/root/doris/contrib/faiss/faiss/IndexIVFFastScan.cpp
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | | * |
4 | | * This source code is licensed under the MIT license found in the |
5 | | * LICENSE file in the root directory of this source tree. |
6 | | */ |
7 | | |
8 | | #include <faiss/IndexIVFFastScan.h> |
9 | | |
10 | | #include <cassert> |
11 | | #include <cinttypes> |
12 | | #include <cstdio> |
13 | | #include <set> |
14 | | |
15 | | #include <omp.h> |
16 | | |
17 | | #include <memory> |
18 | | |
19 | | #include <faiss/IndexIVFPQ.h> |
20 | | #include <faiss/impl/AuxIndexStructures.h> |
21 | | #include <faiss/impl/FaissAssert.h> |
22 | | #include <faiss/impl/LookupTableScaler.h> |
23 | | #include <faiss/impl/pq4_fast_scan.h> |
24 | | #include <faiss/impl/simd_result_handlers.h> |
25 | | #include <faiss/invlists/BlockInvertedLists.h> |
26 | | #include <faiss/utils/hamming.h> |
27 | | #include <faiss/utils/quantize_lut.h> |
28 | | #include <faiss/utils/utils.h> |
29 | | |
30 | | namespace faiss { |
31 | | |
32 | | using namespace simd_result_handlers; |
33 | | |
34 | | inline size_t roundup(size_t a, size_t b) { |
35 | | return (a + b - 1) / b * b; |
36 | | } |
37 | | |
38 | | IndexIVFFastScan::IndexIVFFastScan( |
39 | | Index* quantizer, |
40 | | size_t d, |
41 | | size_t nlist, |
42 | | size_t code_size, |
43 | | MetricType metric) |
44 | 0 | : IndexIVF(quantizer, d, nlist, code_size, metric) { |
45 | | // unlike other indexes, we prefer no residuals for performance reasons. |
46 | 0 | by_residual = false; |
47 | 0 | FAISS_THROW_IF_NOT(metric == METRIC_L2 || metric == METRIC_INNER_PRODUCT); |
48 | 0 | } |
49 | | |
50 | 0 | IndexIVFFastScan::IndexIVFFastScan() { |
51 | 0 | bbs = 0; |
52 | 0 | M2 = 0; |
53 | 0 | is_trained = false; |
54 | 0 | by_residual = false; |
55 | 0 | } |
56 | | |
57 | | void IndexIVFFastScan::init_fastscan( |
58 | | Quantizer* fine_quantizer, |
59 | | size_t M, |
60 | | size_t nbits_init, |
61 | | size_t nlist, |
62 | | MetricType /* metric */, |
63 | 0 | int bbs_2) { |
64 | 0 | FAISS_THROW_IF_NOT(bbs_2 % 32 == 0); |
65 | 0 | FAISS_THROW_IF_NOT(nbits_init == 4); |
66 | 0 | FAISS_THROW_IF_NOT(fine_quantizer->d == d); |
67 | | |
68 | 0 | this->fine_quantizer = fine_quantizer; |
69 | 0 | this->M = M; |
70 | 0 | this->nbits = nbits_init; |
71 | 0 | this->bbs = bbs_2; |
72 | 0 | ksub = (1 << nbits_init); |
73 | 0 | M2 = roundup(M, 2); |
74 | 0 | code_size = M2 / 2; |
75 | 0 | FAISS_THROW_IF_NOT(code_size == fine_quantizer->code_size); |
76 | | |
77 | 0 | is_trained = false; |
78 | 0 | replace_invlists(new BlockInvertedLists(nlist, get_CodePacker()), true); |
79 | 0 | } |
80 | | |
81 | 0 | void IndexIVFFastScan::init_code_packer() { |
82 | 0 | auto bil = dynamic_cast<BlockInvertedLists*>(invlists); |
83 | 0 | FAISS_THROW_IF_NOT(bil); |
84 | 0 | delete bil->packer; // in case there was one before |
85 | 0 | bil->packer = get_CodePacker(); |
86 | 0 | } |
87 | | |
88 | 0 | IndexIVFFastScan::~IndexIVFFastScan() = default; |
89 | | |
90 | | /********************************************************* |
91 | | * Code management functions |
92 | | *********************************************************/ |
93 | | |
94 | | void IndexIVFFastScan::add_with_ids( |
95 | | idx_t n, |
96 | | const float* x, |
97 | 0 | const idx_t* xids) { |
98 | 0 | FAISS_THROW_IF_NOT(is_trained); |
99 | | |
100 | | // do some blocking to avoid excessive allocs |
101 | 0 | constexpr idx_t bs = 65536; |
102 | 0 | if (n > bs) { |
103 | 0 | double t0 = getmillisecs(); |
104 | 0 | for (idx_t i0 = 0; i0 < n; i0 += bs) { |
105 | 0 | idx_t i1 = std::min(n, i0 + bs); |
106 | 0 | if (verbose) { |
107 | 0 | double t1 = getmillisecs(); |
108 | 0 | double elapsed_time = (t1 - t0) / 1000; |
109 | 0 | double total_time = 0; |
110 | 0 | if (i0 != 0) { |
111 | 0 | total_time = elapsed_time / i0 * n; |
112 | 0 | } |
113 | 0 | size_t mem = get_mem_usage_kb() / (1 << 10); |
114 | |
|
115 | 0 | printf("IndexIVFFastScan::add_with_ids %zd/%zd, time %.2f/%.2f, RSS %zdMB\n", |
116 | 0 | size_t(i1), |
117 | 0 | size_t(n), |
118 | 0 | elapsed_time, |
119 | 0 | total_time, |
120 | 0 | mem); |
121 | 0 | } |
122 | 0 | add_with_ids(i1 - i0, x + i0 * d, xids ? xids + i0 : nullptr); |
123 | 0 | } |
124 | 0 | return; |
125 | 0 | } |
126 | 0 | InterruptCallback::check(); |
127 | |
|
128 | 0 | direct_map.check_can_add(xids); |
129 | 0 | std::unique_ptr<idx_t[]> idx(new idx_t[n]); |
130 | 0 | quantizer->assign(n, x, idx.get()); |
131 | |
|
132 | 0 | AlignedTable<uint8_t> flat_codes(n * code_size); |
133 | 0 | encode_vectors(n, x, idx.get(), flat_codes.get()); |
134 | |
|
135 | 0 | DirectMapAdd dm_adder(direct_map, n, xids); |
136 | 0 | BlockInvertedLists* bil = dynamic_cast<BlockInvertedLists*>(invlists); |
137 | 0 | FAISS_THROW_IF_NOT_MSG(bil, "only block inverted lists supported"); |
138 | | |
139 | | // prepare batches |
140 | 0 | std::vector<idx_t> order(n); |
141 | 0 | for (idx_t i = 0; i < n; i++) { |
142 | 0 | order[i] = i; |
143 | 0 | } |
144 | | |
145 | | // TODO should not need stable |
146 | 0 | std::stable_sort(order.begin(), order.end(), [&idx](idx_t a, idx_t b) { |
147 | 0 | return idx[a] < idx[b]; |
148 | 0 | }); |
149 | | |
150 | | // TODO parallelize |
151 | 0 | idx_t i0 = 0; |
152 | 0 | while (i0 < n) { |
153 | 0 | idx_t list_no = idx[order[i0]]; |
154 | 0 | idx_t i1 = i0 + 1; |
155 | 0 | while (i1 < n && idx[order[i1]] == list_no) { |
156 | 0 | i1++; |
157 | 0 | } |
158 | |
|
159 | 0 | if (list_no == -1) { |
160 | 0 | i0 = i1; |
161 | 0 | continue; |
162 | 0 | } |
163 | | |
164 | | // make linear array |
165 | 0 | AlignedTable<uint8_t> list_codes((i1 - i0) * code_size); |
166 | 0 | size_t list_size = bil->list_size(list_no); |
167 | |
|
168 | 0 | bil->resize(list_no, list_size + i1 - i0); |
169 | |
|
170 | 0 | for (idx_t i = i0; i < i1; i++) { |
171 | 0 | size_t ofs = list_size + i - i0; |
172 | 0 | idx_t id = xids ? xids[order[i]] : ntotal + order[i]; |
173 | 0 | dm_adder.add(order[i], list_no, ofs); |
174 | 0 | bil->ids[list_no][ofs] = id; |
175 | 0 | memcpy(list_codes.data() + (i - i0) * code_size, |
176 | 0 | flat_codes.data() + order[i] * code_size, |
177 | 0 | code_size); |
178 | 0 | } |
179 | 0 | pq4_pack_codes_range( |
180 | 0 | list_codes.data(), |
181 | 0 | M, |
182 | 0 | list_size, |
183 | 0 | list_size + i1 - i0, |
184 | 0 | bbs, |
185 | 0 | M2, |
