/root/doris/contrib/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | | * |
4 | | * This source code is licensed under the MIT license found in the |
5 | | * LICENSE file in the root directory of this source tree. |
6 | | */ |
7 | | |
8 | | #include <faiss/IndexIVFAdditiveQuantizerFastScan.h> |
9 | | |
10 | | #include <cinttypes> |
11 | | #include <cstdio> |
12 | | |
13 | | #include <memory> |
14 | | |
15 | | #include <faiss/impl/AuxIndexStructures.h> |
16 | | #include <faiss/impl/FaissAssert.h> |
17 | | #include <faiss/impl/LookupTableScaler.h> |
18 | | #include <faiss/impl/pq4_fast_scan.h> |
19 | | #include <faiss/invlists/BlockInvertedLists.h> |
20 | | #include <faiss/utils/distances.h> |
21 | | #include <faiss/utils/hamming.h> |
22 | | #include <faiss/utils/quantize_lut.h> |
23 | | #include <faiss/utils/utils.h> |
24 | | |
25 | | namespace faiss { |
26 | | |
27 | | inline size_t roundup(size_t a, size_t b) { |
28 | | return (a + b - 1) / b * b; |
29 | | } |
30 | | |
31 | | IndexIVFAdditiveQuantizerFastScan::IndexIVFAdditiveQuantizerFastScan( |
32 | | Index* quantizer, |
33 | | AdditiveQuantizer* aq, |
34 | | size_t d, |
35 | | size_t nlist, |
36 | | MetricType metric, |
37 | | int bbs) |
38 | 0 | : IndexIVFFastScan(quantizer, d, nlist, 0, metric) { |
39 | 0 | if (aq != nullptr) { |
40 | 0 | init(aq, nlist, metric, bbs); |
41 | 0 | } |
42 | 0 | } |
43 | | |
44 | | void IndexIVFAdditiveQuantizerFastScan::init( |
45 | | AdditiveQuantizer* aq, |
46 | | size_t nlist, |
47 | | MetricType metric, |
48 | 0 | int bbs) { |
49 | 0 | FAISS_THROW_IF_NOT(aq != nullptr); |
50 | 0 | FAISS_THROW_IF_NOT(!aq->nbits.empty()); |
51 | 0 | FAISS_THROW_IF_NOT(aq->nbits[0] == 4); |
52 | 0 | if (metric == METRIC_INNER_PRODUCT) { |
53 | 0 | FAISS_THROW_IF_NOT_MSG( |
54 | 0 | aq->search_type == AdditiveQuantizer::ST_LUT_nonorm, |
55 | 0 | "Search type must be ST_LUT_nonorm for IP metric"); |
56 | 0 | } else { |
57 | 0 | FAISS_THROW_IF_NOT_MSG( |
58 | 0 | aq->search_type == AdditiveQuantizer::ST_norm_lsq2x4 || |
59 | 0 | aq->search_type == AdditiveQuantizer::ST_norm_rq2x4, |
60 | 0 | "Search type must be lsq2x4 or rq2x4 for L2 metric"); |
61 | 0 | } |
62 | | |
63 | 0 | this->aq = aq; |
64 | 0 | if (metric_type == METRIC_L2) { |
65 | 0 | M = aq->M + 2; // 2x4 bits AQ |
66 | 0 | } else { |
67 | 0 | M = aq->M; |
68 | 0 | } |
69 | 0 | init_fastscan(aq, M, 4, nlist, metric, bbs); |
70 | |
|
71 | 0 | max_train_points = 1024 * ksub * M; |
72 | 0 | by_residual = true; |
73 | 0 | } |
74 | | |
75 | | IndexIVFAdditiveQuantizerFastScan::IndexIVFAdditiveQuantizerFastScan( |
76 | | const IndexIVFAdditiveQuantizer& orig, |
77 | | int bbs) |
78 | 0 | : IndexIVFFastScan( |
79 | 0 | orig.quantizer, |
80 | 0 | orig.d, |
81 | 0 | orig.nlist, |
82 | 0 | 0, |
83 | 0 | orig.metric_type), |
84 | 0 | aq(orig.aq) { |
85 | 0 | FAISS_THROW_IF_NOT( |
86 | 0 | metric_type == METRIC_INNER_PRODUCT || !orig.by_residual); |
87 | | |
88 | 0 | init(aq, nlist, metric_type, bbs); |
89 | |
|
90 | 0 | is_trained = orig.is_trained; |
91 | 0 | ntotal = orig.ntotal; |
92 | 0 | nprobe = orig.nprobe; |
93 | |
|
94 | 0 | for (size_t i = 0; i < nlist; i++) { |
