
607
608
0
    i__2 = *m - i__;
609
0
    i__3 = *n - i__;
610
0
    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ 
611
0
      + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], 
612
0
      lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);
613
0
    i__2 = *n - i__;
614
0
    sgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], 
615
0
      ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
616
0
      i__ * x_dim1 + 1], &c__1);
617
0
    i__2 = *m - i__;
618
0
    sgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + 
619
0
      a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
620
0
      i__ + 1 + i__ * x_dim1], &c__1);
621
0
    i__2 = i__ - 1;
622
0
    i__3 = *n - i__;
623
0
    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * 
624
0
      a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
625
0
      c_b16, &x[i__ * x_dim1 + 1], &c__1);
626
0
    i__2 = *m - i__;
627
0
    i__3 = i__ - 1;
628
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 
629
0
      x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
630
0
      i__ + 1 + i__ * x_dim1], &c__1);
631
0
    i__2 = *m - i__;
632
0
    sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
633
0
      }
634
/* L10: */
635
0
  }
636
0
    } else {
637
638
/*        Reduce to lower bidiagonal form */
639
640
0
  i__1 = *nb;
641
0
  for (i__ = 1; i__ <= i__1; ++i__) {
642
643
/*           Update A(i,i:n) */
644
645
0
      i__2 = *n - i__ + 1;
646
0
      i__3 = i__ - 1;
647
0
      sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy,
648
0
         &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], 
649
0
        lda);
650
0
      i__2 = i__ - 1;
651
0
      i__3 = *n - i__ + 1;
652
0
      sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], 
653
0
        lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1],
654
0
         lda);
655
656
/*           Generate reflection P(i) to annihilate A(i,i+1:n) */
657
658
0
      i__2 = *n - i__ + 1;
659
/* Computing MIN */
660
0
      i__3 = i__ + 1;
661
0
      slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + f2cmin(i__3,*n) * 
662
0
        a_dim1], lda, &taup[i__]);
663
0
      d__[i__] = a[i__ + i__ * a_dim1];
664
0
      if (i__ < *m) {
665
0
    a[i__ + i__ * a_dim1] = 1.f;
666
667
/*              Compute X(i+1:m,i) */
668
669
0
    i__2 = *m - i__;
670
0
    i__3 = *n - i__ + 1;
671
0
    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
672
0
       a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
673
0
      x[i__ + 1 + i__ * x_dim1], &c__1);
674
0
    i__2 = *n - i__ + 1;
675
0
    i__3 = i__ - 1;
676
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], 
677
0
      ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * 
678
0
      x_dim1 + 1], &c__1);
679
0
    i__2 = *m - i__;
680
0
    i__3 = i__ - 1;
681
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 
682
0
      a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
683
0
      i__ + 1 + i__ * x_dim1], &c__1);
684
0
    i__2 = i__ - 1;
685
0
    i__3 = *n - i__ + 1;
686
0
    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + 
687
0
      1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
688
0
       x_dim1 + 1], &c__1);
689
0
    i__2 = *m - i__;
690
0
    i__3 = i__ - 1;
691
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 
692
0
      x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
693
0
      i__ + 1 + i__ * x_dim1], &c__1);
694
0
    i__2 = *m - i__;
695
0
    sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
696
697
/*              Update A(i+1:m,i) */
698
699
0
    i__2 = *m - i__;
700
0
    i__3 = i__ - 1;
701
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 
702
0
      a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + 
703
0
      1 + i__ * a_dim1], &c__1);
704
0
    i__2 = *m - i__;
705
0
    sgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + 
706
0
      x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
707
0
      i__ + 1 + i__ * a_dim1], &c__1);
708
709
/*              Generate reflection Q(i) to annihilate A(i+2:m,i) */
710
711
0
    i__2 = *m - i__;
712
/* Computing MIN */
713
0
    i__3 = i__ + 2;
714
0
    slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*m) + 
715
0
      i__ * a_dim1], &c__1, &tauq[i__]);
716
0
    e[i__] = a[i__ + 1 + i__ * a_dim1];
717
0
    a[i__ + 1 + i__ * a_dim1] = 1.f;
718
719
/*              Compute Y(i+1:n,i) */
720
721
0
    i__2 = *m - i__;
722
0
    i__3 = *n - i__;
723
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + 
724
0
      1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, 
725
0
      &c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);
726
0
    i__2 = *m - i__;
727
0
    i__3 = i__ - 1;
728
0
    sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1],
729
0
       lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
730
0
      i__ * y_dim1 + 1], &c__1);
731
0
    i__2 = *n - i__;
732
0
    i__3 = i__ - 1;
733
0
    sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 
734
0
      y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
735
0
      i__ + 1 + i__ * y_dim1], &c__1);
736
0
    i__2 = *m - i__;
737
0
    sgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], 
738
0
      ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
739
0
      i__ * y_dim1 + 1], &c__1);
740
0
    i__2 = *n - i__;
741
0
    sgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 
742
0
      + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ 
743
0
      + 1 + i__ * y_dim1], &c__1);
744
0
    i__2 = *n - i__;
745
0
    sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
746
0
      }
747
/* L20: */
748
0
  }
749
0
    }
750
0
    return;
751
752
/*     End of SLABRD */
753
754
0
} /* slabrd_ */
755