186 | 0 | bil->codes[list_no].data()); |
187 | |
|
188 | 0 | i0 = i1; |
189 | 0 | } |
190 | |
|
191 | 0 | ntotal += n; |
192 | 0 | } |
193 | | |
194 | 0 | CodePacker* IndexIVFFastScan::get_CodePacker() const { |
195 | 0 | return new CodePackerPQ4(M, bbs); |
196 | 0 | } |
197 | | |
198 | | /********************************************************* |
199 | | * search |
200 | | *********************************************************/ |
201 | | |
202 | | namespace { |
203 | | |
204 | | template <class C, typename dis_t> |
205 | | void estimators_from_tables_generic( |
206 | | const IndexIVFFastScan& index, |
207 | | const uint8_t* codes, |
208 | | size_t ncodes, |
209 | | const dis_t* dis_table, |
210 | | const int64_t* ids, |
211 | | float bias, |
212 | | size_t k, |
213 | | typename C::T* heap_dis, |
214 | | int64_t* heap_ids, |
215 | 0 | const NormTableScaler* scaler) { |
216 | 0 | using accu_t = typename C::T; |
217 | 0 | size_t nscale = scaler ? scaler->nscale : 0; |
218 | 0 | for (size_t j = 0; j < ncodes; ++j) { |
219 | 0 | BitstringReader bsr(codes + j * index.code_size, index.code_size); |
220 | 0 | accu_t dis = bias; |
221 | 0 | const dis_t* __restrict dt = dis_table; |
222 | |
|
223 | 0 | for (size_t m = 0; m < index.M - nscale; m++) { |
224 | 0 | uint64_t c = bsr.read(index.nbits); |
225 | 0 | dis += dt[c]; |
226 | 0 | dt += index.ksub; |
227 | 0 | } |
228 | |
|
229 | 0 | if (scaler) { |
230 | 0 | for (size_t m = 0; m < nscale; m++) { |
231 | 0 | uint64_t c = bsr.read(index.nbits); |
232 | 0 | dis += scaler->scale_one(dt[c]); |
233 | 0 | dt += index.ksub; |
234 | 0 | } |
235 | 0 | } |
236 | |
|
237 | 0 | if (C::cmp(heap_dis[0], dis)) { |
238 | 0 | heap_pop<C>(k, heap_dis, heap_ids); |
239 | 0 | heap_push<C>(k, heap_dis, heap_ids, dis, ids[j]); |
240 | 0 | } |
241 | 0 | } |
242 | 0 | } Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_130estimators_from_tables_genericINS_4CMaxIflEEfEEvRKNS_16IndexIVFFastScanEPKhmPKT0_PKlfmPNT_1TEPlPKNS_15NormTableScalerE Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_130estimators_from_tables_genericINS_4CMinIflEEfEEvRKNS_16IndexIVFFastScanEPKhmPKT0_PKlfmPNT_1TEPlPKNS_15NormTableScalerE Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_130estimators_from_tables_genericINS_4CMaxItlEEhEEvRKNS_16IndexIVFFastScanEPKhmPKT0_PKlfmPNT_1TEPlPKNS_15NormTableScalerE Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_130estimators_from_tables_genericINS_4CMinItlEEhEEvRKNS_16IndexIVFFastScanEPKhmPKT0_PKlfmPNT_1TEPlPKNS_15NormTableScalerE |
243 | | |
244 | | using namespace quantize_lut; |
245 | | |
246 | | } // anonymous namespace |
247 | | |
248 | | /********************************************************* |
249 | | * Look-Up Table functions |
250 | | *********************************************************/ |
251 | | |
252 | | void IndexIVFFastScan::compute_LUT_uint8( |
253 | | size_t n, |
254 | | const float* x, |
255 | | const CoarseQuantized& cq, |
256 | | AlignedTable<uint8_t>& dis_tables, |
257 | | AlignedTable<uint16_t>& biases, |
258 | 0 | float* normalizers) const { |
259 | 0 | AlignedTable<float> dis_tables_float; |
260 | 0 | AlignedTable<float> biases_float; |
261 | |
|
262 | 0 | compute_LUT(n, x, cq, dis_tables_float, biases_float); |
263 | 0 | size_t nprobe = cq.nprobe; |
264 | 0 | bool lut_is_3d = lookup_table_is_3d(); |
265 | 0 | size_t dim123 = ksub * M; |
266 | 0 | size_t dim123_2 = ksub * M2; |
267 | 0 | if (lut_is_3d) { |
268 | 0 | dim123 *= nprobe; |
269 | 0 | dim123_2 *= nprobe; |
270 | 0 | } |
271 | 0 | dis_tables.resize(n * dim123_2); |
272 | 0 | if (biases_float.get()) { |
273 | 0 | biases.resize(n * nprobe); |
274 | 0 | } |
275 | | |
276 | | // OMP for MSVC requires i to have signed integral type |
277 | 0 | #pragma omp parallel for if (n > 100) |
278 | 0 | for (int64_t i = 0; i < n; i++) { |
279 | 0 | const float* t_in = dis_tables_float.get() + i * dim123; |
280 | 0 | const float* b_in = nullptr; |
281 | 0 | uint8_t* t_out = dis_tables.get() + i * dim123_2; |
282 | 0 | uint16_t* b_out = nullptr; |
283 | 0 | if (biases_float.get()) { |
284 | 0 | b_in = biases_float.get() + i * nprobe; |
285 | 0 | b_out = biases.get() + i * nprobe; |
286 | 0 | } |
287 | |
|
288 | 0 | quantize_LUT_and_bias( |
289 | 0 | nprobe, |
290 | 0 | M, |
291 | 0 | ksub, |
292 | 0 | lut_is_3d, |
293 | 0 | t_in, |
294 | 0 | b_in, |
295 | 0 | t_out, |
296 | 0 | M2, |
297 | 0 | b_out, |
298 | 0 | normalizers + 2 * i, |
299 | 0 | normalizers + 2 * i + 1); |
300 | 0 | } |
301 | 0 | } |
302 | | |
303 | | /********************************************************* |
304 | | * Search functions |
305 | | *********************************************************/ |
306 | | |
307 | | void IndexIVFFastScan::search( |
308 | | idx_t n, |
309 | | const float* x, |
310 | | idx_t k, |
311 | | float* distances, |
312 | | idx_t* labels, |
313 | 0 | const SearchParameters* params_in) const { |
314 | 0 | const IVFSearchParameters* params = nullptr; |
315 | 0 | if (params_in) { |
316 | 0 | params = dynamic_cast<const IVFSearchParameters*>(params_in); |
317 | 0 | FAISS_THROW_IF_NOT_MSG( |
318 | 0 | params, "IndexIVFFastScan params have incorrect type"); |
319 | 0 | } |
320 | | |
321 | 0 | search_preassigned( |
322 | 0 | n, x, k, nullptr, nullptr, distances, labels, false, params); |
323 | 0 | } |
324 | | |
325 | | void IndexIVFFastScan::search_preassigned( |
326 | | idx_t n, |
327 | | const float* x, |
328 | | idx_t k, |
329 | | const idx_t* assign, |
330 | | const float* centroid_dis, |
331 | | float* distances, |
332 | | idx_t* labels, |
333 | | bool store_pairs, |
334 | | const IVFSearchParameters* params, |
335 | 0 | IndexIVFStats* stats) const { |
336 | 0 | size_t nprobe = this->nprobe; |
337 | 0 | if (params) { |
338 | 0 | FAISS_THROW_IF_NOT(params->max_codes == 0); |
339 | 0 | nprobe = params->nprobe; |
340 | 0 | } |
341 | | |
342 | 0 | FAISS_THROW_IF_NOT_MSG( |
343 | 0 | !store_pairs, "store_pairs not supported for this index"); |
344 | 0 | FAISS_THROW_IF_NOT_MSG(!stats, "stats not supported for this index"); |
345 | 0 | FAISS_THROW_IF_NOT(k > 0); |
346 | | |
347 | 0 | const CoarseQuantized cq = {nprobe, centroid_dis, assign}; |
348 | 0 | search_dispatch_implem(n, x, k, distances, labels, cq, nullptr, params); |
349 | 0 | } |
350 | | |
351 | | void IndexIVFFastScan::range_search( |
352 | | idx_t n, |