95 | 0 | size_t nb = orig.invlists->list_size(i); |
96 | 0 | size_t nb2 = roundup(nb, bbs); |
97 | 0 | AlignedTable<uint8_t> tmp(nb2 * M2 / 2); |
98 | 0 | pq4_pack_codes( |
99 | 0 | InvertedLists::ScopedCodes(orig.invlists, i).get(), |
100 | 0 | nb, |
101 | 0 | M, |
102 | 0 | nb2, |
103 | 0 | bbs, |
104 | 0 | M2, |
105 | 0 | tmp.get()); |
106 | 0 | invlists->add_entries( |
107 | 0 | i, |
108 | 0 | nb, |
109 | 0 | InvertedLists::ScopedIds(orig.invlists, i).get(), |
110 | 0 | tmp.get()); |
111 | 0 | } |
112 | |
|
113 | 0 | orig_invlists = orig.invlists; |
114 | 0 | } |
115 | | |
116 | 0 | IndexIVFAdditiveQuantizerFastScan::IndexIVFAdditiveQuantizerFastScan() { |
117 | 0 | bbs = 0; |
118 | 0 | M2 = 0; |
119 | 0 | aq = nullptr; |
120 | |
|
121 | 0 | is_trained = false; |
122 | 0 | } |
123 | | |
124 | 0 | IndexIVFAdditiveQuantizerFastScan::~IndexIVFAdditiveQuantizerFastScan() = |
125 | | default; |
126 | | |
127 | | /********************************************************* |
128 | | * Training |
129 | | *********************************************************/ |
130 | | |
131 | 0 | idx_t IndexIVFAdditiveQuantizerFastScan::train_encoder_num_vectors() const { |
132 | 0 | return max_train_points; |
133 | 0 | } |
134 | | |
135 | | void IndexIVFAdditiveQuantizerFastScan::train_encoder( |
136 | | idx_t n, |
137 | | const float* x, |
138 | 0 | const idx_t* assign) { |
139 | 0 | if (aq->is_trained) { |
140 | 0 | return; |
141 | 0 | } |
142 | | |
143 | 0 | if (verbose) { |
144 | 0 | printf("training additive quantizer on %d vectors\n", int(n)); |
145 | 0 | } |
146 | |
|
147 | 0 | if (verbose) { |
148 | 0 | printf("training %zdx%zd additive quantizer on " |
149 | 0 | "%" PRId64 " vectors in %dD\n", |
150 | 0 | aq->M, |
151 | 0 | ksub, |
152 | 0 | n, |
153 | 0 | d); |
154 | 0 | } |
155 | 0 | aq->verbose = verbose; |
156 | 0 | aq->train(n, x); |
157 | | |
158 | | // train norm quantizer |
159 | 0 | if (by_residual && metric_type == METRIC_L2) { |
160 | 0 | std::vector<float> decoded_x(n * d); |
161 | 0 | std::vector<uint8_t> x_codes(n * aq->code_size); |
162 | 0 | aq->compute_codes(x, x_codes.data(), n); |
163 | 0 | aq->decode(x_codes.data(), decoded_x.data(), n); |
164 | | |
165 | | // add coarse centroids |
166 | 0 | std::vector<float> centroid(d); |
167 | 0 | for (idx_t i = 0; i < n; i++) { |
168 | 0 | auto xi = decoded_x.data() + i * d; |
169 | 0 | quantizer->reconstruct(assign[i], centroid.data()); |
170 | 0 | fvec_add(d, centroid.data(), xi, xi); |
171 | 0 | } |
172 | |
|
173 | 0 | std::vector<float> norms(n, 0); |
174 | 0 | fvec_norms_L2sqr(norms.data(), decoded_x.data(), d, n); |
175 | | |
176 | | // re-train norm tables |
177 | 0 | aq->train_norm(n, norms.data()); |
178 | 0 | } |
179 | |
|
180 | 0 | if (metric_type == METRIC_L2) { |
181 | 0 | estimate_norm_scale(n, x); |
182 | 0 | } |
183 | 0 | } |
184 | | |
185 | | void IndexIVFAdditiveQuantizerFastScan::estimate_norm_scale( |
186 | | idx_t n, |
187 | 0 | const float* x_in) { |
188 | 0 | FAISS_THROW_IF_NOT(metric_type == METRIC_L2); |
189 | | |
190 | 0 | constexpr int seed = 0x980903; |
191 | 0 | constexpr size_t max_points_estimated = 65536; |
