/root/doris/be/src/util/threadpool.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Licensed to the Apache Software Foundation (ASF) under one |
2 | | // or more contributor license agreements. See the NOTICE file |
3 | | // distributed with this work for additional information |
4 | | // regarding copyright ownership. The ASF licenses this file |
5 | | // to you under the Apache License, Version 2.0 (the |
6 | | // "License"); you may not use this file except in compliance |
7 | | // with the License. You may obtain a copy of the License at |
8 | | // |
9 | | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | | // |
11 | | // Unless required by applicable law or agreed to in writing, |
12 | | // software distributed under the License is distributed on an |
13 | | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
14 | | // KIND, either express or implied. See the License for the |
15 | | // specific language governing permissions and limitations |
16 | | // under the License. |
17 | | // This file is copied from |
18 | | // https://github.com/apache/impala/blob/branch-2.9.0/be/src/util/threadpool.cc |
19 | | // and modified by Doris |
20 | | |
21 | | #include "util/threadpool.h" |
22 | | |
23 | | #include <algorithm> |
24 | | #include <cstdint> |
25 | | #include <limits> |
26 | | #include <ostream> |
27 | | #include <thread> |
28 | | #include <utility> |
29 | | |
30 | | #include "common/logging.h" |
31 | | #include "gutil/map-util.h" |
32 | | #include "gutil/port.h" |
33 | | #include "gutil/strings/substitute.h" |
34 | | #include "util/debug/sanitizer_scopes.h" |
35 | | #include "util/scoped_cleanup.h" |
36 | | #include "util/thread.h" |
37 | | |
38 | | namespace doris { |
39 | | using namespace ErrorCode; |
40 | | |
41 | | using std::string; |
42 | | using strings::Substitute; |
43 | | |
44 | | class FunctionRunnable : public Runnable { |
45 | | public: |
46 | 8.20k | explicit FunctionRunnable(std::function<void()> func) : _func(std::move(func)) {} |
47 | | |
48 | 4.17k | void run() override { _func(); } |
49 | | |
50 | | private: |
51 | | std::function<void()> _func; |
52 | | }; |
53 | | |
54 | | ThreadPoolBuilder::ThreadPoolBuilder(string name) |
55 | | : _name(std::move(name)), |
56 | | _min_threads(0), |
57 | | _max_threads(std::thread::hardware_concurrency()), |
58 | | _max_queue_size(std::numeric_limits<int>::max()), |
59 | 241 | _idle_timeout(std::chrono::milliseconds(500)) {} |
60 | | |
61 | 193 | ThreadPoolBuilder& ThreadPoolBuilder::set_min_threads(int min_threads) { |
62 | 193 | CHECK_GE(min_threads, 0); |
63 | 193 | _min_threads = min_threads; |
64 | 193 | return *this; |
65 | 193 | } |
66 | | |
67 | 213 | ThreadPoolBuilder& ThreadPoolBuilder::set_max_threads(int max_threads) { |
68 | 213 | CHECK_GT(max_threads, 0); |
69 | 213 | _max_threads = max_threads; |
70 | 213 | return *this; |
71 | 213 | } |
72 | | |
73 | 29 | ThreadPoolBuilder& ThreadPoolBuilder::set_max_queue_size(int max_queue_size) { |
74 | 29 | _max_queue_size = max_queue_size; |
75 | 29 | return *this; |
76 | 29 | } |
77 | | |
78 | | ThreadPoolToken::ThreadPoolToken(ThreadPool* pool, ThreadPool::ExecutionMode mode, |
79 | | int max_concurrency) |
80 | | : _mode(mode), |
81 | | _pool(pool), |
82 | | _state(State::IDLE), |
83 | | _active_threads(0), |
84 | | _max_concurrency(max_concurrency), |
85 | | _num_submitted_tasks(0), |
86 | 2.00k | _num_unsubmitted_tasks(0) { |
87 | 2.00k | if (max_concurrency == 1 && mode != ThreadPool::ExecutionMode::SERIAL) { |
88 | 6 | _mode = ThreadPool::ExecutionMode::SERIAL; |
89 | 6 | } |
90 | 2.00k | } |
91 | | |
92 | 2.00k | ThreadPoolToken::~ThreadPoolToken() { |
93 | 2.00k | shutdown(); |
94 | 2.00k | _pool->release_token(this); |
95 | 2.00k | } |
96 | | |
97 | 6.94k | Status ThreadPoolToken::submit(std::shared_ptr<Runnable> r) { |
98 | 6.94k | return _pool->do_submit(std::move(r), this); |
99 | 6.94k | } |
100 | | |
101 | 7.32k | Status ThreadPoolToken::submit_func(std::function<void()> f) { |
102 | 7.32k | return submit(std::make_shared<FunctionRunnable>(std::move(f))); |
103 | 7.32k | } |