353 | | const float* x, |
354 | | float radius, |
355 | | RangeSearchResult* result, |
356 | 0 | const SearchParameters* params_in) const { |
357 | 0 | size_t nprobe = this->nprobe; |
358 | 0 | const IVFSearchParameters* params = nullptr; |
359 | 0 | if (params_in) { |
360 | 0 | params = dynamic_cast<const IVFSearchParameters*>(params_in); |
361 | 0 | FAISS_THROW_IF_NOT_MSG( |
362 | 0 | params, "IndexIVFFastScan params have incorrect type"); |
363 | 0 | nprobe = params->nprobe; |
364 | 0 | } |
365 | | |
366 | 0 | const CoarseQuantized cq = {nprobe, nullptr, nullptr}; |
367 | 0 | range_search_dispatch_implem(n, x, radius, *result, cq, nullptr, params); |
368 | 0 | } |
369 | | |
370 | | namespace { |
371 | | |
372 | | template <class C> |
373 | | ResultHandlerCompare<C, true>* make_knn_handler_fixC( |
374 | | int impl, |
375 | | idx_t n, |
376 | | idx_t k, |
377 | | float* distances, |
378 | | idx_t* labels, |
379 | 0 | const IDSelector* sel) { |
380 | 0 | using HeapHC = HeapHandler<C, true>; |
381 | 0 | using ReservoirHC = ReservoirHandler<C, true>; |
382 | 0 | using SingleResultHC = SingleResultHandler<C, true>; |
383 | |
|
384 | 0 | if (k == 1) { |
385 | 0 | return new SingleResultHC(n, 0, distances, labels, sel); |
386 | 0 | } else if (impl % 2 == 0) { |
387 | 0 | return new HeapHC(n, 0, k, distances, labels, sel); |
388 | 0 | } else /* if (impl % 2 == 1) */ { |
389 | 0 | return new ReservoirHC(n, 0, k, 2 * k, distances, labels, sel); |
390 | 0 | } |
391 | 0 | } Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_121make_knn_handler_fixCINS_4CMaxItlEEEEPNS_20simd_result_handlers20ResultHandlerCompareIT_Lb1EEEillPfPlPKNS_10IDSelectorE Unexecuted instantiation: IndexIVFFastScan.cpp:_ZN5faiss12_GLOBAL__N_121make_knn_handler_fixCINS_4CMinItlEEEEPNS_20simd_result_handlers20ResultHandlerCompareIT_Lb1EEEillPfPlPKNS_10IDSelectorE |
392 | | |
393 | | SIMDResultHandlerToFloat* make_knn_handler( |
394 | | bool is_max, |
395 | | int impl, |
396 | | idx_t n, |
397 | | idx_t k, |
398 | | float* distances, |
399 | | idx_t* labels, |
400 | 0 | const IDSelector* sel) { |
401 | 0 | if (is_max) { |
402 | 0 | return make_knn_handler_fixC<CMax<uint16_t, int64_t>>( |
403 | 0 | impl, n, k, distances, labels, sel); |
404 | 0 | } else { |
405 | 0 | return make_knn_handler_fixC<CMin<uint16_t, int64_t>>( |
406 | 0 | impl, n, k, distances, labels, sel); |
407 | 0 | } |
408 | 0 | } |
409 | | |
410 | | using CoarseQuantized = IndexIVFFastScan::CoarseQuantized; |
411 | | |
412 | | struct CoarseQuantizedWithBuffer : CoarseQuantized { |
413 | | explicit CoarseQuantizedWithBuffer(const CoarseQuantized& cq) |
414 | 0 | : CoarseQuantized(cq) {} |
415 | | |
416 | 0 | bool done() const { |
417 | 0 | return ids != nullptr; |
418 | 0 | } |
419 | | |
420 | | std::vector<idx_t> ids_buffer; |
421 | | std::vector<float> dis_buffer; |
422 | | |
423 | | void quantize( |
424 | | const Index* quantizer, |
425 | | idx_t n, |
426 | | const float* x, |
427 | 0 | const SearchParameters* quantizer_params) { |
428 | 0 | dis_buffer.resize(nprobe * n); |
429 | 0 | ids_buffer.resize(nprobe * n); |
430 | 0 | quantizer->search( |
431 | 0 | n, |
432 | 0 | x, |
433 | 0 | nprobe, |
434 | 0 | dis_buffer.data(), |
435 | 0 | ids_buffer.data(), |
436 | 0 | quantizer_params); |
437 | 0 | dis = dis_buffer.data(); |
438 | 0 | ids = ids_buffer.data(); |
439 | 0 | } |
440 | | }; |
441 | | |
442 | | struct CoarseQuantizedSlice : CoarseQuantizedWithBuffer { |
443 | | size_t i0, i1; |
444 | | CoarseQuantizedSlice(const CoarseQuantized& cq, size_t i0, size_t i1) |
445 | 0 | : CoarseQuantizedWithBuffer(cq), i0(i0), i1(i1) { |
446 | 0 | if (done()) { |
447 | 0 | dis += nprobe * i0; |
448 | 0 | ids += nprobe * i0; |
449 | 0 | } |
450 | 0 | } |
451 | | |
452 | | void quantize_slice( |
453 | | const Index* quantizer, |
454 | | const float* x, |
455 | 0 | const SearchParameters* quantizer_params) { |
456 | 0 | quantize(quantizer, i1 - i0, x + quantizer->d * i0, quantizer_params); |
457 | 0 | } |
458 | | }; |
459 | | |
460 | | int compute_search_nslice( |
461 | | const IndexIVFFastScan* index, |
462 | | size_t n, |
463 | 0 | size_t nprobe) { |
464 | 0 | int nslice; |
465 | 0 | if (n <= omp_get_max_threads()) { |
466 | 0 | nslice = n; |
467 | 0 | } else if (index->lookup_table_is_3d()) { |
468 | | // make sure we don't make too big LUT tables |
469 | 0 | size_t lut_size_per_query = index->M * index->ksub * nprobe * |
470 | 0 | (sizeof(float) + sizeof(uint8_t)); |
471 | |
|
472 | 0 | size_t max_lut_size = precomputed_table_max_bytes; |
473 | | // how many queries we can handle within mem budget |
474 | 0 | size_t nq_ok = std::max(max_lut_size / lut_size_per_query, size_t(1)); |
475 | 0 | nslice = roundup( |
476 | 0 | std::max(size_t(n / nq_ok), size_t(1)), omp_get_max_threads()); |
477 | 0 | } else { |
478 | | // LUTs unlikely to be a limiting factor |
479 | 0 | nslice = omp_get_max_threads(); |
480 | 0 | } |
481 | 0 | return nslice; |
482 | 0 | } |
483 | | |
484 | | } // namespace |
485 | | |
486 | | void IndexIVFFastScan::search_dispatch_implem( |
487 | | idx_t n, |
488 | | const float* x, |
489 | | idx_t k, |
490 | | float* distances, |
491 | | idx_t* labels, |
492 | | const CoarseQuantized& cq_in, |
493 | | const NormTableScaler* scaler, |
494 | 0 | const IVFSearchParameters* params) const { |
495 | 0 | const idx_t nprobe = params ? params->nprobe : this->nprobe; |
496 | 0 | const IDSelector* sel = (params) ? params->sel : nullptr; |
497 | 0 | const SearchParameters* quantizer_params = |
498 | 0 | params ? params->quantizer_params : nullptr; |
499 | |
|
500 | 0 | bool is_max = !is_similarity_metric(metric_type); |
501 | 0 | using RH = SIMDResultHandlerToFloat; |
502 | |
|
503 | 0 | if (n == 0) { |
504 | 0 | return; |
505 | 0 | } |
506 | | |
507 | | // actual implementation used |
508 | 0 | int impl = implem; |
509 | |
|
510 | 0 | if (impl == 0) { |
511 | 0 | if (bbs == 32) { |
512 | 0 | impl = 12; |
513 | 0 | } else { |
514 | 0 | impl = 10; |
515 | 0 | } |
516 | 0 | if (k > 20) { // use reservoir rather than heap |
517 | 0 | impl++; |
518 | 0 | } |
519 | 0 | } |
520 | |
|
521 | 0 | bool multiple_threads = |
522 | 0 | n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1; |
523 | 0 | if (impl >= 100) { |
524 | 0 | multiple_threads = false; |
525 | 0 | impl -= 100; |
526 | 0 | } |
527 | |
|
528 | 0 | CoarseQuantizedWithBuffer cq(cq_in); |
