Coverage Report

Created: 2025-09-18 20:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dlatrd.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static doublereal c_b5 = -1.;
516
static doublereal c_b6 = 1.;
517
static integer c__1 = 1;
518
static doublereal c_b16 = 0.;
519
520
/* > \brief \b DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago
521
nal form by an orthogonal similarity transformation. */
522
523
/*  =========== DOCUMENTATION =========== */
524
525
/* Online html documentation available at */
526
/*            http://www.netlib.org/lapack/explore-html/ */
527
528
/* > \htmlonly */
529
/* > Download DLATRD + dependencies */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrd.
531
f"> */
532
/* > [TGZ]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrd.
534
f"> */
535
/* > [ZIP]</a> */
536
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrd.
537
f"> */
538
/* > [TXT]</a> */
539
/* > \endhtmlonly */
540
541
/*  Definition: */
542
/*  =========== */
543
544
/*       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */
545
546
/*       CHARACTER          UPLO */
547
/*       INTEGER            LDA, LDW, N, NB */
548
/*       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * ) */
549
550
551
/* > \par Purpose: */
552
/*  ============= */
553
/* > */
554
/* > \verbatim */
555
/* > */
556
/* > DLATRD reduces NB rows and columns of a real symmetric matrix A to */
557
/* > symmetric tridiagonal form by an orthogonal similarity */
558
/* > transformation Q**T * A * Q, and returns the matrices V and W which are */
559
/* > needed to apply the transformation to the unreduced part of A. */
560
/* > */
561
/* > If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */
562
/* > matrix, of which the upper triangle is supplied; */
563
/* > if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */
564
/* > matrix, of which the lower triangle is supplied. */
565
/* > */
566
/* > This is an auxiliary routine called by DSYTRD. */
567
/* > \endverbatim */
568
569
/*  Arguments: */
570
/*  ========== */
571
572
/* > \param[in] UPLO */
573
/* > \verbatim */
574
/* >          UPLO is CHARACTER*1 */
575
/* >          Specifies whether the upper or lower triangular part of the */
576
/* >          symmetric matrix A is stored: */
577
/* >          = 'U': Upper triangular */
578
/* >          = 'L': Lower triangular */
579
/* > \endverbatim */
580
/* > */
581
/* > \param[in] N */
582
/* > \verbatim */
583
/* >          N is INTEGER */
584
/* >          The order of the matrix A. */
585
/* > \endverbatim */
586
/* > */
587
/* > \param[in] NB */
588
/* > \verbatim */
589
/* >          NB is INTEGER */
590
/* >          The number of rows and columns to be reduced. */
591
/* > \endverbatim */
592
/* > */
593
/* > \param[in,out] A */
594
/* > \verbatim */
595
/* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
596
/* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
597
/* >          n-by-n upper triangular part of A contains the upper */
598
/* >          triangular part of the matrix A, and the strictly lower */
599
/* >          triangular part of A is not referenced.  If UPLO = 'L', the */
600
/* >          leading n-by-n lower triangular part of A contains the lower */
601
/* >          triangular part of the matrix A, and the strictly upper */
602
/* >          triangular part of A is not referenced. */
603
/* >          On exit: */
604
/* >          if UPLO = 'U', the last NB columns have been reduced to */
605
/* >            tridiagonal form, with the diagonal elements overwriting */
606
/* >            the diagonal elements of A; the elements above the diagonal */
607
/* >            with the array TAU, represent the orthogonal matrix Q as a */
608
/* >            product of elementary reflectors; */
609
/* >          if UPLO = 'L', the first NB columns have been reduced to */
610
/* >            tridiagonal form, with the diagonal elements overwriting */
611
/* >            the diagonal elements of A; the elements below the diagonal */
612
/* >            with the array TAU, represent the  orthogonal matrix Q as a */
613
/* >            product of elementary reflectors. */
614
/* >          See Further Details. */
615
/* > \endverbatim */
616
/* > */
617
/* > \param[in] LDA */
618
/* > \verbatim */
619
/* >          LDA is INTEGER */
620
/* >          The leading dimension of the array A.  LDA >= (1,N). */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[out] E */
624
/* > \verbatim */
625
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
626
/* >          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
627
/* >          elements of the last NB columns of the reduced matrix; */
628
/* >          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
629
/* >          the first NB columns of the reduced matrix. */
630
/* > \endverbatim */
631
/* > */
632
/* > \param[out] TAU */
633
/* > \verbatim */
634
/* >          TAU is DOUBLE PRECISION array, dimension (N-1) */
635
/* >          The scalar factors of the elementary reflectors, stored in */
636
/* >          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
637
/* >          See Further Details. */
638