192 | 0 | size_t ns = n; |
193 | 0 | const float* x = fvecs_maybe_subsample( |
194 | 0 | d, &ns, max_points_estimated, x_in, verbose, seed); |
195 | 0 | n = ns; |
196 | 0 | std::unique_ptr<float[]> del_x; |
197 | 0 | if (x != x_in) { |
198 | 0 | del_x.reset((float*)x); |
199 | 0 | } |
200 | |
|
201 | 0 | std::vector<idx_t> coarse_ids(n); |
202 | 0 | std::vector<float> coarse_dis(n); |
203 | 0 | quantizer->search(n, x, 1, coarse_dis.data(), coarse_ids.data()); |
204 | |
|
205 | 0 | AlignedTable<float> dis_tables; |
206 | 0 | AlignedTable<float> biases; |
207 | |
|
208 | 0 | size_t index_nprobe = nprobe; |
209 | 0 | nprobe = 1; |
210 | 0 | CoarseQuantized cq{index_nprobe, coarse_dis.data(), coarse_ids.data()}; |
211 | 0 | compute_LUT(n, x, cq, dis_tables, biases); |
212 | 0 | nprobe = index_nprobe; |
213 | |
|
214 | 0 | float scale = 0; |
215 | |
|
216 | 0 | #pragma omp parallel for reduction(+ : scale) |
217 | 0 | for (idx_t i = 0; i < n; i++) { |
218 | 0 | const float* lut = dis_tables.get() + i * M * ksub; |
219 | 0 | scale += quantize_lut::aq_estimate_norm_scale(M, ksub, 2, lut); |
220 | 0 | } |
221 | 0 | scale /= n; |
222 | 0 | norm_scale = (int)std::roundf(std::max(scale, 1.0f)); |
223 | |
|
224 | 0 | if (verbose) { |
225 | 0 | printf("estimated norm scale: %lf\n", scale); |
226 | 0 | printf("rounded norm scale: %d\n", norm_scale); |
227 | 0 | } |
228 | 0 | } |
229 | | |
230 | | /********************************************************* |
231 | | * Code management functions |
232 | | *********************************************************/ |
233 | | |
234 | | void IndexIVFAdditiveQuantizerFastScan::encode_vectors( |
235 | | idx_t n, |
236 | | const float* x, |
237 | | const idx_t* list_nos, |
238 | | uint8_t* codes, |
239 | 0 | bool include_listnos) const { |
240 | 0 | idx_t bs = 65536; |
241 | 0 | if (n > bs) { |
242 | 0 | for (idx_t i0 = 0; i0 < n; i0 += bs) { |
243 | 0 | idx_t i1 = std::min(n, i0 + bs); |
244 | 0 | encode_vectors( |
245 | 0 | i1 - i0, |
246 | 0 | x + i0 * d, |
247 | 0 | list_nos + i0, |
248 | 0 | codes + i0 * code_size, |
249 | 0 | include_listnos); |
250 | 0 | } |
251 | 0 | return; |
252 | 0 | } |
253 | | |
254 | 0 | if (by_residual) { |
255 | 0 | std::vector<float> residuals(n * d); |
256 | 0 | std::vector<float> centroids(n * d); |
257 | |
|
258 | 0 | #pragma omp parallel for if (n > 1000) |
259 | 0 | for (idx_t i = 0; i < n; i++) { |
260 | 0 | if (list_nos[i] < 0) { |
261 | 0 | memset(residuals.data() + i * d, 0, sizeof(residuals[0]) * d); |
262 | 0 | } else { |
263 | 0 | quantizer->compute_residual( |
264 | 0 | x + i * d, residuals.data() + i * d, list_nos[i]); |
265 | 0 | } |
266 | 0 | } |
267 | |
|
268 | 0 | #pragma omp parallel for if (n > 1000) |
269 | 0 | for (idx_t i = 0; i < n; i++) { |
270 | 0 | auto c = centroids.data() + i * d; |
271 | 0 | quantizer->reconstruct(list_nos[i], c); |
272 | 0 | } |
273 | |
|
274 | 0 | aq->compute_codes_add_centroids( |
275 | 0 | residuals.data(), codes, n, centroids.data()); |
276 | |
|
277 | 0 | } else { |
278 | 0 | aq->compute_codes(x, codes, n); |
279 | 0 | } |
280 | |
|
281 | 0 | if (include_listnos) { |