529 | 0 | cq.nprobe = nprobe; |
530 | |
|
531 | 0 | if (!cq.done() && !multiple_threads) { |
532 | | // we do the coarse quantization here execpt when search is |
533 | | // sliced over threads (then it is more efficient to have each thread do |
534 | | // its own coarse quantization) |
535 | 0 | cq.quantize(quantizer, n, x, quantizer_params); |
536 | 0 | invlists->prefetch_lists(cq.ids, n * cq.nprobe); |
537 | 0 | } |
538 | |
|
539 | 0 | if (impl == 1) { |
540 | 0 | if (is_max) { |
541 | 0 | search_implem_1<CMax<float, int64_t>>( |
542 | 0 | n, x, k, distances, labels, cq, scaler, params); |
543 | 0 | } else { |
544 | 0 | search_implem_1<CMin<float, int64_t>>( |
545 | 0 | n, x, k, distances, labels, cq, scaler, params); |
546 | 0 | } |
547 | 0 | } else if (impl == 2) { |
548 | 0 | if (is_max) { |
549 | 0 | search_implem_2<CMax<uint16_t, int64_t>>( |
550 | 0 | n, x, k, distances, labels, cq, scaler, params); |
551 | 0 | } else { |
552 | 0 | search_implem_2<CMin<uint16_t, int64_t>>( |
553 | 0 | n, x, k, distances, labels, cq, scaler, params); |
554 | 0 | } |
555 | 0 | } else if (impl >= 10 && impl <= 15) { |
556 | 0 | size_t ndis = 0, nlist_visited = 0; |
557 | |
|
558 | 0 | if (!multiple_threads) { |
559 | | // clang-format off |
560 | 0 | if (impl == 12 || impl == 13) { |
561 | 0 | std::unique_ptr<RH> handler( |
562 | 0 | make_knn_handler( |
563 | 0 | is_max, |
564 | 0 | impl, |
565 | 0 | n, |
566 | 0 | k, |
567 | 0 | distances, |
568 | 0 | labels, sel |
569 | 0 | ) |
570 | 0 | ); |
571 | 0 | search_implem_12( |
572 | 0 | n, x, *handler.get(), |
573 | 0 | cq, &ndis, &nlist_visited, scaler, params); |
574 | 0 | } else if (impl == 14 || impl == 15) { |
575 | 0 | search_implem_14( |
576 | 0 | n, x, k, distances, labels, |
577 | 0 | cq, impl, scaler, params); |
578 | 0 | } else { |
579 | 0 | std::unique_ptr<RH> handler( |
580 | 0 | make_knn_handler( |
581 | 0 | is_max, |
582 | 0 | impl, |
583 | 0 | n, |
584 | 0 | k, |
585 | 0 | distances, |
586 | 0 | labels, |
587 | 0 | sel |
588 | 0 | ) |
589 | 0 | ); |
590 | 0 | search_implem_10( |
591 | 0 | n, x, *handler.get(), cq, |
592 | 0 | &ndis, &nlist_visited, scaler, params); |
593 | 0 | } |
594 | | // clang-format on |
595 | 0 | } else { |
596 | | // explicitly slice over threads |
597 | 0 | int nslice = compute_search_nslice(this, n, cq.nprobe); |
598 | 0 | if (impl == 14 || impl == 15) { |
599 | | // this might require slicing if there are too |
600 | | // many queries (for now we keep this simple) |
601 | 0 | search_implem_14( |
602 | 0 | n, x, k, distances, labels, cq, impl, scaler, params); |
603 | 0 | } else { |
604 | 0 | #pragma omp parallel for reduction(+ : ndis, nlist_visited) |
605 | 0 | for (int slice = 0; slice < nslice; slice++) { |
606 | 0 | idx_t i0 = n * slice / nslice; |
607 | 0 | idx_t i1 = n * (slice + 1) / nslice; |
608 | 0 | float* dis_i = distances + i0 * k; |
609 | 0 | idx_t* lab_i = labels + i0 * k; |
610 | 0 | CoarseQuantizedSlice cq_i(cq, i0, i1); |
611 | 0 | if (!cq_i.done()) { |
612 | 0 | cq_i.quantize_slice(quantizer, x, quantizer_params); |
613 | 0 | } |
614 | 0 | std::unique_ptr<RH> handler(make_knn_handler( |
615 | 0 | is_max, impl, i1 - i0, k, dis_i, lab_i, sel)); |
616 | | // clang-format off |
617 | 0 | if (impl == 12 || impl == 13) { |
618 | 0 | search_implem_12( |
619 | 0 | i1 - i0, x + i0 * d, *handler.get(), |
620 | 0 | cq_i, &ndis, &nlist_visited, scaler, params); |
621 | 0 | } else { |
622 | 0 | search_implem_10( |
623 | 0 | i1 - i0, x + i0 * d, *handler.get(), |
624 | 0 | cq_i, &ndis, &nlist_visited, scaler, params); |
625 | 0 | } |
626 | | // clang-format on |
627 | 0 | } |
628 | 0 | } |
629 | 0 | } |
630 | 0 | indexIVF_stats.nq += n; |
631 | 0 | indexIVF_stats.ndis += ndis; |
632 | 0 | indexIVF_stats.nlist += nlist_visited; |
633 | 0 | } else { |
634 | 0 | FAISS_THROW_FMT("implem %d does not exist", implem); |
635 | 0 | } |
636 | 0 | } |
637 | | |
638 | | void IndexIVFFastScan::range_search_dispatch_implem( |
639 | | idx_t n, |
640 | | const float* x, |
641 | | float radius, |
642 | | RangeSearchResult& rres, |
643 | | const CoarseQuantized& cq_in, |
644 | | const NormTableScaler* scaler, |
645 | 0 | const IVFSearchParameters* params) const { |
646 | | // const idx_t nprobe = params ? params->nprobe : this->nprobe; |
647 | 0 | const IDSelector* sel = (params) ? params->sel : nullptr; |
648 | 0 | const SearchParameters* quantizer_params = |
649 | 0 | params ? params->quantizer_params : nullptr; |
650 | |
|
651 | 0 | bool is_max = !is_similarity_metric(metric_type); |
652 | |
|
653 | 0 | if (n == 0) { |
654 | 0 | return; |
655 | 0 | } |
656 | | |
657 | | // actual implementation used |
658 | 0 | int impl = implem; |
659 | |
|
660 | 0 | if (impl == 0) { |
661 | 0 | if (bbs == 32) { |
662 | 0 | impl = 12; |
663 | 0 | } else { |
664 | 0 | impl = 10; |
665 | 0 | } |
666 | 0 | } |
667 | |
|
668 | 0 | CoarseQuantizedWithBuffer cq(cq_in); |
669 | |
|
670 | 0 | bool multiple_threads = |
671 | 0 | n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1; |
672 | 0 | if (impl >= 100) { |
673 | 0 | multiple_threads = false; |
674 | 0 | impl -= 100; |
675 | 0 | } |
676 | |
|
677 | 0 | if (!multiple_threads && !cq.done()) { |
678 | 0 | cq.quantize(quantizer, n, x, quantizer_params); |
679 | 0 | invlists->prefetch_lists(cq.ids, n * cq.nprobe); |
680 | 0 | } |
681 | |
|
682 | 0 | size_t ndis = 0, nlist_visited = 0; |
683 | |
|
684 | 0 | if (!multiple_threads) { // single thread |
685 | 0 | std::unique_ptr<SIMDResultHandlerToFloat> handler; |
686 | 0 | if (is_max) { |
687 | 0 | handler.reset(new RangeHandler<CMax<uint16_t, int64_t>, true>( |
688 | 0 | rres, radius, 0, sel)); |
689 | 0 | } else { |
690 | 0 | handler.reset(new RangeHandler<CMin<uint16_t, int64_t>, true>( |
691 | 0 | rres, radius, 0, sel)); |
692 | 0 | } |
693 | 0 | if (impl == 12) { |
694 | 0 | search_implem_12( |
695 | 0 | n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler); |
696 | 0 | } else if (impl == 10) { |
697 | 0 | search_implem_10( |
698 | 0 | n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler); |
699 | 0 | } else { |
700 | 0 | FAISS_THROW_FMT("Range search implem %d not implemented", impl); |
701 | 0 | } |
702 | 0 | } else { |
703 | | // explicitly slice over threads |
704 | 0 | int nslice = compute_search_nslice(this, n, cq.nprobe); |
705 | 0 | #pragma omp parallel |
