Coverage Report

Created: 2025-09-18 20:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/sgeqrf.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
239
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
240
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
241
#define sig_die(s, kill) { exit(1); }
242
#define s_stop(s, n) {exit(0);}
243
#define z_abs(z) (cabs(Cd(z)))
244
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
245
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
246
#define myexit_() break;
247
#define mycycle() continue;
248
#define myceiling(w) {ceil(w)}
249
#define myhuge(w) {HUGE_VAL}
250
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
251
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
252
253
/*  -- translated by f2c (version 20000121).
254
   You must link the resulting object file with the libraries:
255
  -lf2c -lm   (in that order)
256
*/
257
258
259
260
261
/* Table of constant values */
262
263
static integer c__1 = 1;
264
static integer c_n1 = -1;
265
static integer c__3 = 3;
266
static integer c__2 = 2;
267
268
/* > \brief \b SGEQRF */
269
270
/*  =========== DOCUMENTATION =========== */
271
272
/* Online html documentation available at */
273
/*            http://www.netlib.org/lapack/explore-html/ */
274
275
/* > \htmlonly */
276
/* > Download SGEQRF + dependencies */
277
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqrf.
278
f"> */
279
/* > [TGZ]</a> */
280
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqrf.
281
f"> */
282
/* > [ZIP]</a> */
283
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqrf.
284
f"> */
285
/* > [TXT]</a> */
286
/* > \endhtmlonly */
287
288
/*  Definition: */
289
/*  =========== */
290
291
/*       SUBROUTINE SGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) */
292
293
/*       INTEGER            INFO, LDA, LWORK, M, N */
294
/*       REAL               A( LDA, * ), TAU( * ), WORK( * ) */
295
296
297
/* > \par Purpose: */
298
/*  ============= */
299
/* > */
300
/* > \verbatim */
301
/* > */
302
/* > SGEQRF computes a QR factorization of a real M-by-N matrix A: */
303
/* > */
304
/* >    A = Q * ( R ), */
305
/* >            ( 0 ) */
306
/* > */
307
/* > where: */
308
/* > */
309
/* >    Q is a M-by-M orthogonal matrix; */
310
/* >    R is an upper-triangular N-by-N matrix; */
311
/* >    0 is a (M-N)-by-N zero matrix, if M > N. */
312
/* > */
313
/* > \endverbatim */
314
315
/*  Arguments: */
316
/*  ========== */
317
318
/* > \param[in] M */
319
/* > \verbatim */
320
/* >          M is INTEGER */
321
/* >          The number of rows of the matrix A.  M >= 0. */
322
/* > \endverbatim */
323
/* > */
324
/* > \param[in] N */
325
/* > \verbatim */
326
/* >          N is INTEGER */
327
/* >          The number of columns of the matrix A.  N >= 0. */
328
/* > \endverbatim */
329
/* > */
330
/* > \param[in,out] A */
331
/* > \verbatim */
332
/* >          A is REAL array, dimension (LDA,N) */
333
/* >          On entry, the M-by-N matrix A. */
334
/* >          On exit, the elements on and above the diagonal of the array */
335
/* >          contain the f2cmin(M,N)-by-N upper trapezoidal matrix R (R is */
336
/* >          upper triangular if m >= n); the elements below the diagonal, */
337
/* >          with the array TAU, represent the orthogonal matrix Q as a */
338
/* >          product of f2cmin(m,n) elementary reflectors (see Further */
339
/* >          Details). */
340
/* > \endverbatim */
341
/* > */
342
/* > \param[in] LDA */
343
/* > \verbatim */
344
/* >          LDA is INTEGER */
345
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
346
/* > \endverbatim */
347
/* > */
348
/* > \param[out] TAU */
349
/* > \verbatim */
350
/* >          TAU is REAL array, dimension (f2cmin(M,N)) */
351
/* >          The scalar factors of the elementary reflectors (see Further */
352
/* >          Details). */
353
/* > \endverbatim */
354
/* > */
355
/* > \param[out] WORK */
356
/* > \verbatim */
357
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
358
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
359
/* > \endverbatim */
360
/* > */
361
/* > \param[in] LWORK */
362
/* > \verbatim */
363
/* >          LWORK is INTEGER */
364
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,N). */
365
/* >          For optimum performance LWORK >= N*NB, where NB is */
366
/* >          the optimal blocksize. */
367
/* > */
368
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
369
/* >          only calculates the optimal size of the WORK array, returns */
370
/* >          this value as the first entry of the WORK array, and no error */
371
/* >          message related to LWORK is issued by XERBLA. */
372
/* > \endverbatim */
373
/* > */
374
/* > \param[out] INFO */
375
/* > \verbatim */
376
/* >          INFO is INTEGER */
377
/* >          = 0:  successful exit */
378
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
379
/* > \endverbatim */
380
381
/*  Authors: */
382
/*  ======== */
383
384
/* > \author Univ. of Tennessee */
385
/* > \author Univ. of California Berkeley */
386
/* > \author Univ. of Colorado Denver */
387
/* > \author NAG Ltd. */
388
389
/* > \date November 2019 */
390
391
/* > \ingroup realGEcomputational */
392
393
/* > \par Further Details: */
394
/*  ===================== */
395
/* > */
396
/* > \verbatim */
397
/* > */
398
/* >  The matrix Q is represented as a product of elementary reflectors */
399
/* > */
400