282 | 0 | size_t coarse_size = coarse_code_size(); |
283 | 0 | for (idx_t i = n - 1; i >= 0; i--) { |
284 | 0 | uint8_t* code = codes + i * (coarse_size + code_size); |
285 | 0 | memmove(code + coarse_size, codes + i * code_size, code_size); |
286 | 0 | encode_listno(list_nos[i], code); |
287 | 0 | } |
288 | 0 | } |
289 | 0 | } |
290 | | |
291 | | /********************************************************* |
292 | | * Search functions |
293 | | *********************************************************/ |
294 | | |
295 | | void IndexIVFAdditiveQuantizerFastScan::search( |
296 | | idx_t n, |
297 | | const float* x, |
298 | | idx_t k, |
299 | | float* distances, |
300 | | idx_t* labels, |
301 | 0 | const SearchParameters* params) const { |
302 | 0 | FAISS_THROW_IF_NOT_MSG( |
303 | 0 | !params, "search params not supported for this index"); |
304 | | |
305 | 0 | FAISS_THROW_IF_NOT(k > 0); |
306 | 0 | bool rescale = (rescale_norm && norm_scale > 1 && metric_type == METRIC_L2); |
307 | 0 | if (!rescale) { |
308 | 0 | IndexIVFFastScan::search(n, x, k, distances, labels); |
309 | 0 | return; |
310 | 0 | } |
311 | | |
312 | 0 | NormTableScaler scaler(norm_scale); |
313 | 0 | IndexIVFFastScan::CoarseQuantized cq{nprobe}; |
314 | 0 | search_dispatch_implem(n, x, k, distances, labels, cq, &scaler); |
315 | 0 | } |
316 | | |
317 | | /********************************************************* |
318 | | * Look-Up Table functions |
319 | | *********************************************************/ |
320 | | |
321 | | /******************************************************** |
322 | | |
323 | | Let q denote the query vector, |
324 | | x denote the quantized database vector, |
325 | | c denote the corresponding IVF centroid, |
326 | | r denote the residual (x - c). |
327 | | |
328 | | The L2 distance between q and x is: |
329 | | |
330 | | d(q, x) = (q - x)^2 |
331 | | = (q - c - r)^2 |
332 | | = q^2 - 2<q, c> - 2<q, r> + x^2 |
333 | | |
334 | | where q^2 is a constant for all x, <q,c> is only relevant to c, |
335 | | and x^2 is the quantized database vector norm. |
336 | | |
337 | | Different from IVFAdditiveQuantizer, we encode the quantized vector norm x^2 |
338 | | instead of r^2. So that we only need to compute one LUT for each query vector: |
339 | | |
340 | | LUT[m][k] = -2 * <q, codebooks[m][k]> |
341 | | |
342 | | `-2<q,c>` could be precomputed in `compute_LUT` and store in `biases`. |
343 | | if `by_residual=False`, `<q,c>` is simply 0. |
344 | | |
345 | | |
346 | | |
347 | | About norm look-up tables: |
348 | | |
349 | | To take advantage of the fast SIMD table lookups, we encode the norm by a 2x4 |
350 | | bits 1D additive quantizer (simply treat the scalar norm as a 1D vector). |
351 | | |
352 | | Let `cm` denote the codebooks of the trained 2x4 bits 1D additive quantizer, |
353 | | size (2, 16); `bm` denote the encoding code of the norm, a 8-bit integer; `cb` |
354 | | denote the codebooks of the additive quantizer to encode the database vector, |
355 | | size (M, 16). |
356 | | |
357 | | The decoded norm is: |
358 | | |
359 | | decoded_norm = cm[0][bm & 15] + cm[1][bm >> 4] |
360 | | |