/* > \endverbatim */
639
/* > */
640
/* > \param[out] W */
641
/* > \verbatim */
642
/* >          W is DOUBLE PRECISION array, dimension (LDW,NB) */
643
/* >          The n-by-nb matrix W required to update the unreduced part */
644
/* >          of A. */
645
/* > \endverbatim */
646
/* > */
647
/* > \param[in] LDW */
648
/* > \verbatim */
649
/* >          LDW is INTEGER */
650
/* >          The leading dimension of the array W. LDW >= f2cmax(1,N). */
651
/* > \endverbatim */
652
653
/*  Authors: */
654
/*  ======== */
655
656
/* > \author Univ. of Tennessee */
657
/* > \author Univ. of California Berkeley */
658
/* > \author Univ. of Colorado Denver */
659
/* > \author NAG Ltd. */
660
661
/* > \date December 2016 */
662
663
/* > \ingroup doubleOTHERauxiliary */
664
665
/* > \par Further Details: */
666
/*  ===================== */
667
/* > */
668
/* > \verbatim */
669
/* > */
670
/* >  If UPLO = 'U', the matrix Q is represented as a product of elementary */
671
/* >  reflectors */
672
/* > */
673
/* >     Q = H(n) H(n-1) . . . H(n-nb+1). */
674
/* > */
675
/* >  Each H(i) has the form */
676
/* > */
677
/* >     H(i) = I - tau * v * v**T */
678
/* > */
679
/* >  where tau is a real scalar, and v is a real vector with */
680
/* >  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
681
/* >  and tau in TAU(i-1). */
682
/* > */
683
/* >  If UPLO = 'L', the matrix Q is represented as a product of elementary */
684
/* >  reflectors */
685
/* > */
686
/* >     Q = H(1) H(2) . . . H(nb). */
687
/* > */
688
/* >  Each H(i) has the form */
689
/* > */
690
/* >     H(i) = I - tau * v * v**T */
691
/* > */
692
/* >  where tau is a real scalar, and v is a real vector with */
693
/* >  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
694
/* >  and tau in TAU(i). */
695
/* > */
696
/* >  The elements of the vectors v together form the n-by-nb matrix V */
697
/* >  which is needed, with W, to apply the transformation to the unreduced */
698
/* >  part of the matrix, using a symmetric rank-2k update of the form: */
699
/* >  A := A - V*W**T - W*V**T. */
700
/* > */
701
/* >  The contents of A on exit are illustrated by the following examples */
702
/* >  with n = 5 and nb = 2: */
703
/* > */
704
/* >  if UPLO = 'U':                       if UPLO = 'L': */
705
/* > */
706
/* >    (  a   a   a   v4  v5 )              (  d                  ) */
707
/* >    (      a   a   v4  v5 )              (  1   d              ) */
708
/* >    (          a   1   v5 )              (  v1  1   a          ) */
709
/* >    (              d   1  )              (  v1  v2  a   a      ) */
710
/* >    (                  d  )              (  v1  v2  a   a   a  ) */
711
/* > */
712
/* >  where d denotes a diagonal element of the reduced matrix, a denotes */
713
/* >  an element of the original matrix that is unchanged, and vi denotes */
714
/* >  an element of the vector defining H(i). */
715
/* > \endverbatim */
716
/* > */
717
/*  ===================================================================== */
718
/* Subroutine */ void dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
719
  a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, 
720
  integer *ldw)
721
0
{
722
    /* System generated locals */
723
0
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
724
725
    /* Local variables */
726
0
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
727
0
      integer *);
728
0
    integer i__;
729
0
    doublereal alpha;
730
0
    extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
731
0
      integer *);
732
0
    extern logical lsame_(char *, char *);
733
0
    extern /* Subroutine */ void dgemv_(char *, integer *, integer *, 
734
0
      doublereal *, doublereal *, integer *, doublereal *, integer *, 
735
0
      doublereal *, doublereal *, integer *), daxpy_(integer *, 
736
0
      doublereal *, doublereal *, integer *, doublereal *, integer *), 
737
0
      dsymv_(char *, integer *, doublereal *, doublereal *, integer *, 
738
0
      doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *,
739
0
       doublereal *);
740
0
    integer iw;
741
742
743
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
744
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
745
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
746
/*     December 2016 */
747
748
749
/*  ===================================================================== */
750
751
752
/*     Quick return if possible */
753
754
    /* Parameter adjustments */
755
0
    a_dim1 = *lda;
756
0
    a_offset = 1 + a_dim1 * 1;
757
0
    a -= a_offset;
758
0
    --e;
759
0
    --tau;
760
0
    w_dim1 = *ldw;
761
0
    w_offset = 1 + w_dim1 * 1;
762
0
    w -= w_offset;
763
764
    /* Function Body */
765
0
    if (*n <= 0) {
766
0
  return;
767
0
    }
768
769
0
    if (lsame_(uplo, "U")) {
770
771
/*        Reduce last NB columns of upper triangle */
772
773
0
  i__1 = *n - *nb + 1;
774
0
  for (i__ = *n; i__ >= i__1; --i__) {
775
0
      iw = i__ - *n + *nb;
776
0
      if (i__ < *n) {
777
778
/*              Update A(1:i,i) */
779
780
0
    i__2 = *n - i__;
781
0
    dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * 
782
0
      a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