/* >     Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */
401
/* > */
402
/* >  Each H(i) has the form */
403
/* > */
404
/* >     H(i) = I - tau * v * v**T */
405
/* > */
406
/* >  where tau is a real scalar, and v is a real vector with */
407
/* >  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
408
/* >  and tau in TAU(i). */
409
/* > \endverbatim */
410
/* > */
411
/*  ===================================================================== */
412
/* Subroutine */ void sgeqrf_(integer *m, integer *n, real *a, integer *lda, 
413
  real *tau, real *work, integer *lwork, integer *info)
414
0
{
415
    /* System generated locals */
416
0
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
417
418
    /* Local variables */
419
0
    integer i__, k, nbmin, iinfo;
420
0
    extern /* Subroutine */ void sgeqr2_(integer *, integer *, real *, integer 
421
0
      *, real *, real *, integer *);
422
0
    integer ib, nb, nx;
423
0
    extern /* Subroutine */ void slarfb_(char *, char *, char *, char *, 
424
0
      integer *, integer *, integer *, real *, integer *, real *, 
425
0
      integer *, real *, integer *, real *, integer *);
426
0
    extern int xerbla_(char *, integer *, ftnlen);
427
0
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
428
0
      integer *, integer *, ftnlen, ftnlen);
429
0
    extern /* Subroutine */ void slarft_(char *, char *, integer *, integer *, 
430
0
      real *, integer *, real *, real *, integer *);
431
0
    integer ldwork, lwkopt;
432
0
    logical lquery;
433
0
    integer iws;
434
435
436
/*  -- LAPACK computational routine (version 3.9.0) -- */
437
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
438
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
439
/*     November 2019 */
440
441
442
/*  ===================================================================== */
443
444
445
/*     Test the input arguments */
446
447
    /* Parameter adjustments */
448
0
    a_dim1 = *lda;
449
0
    a_offset = 1 + a_dim1 * 1;
450
0
    a -= a_offset;
451
0
    --tau;
452
0
    --work;
453
454
    /* Function Body */
455
0
    *info = 0;
456
0
    nb = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
457
0
      1);
458
0
    lwkopt = *n * nb;
459
0
    work[1] = (real) lwkopt;
460
0
    lquery = *lwork == -1;
461
0
    if (*m < 0) {
462
0
  *info = -1;
463
0
    } else if (*n < 0) {
464
0
  *info = -2;
465
0
    } else if (*lda < f2cmax(1,*m)) {
466
0
  *info = -4;
467
0
    } else if (*lwork < f2cmax(1,*n) && ! lquery) {
468
0
  *info = -7;
469
0
    }
470
0
    if (*info != 0) {
471
0
  i__1 = -(*info);
472
0
  xerbla_("SGEQRF", &i__1, (ftnlen)6);
473
0
  return;
474
0
    } else if (lquery) {
475
0
  return;
476
0
    }
477
478
/*     Quick return if possible */
479
480
0
    k = f2cmin(*m,*n);
481
0
    if (k == 0) {
482
0
  work[1] = 1.f;
483
0
  return;
484
0
    }
485
486
0
    nbmin = 2;
487
0
    nx = 0;
488
0
    iws = *n;
489
0
    if (nb > 1 && nb < k) {
490
491
/*        Determine when to cross over from blocked to unblocked code. */
492
493
/* Computing MAX */
494
0
  i__1 = 0, i__2 = ilaenv_(&c__3, "SGEQRF", " ", m, n, &c_n1, &c_n1, (
495
0
    ftnlen)6, (ftnlen)1);
496
0
  nx = f2cmax(i__1,i__2);
497
0
  if (nx < k) {
498
499
/*           Determine if workspace is large enough for blocked code. */
500
501
0
      ldwork = *n;
502
0
      iws = ldwork * nb;
503
0
      if (*lwork < iws) {
504
505
/*              Not enough workspace to use optimal NB:  reduce NB and */
506
/*              determine the minimum value of NB. */
507
508
0
    nb = *lwork / ldwork;
509
/* Computing MAX */
510
0
    i__1 = 2, i__2 = ilaenv_(&c__2, "SGEQRF", " ", m, n, &c_n1, &
511
0
      c_n1, (ftnlen)6, (ftnlen)1);
512
0
    nbmin = f2cmax(i__1,i__2);
513
0
      }
514
0
  }
515
0
    }
516
517
0
    if (nb >= nbmin && nb < k && nx < k) {
518
519
/*        Use blocked code initially */
520
521
0
  i__1 = k - nx;
522
0
  i__2 = nb;
523
0
  for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
524
/* Computing MIN */
525
0
      i__3 = k - i__ + 1;
526
0
      ib = f2cmin(i__3,nb);
527
528
/*           Compute the QR factorization of the current block */
529
/*           A(i:m,i:i+ib-1) */
530
531
0
      i__3 = *m - i__ + 1;
532
0
      sgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
533
0
        1], &iinfo);
534
0
      if (i__ + ib <= *n) {
535
536
/*              Form the triangular factor of the block reflector */
537
/*              H = H(i) H(i+1) . . . H(i+ib-1) */
538
539
0
    i__3 = *m - i__ + 1;
540
0
    slarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * 
541
0
      a_dim1], lda, &tau[i__], &work[1], &ldwork);
542
543
/*              Apply H**T to A(i:m,i+ib:n) from the left */
544
545
0
    i__3 = *m - i__ + 1;
546
0
    i__4 = *n - i__ - ib + 1;
547
0
    slarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
548
0
      i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
549
0
      ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib 
550
0
      + 1], &ldwork);
551
0
      }
552
/* L10: */
553
0
  }
554
0
    } else {
555
0
  i__ = 1;
556
0
    }
557
558
/*     Use unblocked code to factor the last or only block. */
559
560
0
    if (i__ <= k) {
561
0
  i__2 = *m - i__ + 1;
562
0
  i__1 = *n - i__ + 1;
563
0
  sgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
564
0
    , &iinfo);
565
0
    }
566
567
0
    work[1] = (real) iws;
568
0
    return;
569
570
/*     End of SGEQRF */
571
572
0
} /* sgeqrf_ */
573