Coverage Report

Created: 2025-09-18 20:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/sgetri.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
239
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
240
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
241
#define sig_die(s, kill) { exit(1); }
242
#define s_stop(s, n) {exit(0);}
243
#define z_abs(z) (cabs(Cd(z)))
244
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
245
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
246
#define myexit_() break;
247
#define mycycle() continue;
248
#define myceiling(w) {ceil(w)}
249
#define myhuge(w) {HUGE_VAL}
250
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
251
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
252
253
/*  -- translated by f2c (version 20000121).
254
   You must link the resulting object file with the libraries:
255
  -lf2c -lm   (in that order)
256
*/
257
258
259
260
261
/* Table of constant values */
262
263
static integer c__1 = 1;
264
static integer c_n1 = -1;
265
static integer c__2 = 2;
266
static real c_b20 = -1.f;
267
static real c_b22 = 1.f;
268
269
/* > \brief \b SGETRI */
270
271
/*  =========== DOCUMENTATION =========== */
272
273
/* Online html documentation available at */
274
/*            http://www.netlib.org/lapack/explore-html/ */
275
276
/* > \htmlonly */
277
/* > Download SGETRI + dependencies */
278
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetri.
279
f"> */
280
/* > [TGZ]</a> */
281
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetri.
282
f"> */
283
/* > [ZIP]</a> */
284
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetri.
285
f"> */
286
/* > [TXT]</a> */
287
/* > \endhtmlonly */
288
289
/*  Definition: */
290
/*  =========== */
291
292
/*       SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) */
293
294
/*       INTEGER            INFO, LDA, LWORK, N */
295
/*       INTEGER            IPIV( * ) */
296
/*       REAL               A( LDA, * ), WORK( * ) */
297
298
299
/* > \par Purpose: */
300
/*  ============= */
301
/* > */
302
/* > \verbatim */
303
/* > */
304
/* > SGETRI computes the inverse of a matrix using the LU factorization */
305
/* > computed by SGETRF. */
306
/* > */
307
/* > This method inverts U and then computes inv(A) by solving the system */
308
/* > inv(A)*L = inv(U) for inv(A). */
309
/* > \endverbatim */
310
311
/*  Arguments: */
312
/*  ========== */
313
314
/* > \param[in] N */
315
/* > \verbatim */
316
/* >          N is INTEGER */
317
/* >          The order of the matrix A.  N >= 0. */
318
/* > \endverbatim */
319
/* > */
320
/* > \param[in,out] A */
321
/* > \verbatim */
322
/* >          A is REAL array, dimension (LDA,N) */
323
/* >          On entry, the factors L and U from the factorization */
324
/* >          A = P*L*U as computed by SGETRF. */
325
/* >          On exit, if INFO = 0, the inverse of the original matrix A. */
326
/* > \endverbatim */
327
/* > */
328
/* > \param[in] LDA */
329
/* > \verbatim */
330
/* >          LDA is INTEGER */
331
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
332
/* > \endverbatim */
333
/* > */
334
/* > \param[in] IPIV */
335
/* > \verbatim */
336
/* >          IPIV is INTEGER array, dimension (N) */
337
/* >          The pivot indices from SGETRF; for 1<=i<=N, row i of the */
338
/* >          matrix was interchanged with row IPIV(i). */
339
/* > \endverbatim */
340
/* > */
341
/* > \param[out] WORK */
342
/* > \verbatim */
343
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
344
/* >          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */
345
/* > \endverbatim */
346
/* > */
347
/* > \param[in] LWORK */
348
/* > \verbatim */
349
/* >          LWORK is INTEGER */
350
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,N). */
351
/* >          For optimal performance LWORK >= N*NB, where NB is */
352
/* >          the optimal blocksize returned by ILAENV. */
353
/* > */
354
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
355
/* >          only calculates the optimal size of the WORK array, returns */
356
/* >          this value as the first entry of the WORK array, and no error */
357
/* >          message related to LWORK is issued by XERBLA. */
358
/* > \endverbatim */
359
/* > */
360
/* > \param[out] INFO */
361
/* > \verbatim */
362
/* >          INFO is INTEGER */
363
/* >          = 0:  successful exit */
364
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
365
/* >          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
366
/* >                singular and its inverse could not be computed. */
367
/* > \endverbatim */
368
369
/*  Authors: */
370
/*  ======== */
371
372
/* > \author Univ. of Tennessee */
373
/* > \author Univ. of California Berkeley */
374
/* > \author Univ. of Colorado Denver */
375
/* > \author NAG Ltd. */
376
377
/* > \date December 2016 */
378
379
/* > \ingroup realGEcomputational */
380
381
/*  ===================================================================== */
382
/* Subroutine */ void sgetri_(integer *n, real *a, integer *lda, integer *ipiv,
383
   real *work, integer *lwork, integer *info)
384
0
{
385
    /* System generated locals */
386
0
    integer a_dim1, a_offset, i__1, i__2, i__3;
387
388
    /* Local variables */
389
0