783
0
      c_b6, &a[i__ * a_dim1 + 1], &c__1);
784
0
    i__2 = *n - i__;
785
0
    dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * 
786
0
      w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
787
0
      c_b6, &a[i__ * a_dim1 + 1], &c__1);
788
0
      }
789
0
      if (i__ > 1) {
790
791
/*              Generate elementary reflector H(i) to annihilate */
792
/*              A(1:i-2,i) */
793
794
0
    i__2 = i__ - 1;
795
0
    dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 
796
0
      1], &c__1, &tau[i__ - 1]);
797
0
    e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
798
0
    a[i__ - 1 + i__ * a_dim1] = 1.;
799
800
/*              Compute W(1:i-1,i) */
801
802
0
    i__2 = i__ - 1;
803
0
    dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * 
804
0
      a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
805
0
      c__1);
806
0
    if (i__ < *n) {
807
0
        i__2 = i__ - 1;
808
0
        i__3 = *n - i__;
809
0
        dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * 
810
0
          w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
811
0
          c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
812
0
        i__2 = i__ - 1;
813
0
        i__3 = *n - i__;
814
0
        dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
815
0
           a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
816
0
          c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
817
0
        i__2 = i__ - 1;
818
0
        i__3 = *n - i__;
819
0
        dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * 
820
0
          a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
821
0
          c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
822
0
        i__2 = i__ - 1;
823
0
        i__3 = *n - i__;
824
0
        dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * 
825
0
          w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
826
0
          c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
827
0
    }
828
0
    i__2 = i__ - 1;
829
0
    dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
830
0
    i__2 = i__ - 1;
831
0
    alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1],
832
0
       &c__1, &a[i__ * a_dim1 + 1], &c__1);
833
0
    i__2 = i__ - 1;
834
0
    daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * 
835
0
      w_dim1 + 1], &c__1);
836
0
      }
837
838
/* L10: */
839
0
  }
840
0
    } else {
841
842
/*        Reduce first NB columns of lower triangle */
843
844
0
  i__1 = *nb;
845
0
  for (i__ = 1; i__ <= i__1; ++i__) {
846
847
/*           Update A(i:n,i) */
848
849
0
      i__2 = *n - i__ + 1;
850
0
      i__3 = i__ - 1;
851
0
      dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda,
852
0
         &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
853
0
        c__1);
854
0
      i__2 = *n - i__ + 1;
855
0
      i__3 = i__ - 1;
856
0
      dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw,
857
0
         &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
858
0
        c__1);
859
0
      if (i__ < *n) {
860
861
/*              Generate elementary reflector H(i) to annihilate */
862
/*              A(i+2:n,i) */
863
864
0
    i__2 = *n - i__;
865
/* Computing MIN */
866
0
    i__3 = i__ + 2;
867
0
    dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*n) + 
868
0
      i__ * a_dim1], &c__1, &tau[i__]);
869
0
    e[i__] = a[i__ + 1 + i__ * a_dim1];
870
0
    a[i__ + 1 + i__ * a_dim1] = 1.;
871
872
/*              Compute W(i+1:n,i) */
873
874
0
    i__2 = *n - i__;
875
0
    dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
876
0
      , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
877
0
      i__ + 1 + i__ * w_dim1], &c__1);
878
0
    i__2 = *n - i__;
879
0
    i__3 = i__ - 1;
880
0
    dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1],
881
0
       ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
882
0
      i__ * w_dim1 + 1], &c__1);
883
0
    i__2 = *n - i__;
884
0
    i__3 = i__ - 1;
885
0
    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + 
886
0
      a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
887
0
      i__ + 1 + i__ * w_dim1], &c__1);
888
0
    i__2 = *n - i__;
889
0
    i__3 = i__ - 1;
890
0
    dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1],
891
0
       lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
892
0
      i__ * w_dim1 + 1], &c__1);
893
0
    i__2 = *n - i__;
894
0
    i__3 = i__ - 1;
895
0
    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + 
896
0
      w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
897
0
      i__ + 1 + i__ * w_dim1], &c__1);
898
0
    i__2 = *n - i__;
899
0
    dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
900
0
    i__2 = *n - i__;
901
0
    alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * 
902
0
      w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
903
0
    i__2 = *n - i__;
904
0
    daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
905
0
      i__ + 1 + i__ * w_dim1], &c__1);
906
0
      }
907
908
/* L20: */
909
0
  }
910
0
    }
911
912
0
    return;
913
914
/*     End of DLATRD */
915
916
0
} /* dlatrd_ */
917