706 | 0 | { |
707 | 0 | RangeSearchPartialResult pres(&rres); |
708 | |
|
709 | 0 | #pragma omp for reduction(+ : ndis, nlist_visited) |
710 | 0 | for (int slice = 0; slice < nslice; slice++) { |
711 | 0 | idx_t i0 = n * slice / nslice; |
712 | 0 | idx_t i1 = n * (slice + 1) / nslice; |
713 | 0 | CoarseQuantizedSlice cq_i(cq, i0, i1); |
714 | 0 | if (!cq_i.done()) { |
715 | 0 | cq_i.quantize_slice(quantizer, x, quantizer_params); |
716 | 0 | } |
717 | 0 | std::unique_ptr<SIMDResultHandlerToFloat> handler; |
718 | 0 | if (is_max) { |
719 | 0 | handler.reset(new PartialRangeHandler< |
720 | 0 | CMax<uint16_t, int64_t>, |
721 | 0 | true>(pres, radius, 0, i0, i1, sel)); |
722 | 0 | } else { |
723 | 0 | handler.reset(new PartialRangeHandler< |
724 | 0 | CMin<uint16_t, int64_t>, |
725 | 0 | true>(pres, radius, 0, i0, i1, sel)); |
726 | 0 | } |
727 | |
|
728 | 0 | if (impl == 12 || impl == 13) { |
729 | 0 | search_implem_12( |
730 | 0 | i1 - i0, |
731 | 0 | x + i0 * d, |
732 | 0 | *handler.get(), |
733 | 0 | cq_i, |
734 | 0 | &ndis, |
735 | 0 | &nlist_visited, |
736 | 0 | scaler, |
737 | 0 | params); |
738 | 0 | } else { |
739 | 0 | search_implem_10( |
740 | 0 | i1 - i0, |
741 | 0 | x + i0 * d, |
742 | 0 | *handler.get(), |
743 | 0 | cq_i, |
744 | 0 | &ndis, |
745 | 0 | &nlist_visited, |
746 | 0 | scaler, |
747 | 0 | params); |
748 | 0 | } |
749 | 0 | } |
750 | 0 | pres.finalize(); |
751 | 0 | } |
752 | 0 | } |
753 | | |
754 | 0 | indexIVF_stats.nq += n; |
755 | 0 | indexIVF_stats.ndis += ndis; |
756 | 0 | indexIVF_stats.nlist += nlist_visited; |
757 | 0 | } |
758 | | |
759 | | template <class C> |
760 | | void IndexIVFFastScan::search_implem_1( |
761 | | idx_t n, |
762 | | const float* x, |
763 | | idx_t k, |
764 | | float* distances, |
765 | | idx_t* labels, |
766 | | const CoarseQuantized& cq, |
767 | | const NormTableScaler* scaler, |
768 | 0 | const IVFSearchParameters* params) const { |
769 | 0 | FAISS_THROW_IF_NOT(orig_invlists); |
770 | | |
771 | 0 | size_t dim12 = ksub * M; |
772 | 0 | AlignedTable<float> dis_tables; |
773 | 0 | AlignedTable<float> biases; |
774 | |
|
775 | 0 | compute_LUT(n, x, cq, dis_tables, biases); |
776 | |
|
777 | 0 | bool single_LUT = !lookup_table_is_3d(); |
778 | |
|
779 | 0 | size_t ndis = 0, nlist_visited = 0; |
780 | 0 | size_t nprobe = cq.nprobe; |
781 | 0 | #pragma omp parallel for reduction(+ : ndis, nlist_visited) |
782 | 0 | for (idx_t i = 0; i < n; i++) { |
783 | 0 | int64_t* heap_ids = labels + i * k; |
784 | 0 | float* heap_dis = distances + i * k; |
785 | 0 | heap_heapify<C>(k, heap_dis, heap_ids); |
786 | 0 | float* LUT = nullptr; |
787 | |
|
788 | 0 | if (single_LUT) { |
789 | 0 | LUT = dis_tables.get() + i * dim12; |
790 | 0 | } |
791 | 0 | for (idx_t j = 0; j < nprobe; j++) { |
792 | 0 | if (!single_LUT) { |
793 | 0 | LUT = dis_tables.get() + (i * nprobe + j) * dim12; |
794 | 0 | } |
795 | 0 | idx_t list_no = cq.ids[i * nprobe + j]; |
796 | 0 | if (list_no < 0) |
797 | 0 | continue; |
798 | 0 | size_t ls = orig_invlists->list_size(list_no); |
799 | 0 | if (ls == 0) |
800 | 0 | continue; |
801 | 0 | InvertedLists::ScopedCodes codes(orig_invlists, list_no); |
802 | 0 | InvertedLists::ScopedIds ids(orig_invlists, list_no); |
803 | |
|
804 | 0 | float bias = biases.get() ? biases[i * nprobe + j] : 0; |
805 | |
|
806 | 0 | estimators_from_tables_generic<C>( |
807 | 0 | *this, |
808 | 0 | codes.get(), |
809 | 0 | ls, |
810 | 0 | LUT, |
811 | 0 | ids.get(), |
812 | 0 | bias, |
813 | 0 | k, |
814 | 0 | heap_dis, |
815 | 0 | heap_ids, |
816 | 0 | scaler); |
817 | 0 | nlist_visited++; |
818 | 0 | ndis++; |
819 | 0 | } |
820 | 0 | heap_reorder<C>(k, heap_dis, heap_ids); |
821 | 0 | } Unexecuted instantiation: IndexIVFFastScan.cpp:_ZNK5faiss16IndexIVFFastScan15search_implem_1INS_4CMaxIflEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE.omp_outlined_debug__ Unexecuted instantiation: IndexIVFFastScan.cpp:_ZNK5faiss16IndexIVFFastScan15search_implem_1INS_4CMinIflEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE.omp_outlined_debug__ |
822 | 0 | indexIVF_stats.nq += n; |
823 | 0 | indexIVF_stats.ndis += ndis; |
824 | 0 | indexIVF_stats.nlist += nlist_visited; |
825 | 0 | } Unexecuted instantiation: _ZNK5faiss16IndexIVFFastScan15search_implem_1INS_4CMaxIflEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE Unexecuted instantiation: _ZNK5faiss16IndexIVFFastScan15search_implem_1INS_4CMinIflEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE |
826 | | |
827 | | template <class C> |
828 | | void IndexIVFFastScan::search_implem_2( |
829 | | idx_t n, |
830 | | const float* x, |
831 | | idx_t k, |
832 | | float* distances, |
833 | | idx_t* labels, |
834 | | const CoarseQuantized& cq, |
835 | | const NormTableScaler* scaler, |
836 | 0 | const IVFSearchParameters* params) const { |
837 | 0 | FAISS_THROW_IF_NOT(orig_invlists); |
838 | | |
839 | 0 | size_t dim12 = ksub * M2; |
840 | 0 | AlignedTable<uint8_t> dis_tables; |
841 | 0 | AlignedTable<uint16_t> biases; |
842 | 0 | std::unique_ptr<float[]> normalizers(new float[2 * n]); |
843 | |
|
844 | 0 | compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get()); |
845 | |
|
846 | 0 | bool single_LUT = !lookup_table_is_3d(); |
847 | |
|
848 | 0 | size_t ndis = 0, nlist_visited = 0; |
849 | 0 | size_t nprobe = cq.nprobe; |
850 | |
|
851 | 0 | #pragma omp parallel for reduction(+ : ndis, nlist_visited) |
852 | 0 | for (idx_t i = 0; i < n; i++) { |
853 | 0 | std::vector<uint16_t> tmp_dis(k); |
854 | 0 | int64_t* heap_ids = labels + i * k; |
855 | 0 | uint16_t* heap_dis = tmp_dis.data(); |
856 | 0 | heap_heapify<C>(k, heap_dis, heap_ids); |
857 | 0 | const uint8_t* LUT = nullptr; |
858 | |
|
859 | 0 | if (single_LUT) { |
860 | 0 | LUT = dis_tables.get() + i * dim12; |
861 | 0 | } |
862 | 0 | for (idx_t j = 0; j < nprobe; j++) { |
863 | 0 | if (!single_LUT) { |
864 | 0 | LUT = dis_tables.get() + (i * nprobe + j) * dim12; |
865 | 0 | } |
866 | 0 | idx_t list_no = cq.ids[i * nprobe + j]; |
867 | 0 | if (list_no < 0) |
868 | 0 | continue; |
869 | 0 | size_t ls = orig_invlists->list_size(list_no); |
870 | 0 | if (ls == 0) |
871 | 0 | continue; |
872 | 0 | InvertedLists::ScopedCodes codes(orig_invlists, list_no); |
873 | 0 | InvertedLists::ScopedIds ids(orig_invlists, list_no); |
874 | |
|
875 | 0 | uint16_t bias = biases.get() ? biases[i * nprobe + j] : 0; |
876 | |