    integer i__, j, nbmin;
390
0
    extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
391
0
      integer *, real *, real *, integer *, real *, integer *, real *, 
392
0
      real *, integer *), sgemv_(char *, integer *, 
393
0
      integer *, real *, real *, integer *, real *, integer *, real *, 
394
0
      real *, integer *), sswap_(integer *, real *, integer *, 
395
0
      real *, integer *), strsm_(char *, char *, char *, char *, 
396
0
      integer *, integer *, real *, real *, integer *, real *, integer *
397
0
      );
398
0
    integer jb, nb, jj, jp, nn;
399
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
400
0
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
401
0
      integer *, integer *, ftnlen, ftnlen);
402
0
    integer ldwork, lwkopt;
403
0
    logical lquery;
404
0
    extern /* Subroutine */ int strtri_(char *, char *, integer *, real *, 
405
0
      integer *, integer *);
406
0
    integer iws;
407
408
409
/*  -- LAPACK computational routine (version 3.7.0) -- */
410
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
411
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
412
/*     December 2016 */
413
414
415
/*  ===================================================================== */
416
417
418
/*     Test the input parameters. */
419
420
    /* Parameter adjustments */
421
0
    a_dim1 = *lda;
422
0
    a_offset = 1 + a_dim1 * 1;
423
0
    a -= a_offset;
424
0
    --ipiv;
425
0
    --work;
426
427
    /* Function Body */
428
0
    *info = 0;
429
0
    nb = ilaenv_(&c__1, "SGETRI", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
430
0
      ftnlen)1);
431
0
    lwkopt = *n * nb;
432
0
    work[1] = (real) lwkopt;
433
0
    lquery = *lwork == -1;
434
0
    if (*n < 0) {
435
0
  *info = -1;
436
0
    } else if (*lda < f2cmax(1,*n)) {
437
0
  *info = -3;
438
0
    } else if (*lwork < f2cmax(1,*n) && ! lquery) {
439
0
  *info = -6;
440
0
    }
441
0
    if (*info != 0) {
442
0
  i__1 = -(*info);
443
0
  xerbla_("SGETRI", &i__1, (ftnlen)6);
444
0
  return;
445
0
    } else if (lquery) {
446
0
  return;
447
0
    }
448
449
/*     Quick return if possible */
450
451
0
    if (*n == 0) {
452
0
  return;
453
0
    }
454
455
/*     Form inv(U).  If INFO > 0 from STRTRI, then U is singular, */
456
/*     and the inverse is not computed. */
457
458
0
    strtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
459
0
    if (*info > 0) {
460
0
  return;
461
0
    }
462
463
0
    nbmin = 2;
464
0
    ldwork = *n;
465
0
    if (nb > 1 && nb < *n) {
466
/* Computing MAX */
467
0
  i__1 = ldwork * nb;
468
0
  iws = f2cmax(i__1,1);
469
0
  if (*lwork < iws) {
470
0
      nb = *lwork / ldwork;
471
/* Computing MAX */
472
0
      i__1 = 2, i__2 = ilaenv_(&c__2, "SGETRI", " ", n, &c_n1, &c_n1, &
473
0
        c_n1, (ftnlen)6, (ftnlen)1);
474
0
      nbmin = f2cmax(i__1,i__2);
475
0
  }
476
0
    } else {
477
0
  iws = *n;
478
0
    }
479
480
/*     Solve the equation inv(A)*L = inv(U) for inv(A). */
481
482
0
    if (nb < nbmin || nb >= *n) {
483
484
/*        Use unblocked code. */
485
486
0
  for (j = *n; j >= 1; --j) {
487
488
/*           Copy current column of L to WORK and replace with zeros. */
489
490
0
      i__1 = *n;
491
0
      for (i__ = j + 1; i__ <= i__1; ++i__) {
492
0
    work[i__] = a[i__ + j * a_dim1];
493
0
    a[i__ + j * a_dim1] = 0.f;
494
/* L10: */
495
0
      }
496
497
/*           Compute current column of inv(A). */
498
499
0
      if (j < *n) {
500
0
    i__1 = *n - j;
501
0
    sgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 
502
0
      + 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 
503
0
      + 1], &c__1);
504
0
      }
505
/* L20: */
506
0
  }
507
0
    } else {
508
509
/*        Use blocked code. */
510
511
0
  nn = (*n - 1) / nb * nb + 1;
512
0
  i__1 = -nb;
513
0
  for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
514
/* Computing MIN */
515
0
      i__2 = nb, i__3 = *n - j + 1;
516
0
      jb = f2cmin(i__2,i__3);
517
518
/*           Copy current block column of L to WORK and replace with */
519
/*           zeros. */
520
521
0
      i__2 = j + jb - 1;
522
0
      for (jj = j; jj <= i__2; ++jj) {
523
0
    i__3 = *n;
524
0
    for (i__ = jj + 1; i__ <= i__3; ++i__) {
525
0
        work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
526
0
        a[i__ + jj * a_dim1] = 0.f;
527
/* L30: */
528
0
    }
529
/* L40: */
530
0
      }
531
532
/*           Compute current block column of inv(A). */
533
534
0
      if (j + jb <= *n) {
535
0
    i__2 = *n - j - jb + 1;
536
0
    sgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, 
537
0
      &a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
538
0
      ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
539
0
      }
540
0
      strsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
541
0
        work[j], &ldwork, &a[j * a_dim1 + 1], lda);
542
/* L50: */
543
0
  }
544
0
    }
545
546
/*     Apply column interchanges. */
547
548
0
    for (j = *n - 1; j >= 1; --j) {
549
0
  jp = ipiv[j];
550
0
  if (jp != j) {
551
0
      sswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
552
0
  }
553
/* L60: */
554
0
    }
555
556
0
    work[1] = (real) iws;
557
0
    return;
558
559
/*     End of SGETRI */
560
561
0
} /* sgetri_ */
562