361 | | The decoding is actually doing a table look-up. |
362 | | |
363 | | We combine the norm LUTs and the IP LUTs together: |
364 | | |
365 | | LUT is a 2D table, size (M + 2, 16) |
366 | | if m < M : |
367 | | LUT[m][k] = -2 * <q, cb[m][k]> |
368 | | else: |
369 | | LUT[m][k] = cm[m - M][k] |
370 | | |
371 | | ********************************************************/ |
372 | | |
373 | 0 | bool IndexIVFAdditiveQuantizerFastScan::lookup_table_is_3d() const { |
374 | 0 | return false; |
375 | 0 | } |
376 | | |
377 | | void IndexIVFAdditiveQuantizerFastScan::compute_LUT( |
378 | | size_t n, |
379 | | const float* x, |
380 | | const CoarseQuantized& cq, |
381 | | AlignedTable<float>& dis_tables, |
382 | 0 | AlignedTable<float>& biases) const { |
383 | 0 | const size_t dim12 = ksub * M; |
384 | 0 | const size_t ip_dim12 = aq->M * ksub; |
385 | 0 | const size_t nprobe = cq.nprobe; |
386 | |
|
387 | 0 | dis_tables.resize(n * dim12); |
388 | |
|
389 | 0 | float coef = 1.0f; |
390 | 0 | if (metric_type == METRIC_L2) { |
391 | 0 | coef = -2.0f; |
392 | 0 | } |
393 | |
|
394 | 0 | if (by_residual) { |
395 | | // bias = coef * <q, c> |
396 | | // NOTE: q^2 is not added to `biases` |
397 | 0 | biases.resize(n * nprobe); |
398 | 0 | #pragma omp parallel |
399 | 0 | { |
400 | 0 | std::vector<float> centroid(d); |
401 | 0 | float* c = centroid.data(); |
402 | |
|
403 | 0 | #pragma omp for |
404 | 0 | for (idx_t ij = 0; ij < n * nprobe; ij++) { |
405 | 0 | int i = ij / nprobe; |
406 | 0 | quantizer->reconstruct(cq.ids[ij], c); |
407 | 0 | biases[ij] = coef * fvec_inner_product(c, x + i * d, d); |
408 | 0 | } |
409 | 0 | } |
410 | 0 | } |
411 | |
|
412 | 0 | if (metric_type == METRIC_L2) { |
413 | 0 | const size_t norm_dim12 = 2 * ksub; |
414 | | |
415 | | // inner product look-up tables |
416 | 0 | aq->compute_LUT(n, x, dis_tables.data(), -2.0f, dim12); |
417 | | |
418 | | // copy and rescale norm look-up tables |
419 | 0 | auto norm_tabs = aq->norm_tabs; |
420 | 0 | if (rescale_norm && norm_scale > 1 && metric_type == METRIC_L2) { |
421 | 0 | for (size_t i = 0; i < norm_tabs.size(); i++) { |
422 | 0 | norm_tabs[i] /= norm_scale; |
423 | 0 | } |
424 | 0 | } |
425 | 0 | const float* norm_lut = norm_tabs.data(); |
426 | 0 | FAISS_THROW_IF_NOT(norm_tabs.size() == norm_dim12); |
427 | | |
428 | | // combine them |
429 | 0 | #pragma omp parallel for if (n > 100) |
430 | 0 | for (idx_t i = 0; i < n; i++) { |
431 | 0 | float* tab = dis_tables.data() + i * dim12 + ip_dim12; |
432 | 0 | memcpy(tab, norm_lut, norm_dim12 * sizeof(*tab)); |
433 | 0 | } |
434 | |
|
435 | 0 | } else if (metric_type == METRIC_INNER_PRODUCT) { |
436 | 0 | aq->compute_LUT(n, x, dis_tables.get()); |
437 | 0 | } else { |
438 | 0 | FAISS_THROW_FMT("metric %d not supported", metric_type); |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | | /********** IndexIVFLocalSearchQuantizerFastScan ************/ |
443 | | IndexIVFLocalSearchQuantizerFastScan::IndexIVFLocalSearchQuantizerFastScan( |
444 | | Index* quantizer, |
445 | | size_t d, |
446 | | size_t nlist, |
447 | | size_t M, |
448 | | size_t nbits, |
449 | | MetricType metric, |
450 | | Search_type_t search_type, |