|
877 | 0 | estimators_from_tables_generic<C>( |
878 | 0 | *this, |
879 | 0 | codes.get(), |
880 | 0 | ls, |
881 | 0 | LUT, |
882 | 0 | ids.get(), |
883 | 0 | bias, |
884 | 0 | k, |
885 | 0 | heap_dis, |
886 | 0 | heap_ids, |
887 | 0 | scaler); |
888 | |
|
889 | 0 | nlist_visited++; |
890 | 0 | ndis += ls; |
891 | 0 | } |
892 | 0 | heap_reorder<C>(k, heap_dis, heap_ids); |
893 | | // convert distances to float |
894 | 0 | { |
895 | 0 | float one_a = 1 / normalizers[2 * i], b = normalizers[2 * i + 1]; |
896 | 0 | if (skip & 16) { |
897 | 0 | one_a = 1; |
898 | 0 | b = 0; |
899 | 0 | } |
900 | 0 | float* heap_dis_float = distances + i * k; |
901 | 0 | for (int j = 0; j < k; j++) { |
902 | 0 | heap_dis_float[j] = b + heap_dis[j] * one_a; |
903 | 0 | } |
904 | 0 | } |
905 | 0 | } Unexecuted instantiation: IndexIVFFastScan.cpp:_ZNK5faiss16IndexIVFFastScan15search_implem_2INS_4CMaxItlEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE.omp_outlined_debug__ Unexecuted instantiation: IndexIVFFastScan.cpp:_ZNK5faiss16IndexIVFFastScan15search_implem_2INS_4CMinItlEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE.omp_outlined_debug__ |
906 | 0 | indexIVF_stats.nq += n; |
907 | 0 | indexIVF_stats.ndis += ndis; |
908 | 0 | indexIVF_stats.nlist += nlist_visited; |
909 | 0 | } Unexecuted instantiation: _ZNK5faiss16IndexIVFFastScan15search_implem_2INS_4CMaxItlEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE Unexecuted instantiation: _ZNK5faiss16IndexIVFFastScan15search_implem_2INS_4CMinItlEEEEvlPKflPfPlRKNS0_15CoarseQuantizedEPKNS_15NormTableScalerEPKNS_19SearchParametersIVFE |
910 | | |
911 | | void IndexIVFFastScan::search_implem_10( |
912 | | idx_t n, |
913 | | const float* x, |
914 | | SIMDResultHandlerToFloat& handler, |
915 | | const CoarseQuantized& cq, |
916 | | size_t* ndis_out, |
917 | | size_t* nlist_out, |
918 | | const NormTableScaler* scaler, |
919 | 0 | const IVFSearchParameters* params) const { |
920 | 0 | size_t dim12 = ksub * M2; |
921 | 0 | AlignedTable<uint8_t> dis_tables; |
922 | 0 | AlignedTable<uint16_t> biases; |
923 | 0 | std::unique_ptr<float[]> normalizers(new float[2 * n]); |
924 | |
|
925 | 0 | compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get()); |
926 | |
|
927 | 0 | bool single_LUT = !lookup_table_is_3d(); |
928 | |
|
929 | 0 | size_t ndis = 0; |
930 | 0 | int qmap1[1]; |
931 | |
|
932 | 0 | handler.q_map = qmap1; |
933 | 0 | handler.begin(skip & 16 ? nullptr : normalizers.get()); |
934 | 0 | size_t nprobe = cq.nprobe; |
935 | |
|
936 | 0 | for (idx_t i = 0; i < n; i++) { |
937 | 0 | const uint8_t* LUT = nullptr; |
938 | 0 | qmap1[0] = i; |
939 | |
|
940 | 0 | if (single_LUT) { |
941 | 0 | LUT = dis_tables.get() + i * dim12; |
942 | 0 | } |
943 | 0 | for (idx_t j = 0; j < nprobe; j++) { |
944 | 0 | size_t ij = i * nprobe + j; |
945 | 0 | if (!single_LUT) { |
946 | 0 | LUT = dis_tables.get() + ij * dim12; |
947 | 0 | } |
948 | 0 | if (biases.get()) { |
949 | 0 | handler.dbias = biases.get() + ij; |
950 | 0 | } |
951 | |
|
952 | 0 | idx_t list_no = cq.ids[ij]; |
953 | 0 | if (list_no < 0) { |
954 | 0 | continue; |
955 | 0 | } |
956 | 0 | size_t ls = invlists->list_size(list_no); |
957 | 0 | if (ls == 0) { |
958 | 0 | continue; |
959 | 0 | } |
960 | | |
961 | 0 | InvertedLists::ScopedCodes codes(invlists, list_no); |
962 | 0 | InvertedLists::ScopedIds ids(invlists, list_no); |
963 | |
|
964 | 0 | handler.ntotal = ls; |
965 | 0 | handler.id_map = ids.get(); |
966 | |
|
967 | 0 | pq4_accumulate_loop( |
968 | 0 | 1, |
969 | 0 | roundup(ls, bbs), |
970 | 0 | bbs, |
971 | 0 | M2, |
972 | 0 | codes.get(), |
973 | 0 | LUT, |
974 | 0 | handler, |
975 | 0 | scaler); |
976 | |
|
977 | 0 | ndis++; |
978 | 0 | } |
979 | 0 | } |
980 | |
|
981 | 0 | handler.end(); |
982 | 0 | *ndis_out = ndis; |
983 | 0 | *nlist_out = nlist; |
984 | 0 | } |
985 | | |
986 | | void IndexIVFFastScan::search_implem_12( |
987 | | idx_t n, |
988 | | const float* x, |
989 | | SIMDResultHandlerToFloat& handler, |
990 | | const CoarseQuantized& cq, |
991 | | size_t* ndis_out, |
992 | | size_t* nlist_out, |
993 | | const NormTableScaler* scaler, |
994 | 0 | const IVFSearchParameters* params) const { |
995 | 0 | if (n == 0) { // does not work well with reservoir |
996 | 0 | return; |
997 | 0 | } |
998 | 0 | FAISS_THROW_IF_NOT(bbs == 32); |
999 | | |
1000 | 0 | size_t dim12 = ksub * M2; |
1001 | 0 | AlignedTable<uint8_t> dis_tables; |
1002 | 0 | AlignedTable<uint16_t> biases; |
1003 | 0 | std::unique_ptr<float[]> normalizers(new float[2 * n]); |
1004 | |
|
1005 | 0 | compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get()); |
1006 | |
|
1007 | 0 | handler.begin(skip & 16 ? nullptr : normalizers.get()); |
1008 | |
|
1009 | 0 | struct QC { |
1010 | 0 | int qno; // sequence number of the query |
1011 | 0 | int list_no; // list to visit |
1012 | 0 | int rank; // this is the rank'th result of the coarse quantizer |
1013 | 0 | }; |
1014 | 0 | bool single_LUT = !lookup_table_is_3d(); |
1015 | 0 | size_t nprobe = cq.nprobe; |
1016 | |
|
1017 | 0 | std::vector<QC> qcs; |
1018 | 0 | { |
1019 | 0 | int ij = 0; |
1020 | 0 | for (int i = 0; i < n; i++) { |
1021 | 0 | for (int j = 0; j < nprobe; j++) { |
1022 | 0 | if (cq.ids[ij] >= 0) { |
1023 | 0 | qcs.push_back(QC{i, int(cq.ids[ij]), int(j)}); |
1024 | 0 | } |
1025 | 0 | ij++; |
1026 | 0 | } |
1027 | 0 | } |
1028 | 0 | std::sort(qcs.begin(), qcs.end(), [](const QC& a, const QC& b) { |
1029 | 0 | return a.list_no < b.list_no; |
1030 | 0 | }); |
1031 | 0 | } |
1032 | | |
1033 | | // prepare the result handlers |
1034 | |
|
1035 | 0 | int actual_qbs2 = this->qbs2 ? this->qbs2 : 11; |
1036 | |
|
1037 | 0 | std::vector<uint16_t> tmp_bias; |
1038 | 0 | if (biases.get()) { |
1039 | 0 | tmp_bias.resize(actual_qbs2); |
1040 | 0 | handler.dbias = tmp_bias.data(); |
1041 | 0 | } |
1042 | |
|
1043 | 0 | size_t ndis = 0; |
1044 | |
|
1045 | 0 | size_t i0 = 0; |
1046 | 0 | uint64_t t_copy_pack = 0, t_scan = 0; |
1047 | 0 | while (i0 < qcs.size()) { |
1048 | | // find all queries that access this inverted list |
1049 | 0 | int list_no = qcs[i0].list_no; |
1050 | 0 | size_t i1 = i0 + 1; |
1051 | |
|
1052 | 0 | while (i1 < qcs.size() && i1 < i0 + actual_qbs2) { |
1053 | 0 | if (qcs[i1].list_no != list_no) { |
1054 | 0 | break; |
1055 | 0 | } |
1056 | 0 | i1++; |
1057 | 0 | } |
1058 | |
|
