Coverage Report

Created: 2025-04-11 17:25

/root/doris/be/src/util/memcpy_inlined.h
Line
Count
Source
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
18
#pragma once
19
20
#pragma once
21
#ifdef __AVX2__
22
#include <emmintrin.h>
23
#include <immintrin.h>
24
#endif
25
26
#include <stddef.h>
27
#include <stdint.h>
28
#include <stdio.h>
29
#include <string.h>
30
31
#include "common/compiler_util.h"
32
#include "gutil/port.h"
33
34
namespace doris {
35
36
ALWAYS_INLINE inline void memcpy_inlined(void* __restrict _dst, const void* __restrict _src,
37
703k
                                         size_t size) {
38
703k
    auto dst = static_cast<uint8_t*>(_dst);
39
703k
    auto src = static_cast<const uint8_t*>(_src);
40
41
772k
    [[maybe_unused]] tail :
42
            /// Small sizes and tails after the loop for large sizes.
43
            /// The order of branches is important but in fact the optimal order depends on the distribution of sizes in your application.
44
            /// This order of branches is from the disassembly of glibc's code.
45
            /// We copy chunks of possibly uneven size with two overlapping movs.
46
            /// Example: to copy 5 bytes [0, 1, 2, 3, 4] we will copy tail [1, 2, 3, 4] first and then head [0, 1, 2, 3].
47
772k
            if (size <= 16) {
48
660k
        if (size >= 8) {
49
            /// Chunks of 8..16 bytes.
50
609k
            __builtin_memcpy(dst + size - 8, src + size - 8, 8);
51
609k
            __builtin_memcpy(dst, src, 8);
52
609k
        } else if (size >= 4) {
53
            /// Chunks of 4..7 bytes.
54
46.3k
            __builtin_memcpy(dst + size - 4, src + size - 4, 4);
55
46.3k
            __builtin_memcpy(dst, src, 4);
56
46.3k
        } else if (size >= 2) {
57
            /// Chunks of 2..3 bytes.
58
4.02k
            __builtin_memcpy(dst + size - 2, src + size - 2, 2);
59
4.02k
            __builtin_memcpy(dst, src, 2);
60
4.02k
        } else if (size >= 1) {
61
            /// A single byte.
62
581
            *dst = *src;
63
581
        }
64
        /// No bytes remaining.
65
660k
    }
66
112k
    else {
67
112k
#ifdef __AVX2__
68
112k
        if (size <= 256) {
69
61.9k
            if (size <= 32) {
70
18.6k
                __builtin_memcpy(dst, src, 8);
71
18.6k
                __builtin_memcpy(dst + 8, src + 8, 8);
72
18.6k
                size -= 16;
73
18.6k
                dst += 16;
74
18.6k
                src += 16;
75
18.6k
                goto tail;
76
18.6k
            }
77
78
            /// Then we will copy every 16 bytes from the beginning in a loop.
79
            /// The last loop iteration will possibly overwrite some part of already copied last 32 bytes.
80
            /// This is Ok, similar to the code for small sizes above.
81
211k
            while (size > 32) {
82
168k
                _mm256_storeu_si256(reinterpret_cast<__m256i*>(dst),
83
168k
                                    _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src)));
84
168k
                dst += 32;
85
168k
                src += 32;
86
168k
                size -= 32;
87
168k
            }
88
89
43.3k
            _mm256_storeu_si256(
90
43.3k
                    reinterpret_cast<__m256i*>(dst + size - 32),
91
43.3k
                    _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + size - 32)));
92
50.2k
        } else {
93
50.2k
            if (size >= 512 * 1024 && size <= 2048 * 1024) {
94
2
                asm volatile("rep movsb"
95
2
                             : "=D"(dst), "=S"(src), "=c"(size)
96
2
                             : "0"(dst), "1"(src), "2"(size)
97
2
                             : "memory");
98
50.2k
            } else {
99
50.2k
                size_t padding = (32 - (reinterpret_cast<size_t>(dst) & 31)) & 31;
100
101
50.2k
                if (padding > 0) {
102
45.4k
                    __m256i head = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src));
103
45.4k
                    _mm256_storeu_si256(reinterpret_cast<__m256i*>(dst), head);
104
45.4k
                    dst += padding;
105
45.4k
                    src += padding;
106
45.4k
                    size -= padding;
107
45.4k
                }
108
109
                /// Aligned unrolled copy. We will use half of available AVX registers.
110
                /// It's not possible to have both src and dst aligned.
111
                /// So, we will use aligned stores and unaligned loads.
112
50.2k
                __m256i c0, c1, c2, c3, c4, c5, c6, c7;
113
114
2.34M
                while (size >= 256) {
115
2.29M
                    c0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src));
116
2.29M
                    c1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 32));
117
2.29M
                    c2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 64));
118
2.29M
                    c3 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 96));
119
2.29M
                    c4 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 128));
120
2.29M
                    c5 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 160));
121
2.29M
                    c6 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 192));
122
2.29M
                    c7 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 224));
123
2.29M
                    src += 256;
124
125
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst)), c0);
126
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 32)), c1);
127
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 64)), c2);
128
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 96)), c3);
129
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 128)), c4);
130
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 160)), c5);
131
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 192)), c6);
132
2.29M
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 224)), c7);
133
2.29M
                    dst += 256;
134
135
2.29M
                    size -= 256;
136
2.29M
                }
137
138
50.2k
                goto tail;
139
50.2k
            }
140
50.2k
        }
141
#else
142
        memcpy(dst, src, size);
143
#endif
144
112k
    }
145
772k
}
146
} // namespace doris