451 | | int bbs) |
452 | 0 | : IndexIVFAdditiveQuantizerFastScan( |
453 | 0 | quantizer, |
454 | 0 | nullptr, |
455 | 0 | d, |
456 | 0 | nlist, |
457 | 0 | metric, |
458 | 0 | bbs), |
459 | 0 | lsq(d, M, nbits, search_type) { |
460 | 0 | FAISS_THROW_IF_NOT(nbits == 4); |
461 | 0 | init(&lsq, nlist, metric, bbs); |
462 | 0 | } |
463 | | |
464 | 0 | IndexIVFLocalSearchQuantizerFastScan::IndexIVFLocalSearchQuantizerFastScan() { |
465 | 0 | aq = &lsq; |
466 | 0 | } |
467 | | |
468 | | /********** IndexIVFResidualQuantizerFastScan ************/ |
469 | | IndexIVFResidualQuantizerFastScan::IndexIVFResidualQuantizerFastScan( |
470 | | Index* quantizer, |
471 | | size_t d, |
472 | | size_t nlist, |
473 | | size_t M, |
474 | | size_t nbits, |
475 | | MetricType metric, |
476 | | Search_type_t search_type, |
477 | | int bbs) |
478 | 0 | : IndexIVFAdditiveQuantizerFastScan( |
479 | 0 | quantizer, |
480 | 0 | nullptr, |
481 | 0 | d, |
482 | 0 | nlist, |
483 | 0 | metric, |
484 | 0 | bbs), |
485 | 0 | rq(d, M, nbits, search_type) { |
486 | 0 | FAISS_THROW_IF_NOT(nbits == 4); |
487 | 0 | init(&rq, nlist, metric, bbs); |
488 | 0 | } |
489 | | |
490 | 0 | IndexIVFResidualQuantizerFastScan::IndexIVFResidualQuantizerFastScan() { |
491 | 0 | aq = &rq; |
492 | 0 | } |
493 | | |
494 | | /********** IndexIVFProductLocalSearchQuantizerFastScan ************/ |
495 | | IndexIVFProductLocalSearchQuantizerFastScan:: |
496 | | IndexIVFProductLocalSearchQuantizerFastScan( |
497 | | Index* quantizer, |
498 | | size_t d, |
499 | | size_t nlist, |
500 | | size_t nsplits, |
501 | | size_t Msub, |
502 | | size_t nbits, |
503 | | MetricType metric, |
504 | | Search_type_t search_type, |
505 | | int bbs) |
506 | 0 | : IndexIVFAdditiveQuantizerFastScan( |
507 | 0 | quantizer, |
508 | 0 | nullptr, |
509 | 0 | d, |
510 | 0 | nlist, |
511 | 0 | metric, |
512 | 0 | bbs), |
513 | 0 | plsq(d, nsplits, Msub, nbits, search_type) { |
514 | 0 | FAISS_THROW_IF_NOT(nbits == 4); |
515 | 0 | init(&plsq, nlist, metric, bbs); |
516 | 0 | } |
517 | | |
518 | | IndexIVFProductLocalSearchQuantizerFastScan:: |
519 | 0 | IndexIVFProductLocalSearchQuantizerFastScan() { |
520 | 0 | aq = &plsq; |
521 | 0 | } |
522 | | |
523 | | /********** IndexIVFProductResidualQuantizerFastScan ************/ |
524 | | IndexIVFProductResidualQuantizerFastScan:: |
525 | | IndexIVFProductResidualQuantizerFastScan( |
526 | | Index* quantizer, |
527 | | size_t d, |
528 | | size_t nlist, |
529 | | size_t nsplits, |
530 | | size_t Msub, |
531 | | size_t nbits, |
532 | | MetricType metric, |
533 | | Search_type_t search_type, |
534 | | int bbs) |
535 | 0 | : IndexIVFAdditiveQuantizerFastScan( |
536 | 0 | quantizer, |
537 | 0 | nullptr, |
538 | 0 | d, |
539 | 0 | nlist, |
540 | 0 | metric, |
541 | 0 | bbs), |
542 | 0 | prq(d, nsplits, Msub, nbits, search_type) { |
543 | 0 | FAISS_THROW_IF_NOT(nbits == 4); |
544 | 0 | init(&prq, nlist, metric, bbs); |
545 | 0 | } |
546 | | |
547 | | IndexIVFProductResidualQuantizerFastScan:: |
548 | 0 | IndexIVFProductResidualQuantizerFastScan() { |
549 | 0 | aq = &prq; |
550 | 0 | } |
551 | | |
552 | | } // namespace faiss |