1059 | 0 | size_t list_size = invlists->list_size(list_no); |
1060 | |
|
1061 | 0 | if (list_size == 0) { |
1062 | 0 | i0 = i1; |
1063 | 0 | continue; |
1064 | 0 | } |
1065 | | |
1066 | | // re-organize LUTs and biases into the right order |
1067 | 0 | int nc = i1 - i0; |
1068 | |
|
1069 | 0 | std::vector<int> q_map(nc), lut_entries(nc); |
1070 | 0 | AlignedTable<uint8_t> LUT(nc * dim12); |
1071 | 0 | memset(LUT.get(), -1, nc * dim12); |
1072 | 0 | int qbs_for_list = pq4_preferred_qbs(nc); |
1073 | |
|
1074 | 0 | for (size_t i = i0; i < i1; i++) { |
1075 | 0 | const QC& qc = qcs[i]; |
1076 | 0 | q_map[i - i0] = qc.qno; |
1077 | 0 | int ij = qc.qno * nprobe + qc.rank; |
1078 | 0 | lut_entries[i - i0] = single_LUT ? qc.qno : ij; |
1079 | 0 | if (biases.get()) { |
1080 | 0 | tmp_bias[i - i0] = biases[ij]; |
1081 | 0 | } |
1082 | 0 | } |
1083 | 0 | pq4_pack_LUT_qbs_q_map( |
1084 | 0 | qbs_for_list, |
1085 | 0 | M2, |
1086 | 0 | dis_tables.get(), |
1087 | 0 | lut_entries.data(), |
1088 | 0 | LUT.get()); |
1089 | | |
1090 | | // access the inverted list |
1091 | |
|
1092 | 0 | ndis += (i1 - i0) * list_size; |
1093 | |
|
1094 | 0 | InvertedLists::ScopedCodes codes(invlists, list_no); |
1095 | 0 | InvertedLists::ScopedIds ids(invlists, list_no); |
1096 | | |
1097 | | // prepare the handler |
1098 | |
|
1099 | 0 | handler.ntotal = list_size; |
1100 | 0 | handler.q_map = q_map.data(); |
1101 | 0 | handler.id_map = ids.get(); |
1102 | |
|
1103 | 0 | pq4_accumulate_loop_qbs( |
1104 | 0 | qbs_for_list, |
1105 | 0 | list_size, |
1106 | 0 | M2, |
1107 | 0 | codes.get(), |
1108 | 0 | LUT.get(), |
1109 | 0 | handler, |
1110 | 0 | scaler); |
1111 | | // prepare for next loop |
1112 | 0 | i0 = i1; |
1113 | 0 | } |
1114 | |
|
1115 | 0 | handler.end(); |
1116 | | |
1117 | | // these stats are not thread-safe |
1118 | |
|
1119 | 0 | IVFFastScan_stats.t_copy_pack += t_copy_pack; |
1120 | 0 | IVFFastScan_stats.t_scan += t_scan; |
1121 | |
|
1122 | 0 | *ndis_out = ndis; |
1123 | 0 | *nlist_out = nlist; |
1124 | 0 | } |
1125 | | |
1126 | | void IndexIVFFastScan::search_implem_14( |
1127 | | idx_t n, |
1128 | | const float* x, |
1129 | | idx_t k, |
1130 | | float* distances, |
1131 | | idx_t* labels, |
1132 | | const CoarseQuantized& cq, |
1133 | | int impl, |
1134 | | const NormTableScaler* scaler, |
1135 | 0 | const IVFSearchParameters* params) const { |
1136 | 0 | if (n == 0) { // does not work well with reservoir |
1137 | 0 | return; |
1138 | 0 | } |
1139 | 0 | FAISS_THROW_IF_NOT(bbs == 32); |
1140 | | |
1141 | 0 | const IDSelector* sel = params ? params->sel : nullptr; |
1142 | |
|
1143 | 0 | size_t dim12 = ksub * M2; |
1144 | 0 | AlignedTable<uint8_t> dis_tables; |
1145 | 0 | AlignedTable<uint16_t> biases; |
1146 | 0 | std::unique_ptr<float[]> normalizers(new float[2 * n]); |
1147 | |
|
1148 | 0 | compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get()); |
1149 | |
|
1150 | 0 | struct QC { |
1151 | 0 | int qno; // sequence number of the query |
1152 | 0 | int list_no; // list to visit |
1153 | 0 | int rank; // this is the rank'th result of the coarse quantizer |
1154 | 0 | }; |
1155 | 0 | bool single_LUT = !lookup_table_is_3d(); |
1156 | 0 | size_t nprobe = cq.nprobe; |
1157 | |
|
1158 | 0 | std::vector<QC> qcs; |
1159 | 0 | { |
1160 | 0 | int ij = 0; |
1161 | 0 | for (int i = 0; i < n; i++) { |
1162 | 0 | for (int j = 0; j < nprobe; j++) { |
1163 | 0 | if (cq.ids[ij] >= 0) { |
1164 | 0 | qcs.push_back(QC{i, int(cq.ids[ij]), int(j)}); |
1165 | 0 | } |
1166 | 0 | ij++; |
1167 | 0 | } |
1168 | 0 | } |
1169 | 0 | std::sort(qcs.begin(), qcs.end(), [](const QC& a, const QC& b) { |
1170 | 0 | return a.list_no < b.list_no; |
1171 | 0 | }); |
1172 | 0 | } |
1173 | |
|
1174 | 0 | struct SE { |
1175 | 0 | size_t start; // start in the QC vector |
1176 | 0 | size_t end; // end in the QC vector |
1177 | 0 | size_t list_size; |
1178 | 0 | }; |
1179 | 0 | std::vector<SE> ses; |
1180 | 0 | size_t i0_l = 0; |
1181 | 0 | while (i0_l < qcs.size()) { |
1182 | | // find all queries that access this inverted list |
1183 | 0 | int list_no = qcs[i0_l].list_no; |
1184 | 0 | size_t i1 = i0_l + 1; |
1185 | |
|
1186 | 0 | while (i1 < qcs.size() && i1 < i0_l + qbs2) { |
1187 | 0 | if (qcs[i1].list_no != list_no) { |
1188 | 0 | break; |
1189 | 0 | } |
1190 | 0 | i1++; |
1191 | 0 | } |
1192 | |
|
1193 | 0 | size_t list_size = invlists->list_size(list_no); |
1194 | |
|
1195 | 0 | if (list_size == 0) { |
1196 | 0 | i0_l = i1; |
1197 | 0 | continue; |
1198 | 0 | } |
1199 | 0 | ses.push_back(SE{i0_l, i1, list_size}); |
1200 | 0 | i0_l = i1; |
1201 | 0 | } |
1202 | | |
1203 | | // function to handle the global heap |
1204 | 0 | bool is_max = !is_similarity_metric(metric_type); |
1205 | 0 | using HeapForIP = CMin<float, idx_t>; |
1206 | 0 | using HeapForL2 = CMax<float, idx_t>; |
1207 | 0 | auto init_result = [&](float* simi, idx_t* idxi) { |
1208 | 0 | if (!is_max) { |
1209 | 0 | heap_heapify<HeapForIP>(k, simi, idxi); |
1210 | 0 | } else { |
1211 | 0 | heap_heapify<HeapForL2>(k, simi, idxi); |
1212 | 0 | } |
1213 | 0 | }; |
1214 | |
|
1215 | 0 | auto add_local_results = [&](const float* local_dis, |
1216 | 0 | const idx_t* local_idx, |
1217 | 0 | float* simi, |
1218 | 0 | idx_t* idxi) { |
1219 | 0 | if (!is_max) { |
1220 | 0 | heap_addn<HeapForIP>(k, simi, idxi, local_dis, local_idx, k); |
1221 | 0 | } else { |
1222 | 0 | heap_addn<HeapForL2>(k, simi, idxi, local_dis, local_idx, k); |
1223 | 0 | } |
1224 | 0 | }; |
1225 | |
|
1226 | 0 | auto reorder_result = [&](float* simi, idx_t* idxi) { |
1227 | 0 | if (!is_max) { |
1228 | 0 | heap_reorder<HeapForIP>(k, simi, idxi); |
1229 | 0 | } else { |
1230 | 0 | heap_reorder<HeapForL2>(k, simi, idxi); |
1231 | 0 | } |
1232 | 0 | }; |
1233 | |
|
1234 | 0 | size_t ndis = 0; |
1235 | 0 | size_t nlist_visited = 0; |
1236 | |
|
1237 | 0 | #pragma omp parallel reduction(+ : ndis, nlist_visited) |
1238 | 0 | { |
1239 | | // storage for each thread |
1240 | 0 | std::vector<idx_t> local_idx(k * n); |
1241 | 0 | std::vector<float> local_dis(k * n); |
1242 | | |
1243 | | // prepare the result handlers |
1244 | 0 | std::unique_ptr<SIMDResultHandlerToFloat> handler(make_knn_handler( |
1245 | 0 | is_max, impl, n, k, local_dis.data(), local_idx.data(), sel)); |
1246 | 0 | handler->begin(normalizers.get()); |
1247 | |
|
1248 | 0 | int actual_qbs2 = this->qbs2 ? this->qbs2 : 11; |
1249 | |
|
1250 | 0 | std::vector<uint16_t> tmp_bias; |
1251 | 0 | if (biases.get()) { |
1252 | 0 | tmp_bias.resize(actual_qbs2); |
1253 | 0 | handler->dbias = tmp_bias.data(); |
1254 | 0 | } |
1255 | |
|
1256 | 0 | std::set<int> q_set; |
1257 | 0 | uint64_t t_copy_pack = 0, t_scan = 0; |
1258 | 0 | #pragma omp for schedule(dynamic) |
1259 | 0 | for (idx_t cluster = 0; cluster < ses.size(); cluster++) { |
1260 | 0 | size_t i0 = ses[cluster].start; |
1261 | 0 | size_t i1 = ses[cluster].end; |
1262 | 0 | size_t list_size = ses[cluster].list_size; |
1263 | 0 | nlist_visited++; |
1264 | 0 | int list_no = qcs[i0].list_no; |
1265 | | |
1266 | | // re-organize LUTs and biases into the right order |
1267 | 0 | int nc = i1 - i0; |
1268 | |
|
1269 | 0 | std::vector<int> q_map(nc), lut_entries(nc); |
1270 | 0 | AlignedTable<uint8_t> LUT(nc * dim12); |
1271 | 0 | memset(LUT.get(), -1, nc * dim12); |
1272 | 0 | int qbs_for_list = pq4_preferred_qbs(nc); |
1273 | |
|
1274 | 0 | for (size_t i = i0; i < i1; i++) { |
1275 | 0 | const QC& qc = qcs[i]; |
1276 | 0 | q_map[i - i0] = qc.qno; |
1277 | 0 | q_set.insert(qc.qno); |
1278 | 0 | int ij = qc.qno * nprobe + qc.rank; |
1279 | 0 | lut_entries[i - i0] = single_LUT ? qc.qno : ij; |
1280 | 0 | if (biases.get()) { |
1281 | 0 | tmp_bias[i - i0] = biases[ij]; |
1282 | 0 | } |
1283 | 0 | } |
1284 | 0 | pq4_pack_LUT_qbs_q_map( |
1285 | 0 | qbs_for_list, |
1286 | 0 | M2, |
1287 | 0 | dis_tables.get(), |
1288 | 0 | lut_entries.data(), |
1289 | 0 | LUT.get()); |
1290 | | |
1291 | | // access the inverted list |
1292 | |
|
1293 | 0 | ndis += (i1 - i0) * list_size; |
1294 | |
|
1295 | 0 | InvertedLists::ScopedCodes codes(invlists, list_no); |
1296 | 0 | InvertedLists::ScopedIds ids(invlists, list_no); |
1297 | | |
1298 | | // prepare the handler |
1299 | |
|
1300 | 0 | handler->ntotal = list_size; |
1301 | 0 | handler->q_map = q_map.data(); |
1302 | 0 | handler->id_map = ids.get(); |
1303 | |
|
1304 | 0 | pq4_accumulate_loop_qbs( |
1305 | 0 | qbs_for_list, |
1306 | 0 | list_size, |
1307 | 0 | M2, |
1308 | 0 | codes.get(), |
1309 | 0 | LUT.get(), |
1310 | 0 | *handler.get(), |
1311 | 0 | scaler); |
1312 | 0 | } |
1313 | | |
1314 | | // labels is in-place for HeapHC |
1315 | 0 | handler->end(); |
1316 | | |
1317 | | // merge per-thread results |
1318 | 0 | #pragma omp single |
1319 | 0 | { |
1320 | | // we init the results as a heap |
1321 | 0 | for (idx_t i = 0; i < n; i++) { |
1322 | 0 | init_result(distances + i * k, labels + i * k); |
1323 | 0 | } |
1324 | 0 | } |
1325 | 0 | #pragma omp barrier |
1326 | 0 | #pragma omp critical |
1327 | 0 | { |
1328 | | // write to global heap #go over only the queries |
1329 | 0 | for (std::set<int>::iterator it = q_set.begin(); it != q_set.end(); |
1330 | 0 | ++it) { |
1331 | 0 | add_local_results( |
1332 | 0 | local_dis.data() + *it * k, |
1333 | 0 | local_idx.data() + *it * k, |
1334 | 0 | distances + *it * k, |
1335 | 0 | labels + *it * k); |
1336 | 0 | } |
1337 | |
|
1338 | 0 | IVFFastScan_stats.t_copy_pack += t_copy_pack; |
1339 | 0 | IVFFastScan_stats.t_scan += t_scan; |
1340 | 0 | } |
1341 | 0 | #pragma omp barrier |
1342 | 0 | #pragma omp single |
1343 | 0 | { |
1344 | 0 | for (idx_t i = 0; i < n; i++) { |
1345 | 0 | reorder_result(distances + i * k, labels + i * k); |
1346 | 0 | } |
1347 | 0 | } |
1348 | 0 | } |
1349 | |
|
1350 | 0 | indexIVF_stats.nq += n; |
1351 | 0 | indexIVF_stats.ndis += ndis; |
1352 | 0 | indexIVF_stats.nlist += nlist_visited; |
1353 | 0 | } |
1354 | | |
1355 | | void IndexIVFFastScan::reconstruct_from_offset( |
1356 | | int64_t list_no, |
1357 | | int64_t offset, |
1358 | 0 | float* recons) const { |
1359 | | // unpack codes |
1360 | 0 | size_t coarse_size = coarse_code_size(); |
1361 | 0 | std::vector<uint8_t> code(coarse_size + code_size, 0); |
1362 | 0 | encode_listno(list_no, code.data()); |
1363 | 0 | InvertedLists::ScopedCodes list_codes(invlists, list_no); |
1364 | 0 | BitstringWriter bsw(code.data() + coarse_size, code_size); |
1365 | |
|
1366 | 0 | for (size_t m = 0; m < M; m++) { |
1367 | 0 | uint8_t c = |
1368 | 0 | pq4_get_packed_element(list_codes.get(), bbs, M2, offset, m); |
1369 | 0 | bsw.write(c, nbits); |
1370 | 0 | } |
1371 | |
|
1372 | 0 | sa_decode(1, code.data(), recons); |
1373 | 0 | } |
1374 | | |
1375 | 0 | void IndexIVFFastScan::reconstruct_orig_invlists() { |
1376 | 0 | FAISS_THROW_IF_NOT(orig_invlists != nullptr); |
1377 | 0 | FAISS_THROW_IF_NOT(orig_invlists->list_size(0) == 0); |
1378 | | |
1379 | 0 | #pragma omp parallel for if (nlist > 100) |
1380 | 0 | for (idx_t list_no = 0; list_no < nlist; list_no++) { |
1381 | 0 | InvertedLists::ScopedCodes codes(invlists, list_no); |
1382 | 0 | InvertedLists::ScopedIds ids(invlists, list_no); |
1383 | 0 | size_t list_size = invlists->list_size(list_no); |
1384 | 0 | std::vector<uint8_t> code(code_size, 0); |
1385 | |
|
1386 | 0 | for (size_t offset = 0; offset < list_size; offset++) { |
1387 | | // unpack codes |
1388 | 0 | BitstringWriter bsw(code.data(), code_size); |
1389 | 0 | for (size_t m = 0; m < M; m++) { |
1390 | 0 | uint8_t c = |
1391 | 0 | pq4_get_packed_element(codes.get(), bbs, M2, offset, m); |
1392 | 0 | bsw.write(c, nbits); |
1393 | 0 | } |
1394 | | |
1395 | | // get id |
1396 | 0 | idx_t id = ids.get()[offset]; |
1397 | |
|
1398 | 0 | orig_invlists->add_entry(list_no, id, code.data()); |
1399 | 0 | } |
1400 | 0 | } |
1401 | 0 | } |
1402 | | |
1403 | | void IndexIVFFastScan::sa_decode(idx_t n, const uint8_t* codes, float* x) |
1404 | 0 | const { |
1405 | 0 | size_t coarse_size = coarse_code_size(); |
1406 | |
|
1407 | 0 | #pragma omp parallel if (n > 1) |
1408 | 0 | { |
1409 | 0 | std::vector<float> residual(d); |
1410 | |
|
1411 | 0 | #pragma omp for |
1412 | 0 | for (idx_t i = 0; i < n; i++) { |
1413 | 0 | const uint8_t* code = codes + i * (code_size + coarse_size); |
1414 | 0 | int64_t list_no = decode_listno(code); |
1415 | 0 | float* xi = x + i * d; |
1416 | 0 | fine_quantizer->decode(code + coarse_size, xi, 1); |
1417 | 0 | if (by_residual) { |
1418 | 0 | quantizer->reconstruct(list_no, residual.data()); |
1419 | 0 | for (size_t j = 0; j < d; j++) { |
1420 | 0 | xi[j] += residual[j]; |
1421 | 0 | } |
1422 | 0 | } |
1423 | 0 | } |
1424 | 0 | } |
1425 | 0 | } |
1426 | | |
1427 | | IVFFastScanStats IVFFastScan_stats; |
1428 | | |
1429 | | } // namespace faiss |