104 | | |
105 | 3.11k | void ThreadPoolToken::shutdown() { |
106 | 3.11k | std::unique_lock<std::mutex> l(_pool->_lock); |
107 | 3.11k | _pool->check_not_pool_thread_unlocked(); |
108 | | |
109 | | // Clear the queue under the lock, but defer the releasing of the tasks |
110 | | // outside the lock, in case there are concurrent threads wanting to access |
111 | | // the ThreadPool. The task's destructors may acquire locks, etc, so this |
112 | | // also prevents lock inversions. |
113 | 3.11k | std::deque<ThreadPool::Task> to_release = std::move(_entries); |
114 | 3.11k | _pool->_total_queued_tasks -= to_release.size(); |
115 | | |
116 | 3.11k | switch (state()) { |
117 | 777 | case State::IDLE: |
118 | | // There were no tasks outstanding; we can quiesce the token immediately. |
119 | 777 | transition(State::QUIESCED); |
120 | 777 | break; |
121 | 933 | case State::RUNNING: |
122 | | // There were outstanding tasks. If any are still running, switch to |
123 | | // QUIESCING and wait for them to finish (the worker thread executing |
124 | | // the token's last task will switch the token to QUIESCED). Otherwise, |
125 | | // we can quiesce the token immediately. |
126 | | |
127 | | // Note: this is an O(n) operation, but it's expected to be infrequent. |
128 | | // Plus doing it this way (rather than switching to QUIESCING and waiting |
129 | | // for a worker thread to process the queue entry) helps retain state |
130 | | // transition symmetry with ThreadPool::shutdown. |
131 | 9.19k | for (auto it = _pool->_queue.begin(); it != _pool->_queue.end();) { |
132 | 8.26k | if (*it == this) { |
133 | 769 | it = _pool->_queue.erase(it); |
134 | 7.49k | } else { |
135 | 7.49k | it++; |
136 | 7.49k | } |
137 | 8.26k | } |
138 | | |
139 | 933 | if (_active_threads == 0) { |
140 | 380 | transition(State::QUIESCED); |
141 | 380 | break; |
142 | 380 | } |
143 | 553 | transition(State::QUIESCING); |
144 | 553 | [[fallthrough]]; |
145 | 564 | case State::QUIESCING: |
146 | | // The token is already quiescing. Just wait for a worker thread to |
147 | | // switch it to QUIESCED. |
148 | 1.12k | _not_running_cond.wait(l, [this]() { return state() == State::QUIESCED; }); |
149 | 564 | break; |
150 | 1.38k | default: |
151 | 1.38k | break; |
152 | 3.11k | } |
153 | 3.11k | } |
154 | | |
155 | 633 | void ThreadPoolToken::wait() { |
156 | 633 | std::unique_lock<std::mutex> l(_pool->_lock); |
157 | 633 | _pool->check_not_pool_thread_unlocked(); |
158 | 824 | _not_running_cond.wait(l, [this]() { return !is_active(); }); |
159 | 633 | } |
160 | | |
161 | 6.65k | void ThreadPoolToken::transition(State new_state) { |
162 | 6.65k | #ifndef NDEBUG |
163 | 6.65k | CHECK_NE(_state, new_state); |
164 | | |
165 | 6.65k | switch (_state) { |
166 | 3.57k | case State::IDLE: |
167 | 3.57k | CHECK(new_state == State::RUNNING || new_state == State::QUIESCED); |
168 | 3.57k | if (new_state == State::RUNNING) { |
169 | 2.51k | CHECK(!_entries.empty()); |
170 | 2.51k | } else { |
171 | 1.06k | CHECK(_entries.empty()); |
172 | 1.06k | CHECK_EQ(_active_threads, 0); |
173 | 1.06k | } |
174 | 3.57k | break; |
175 | 2.51k | case State::RUNNING: |
176 | 2.51k | CHECK(new_state == State::IDLE || new_state == State::QUIESCING || |
177 | 2.51k | new_state == State::QUIESCED); |
178 | 2.51k | CHECK(_entries.empty()); |
179 | 2.51k | if (new_state == State::QUIESCING) { |
180 | 563 | CHECK_GT(_active_threads, 0); |
181 | 563 | } |
182 | 2.51k | break; |
183 | 563 | case State::QUIESCING: |
184 | 563 | CHECK(new_state == State::QUIESCED); |
185 | 563 | CHECK_EQ(_active_threads, 0); |
186 | 563 | break; |
187 | 0 | case State::QUIESCED: |
188 | 0 | CHECK(false); // QUIESCED is a terminal state |
189 | 0 | break; |
190 | 0 | default: |
191 | 0 | LOG(FATAL) << "Unknown token state: " << _state; |
192 | 6.65k | } |
193 | 6.65k | #endif |
194 | | |
195 | | // Take actions based on the state we're entering. |
196 | 6.65k | switch (new_state) { |
197 | 1.57k | case State::IDLE: |
198 | 3.57k | case State::QUIESCED: |
199 | 3.57k | _not_running_cond.notify_all(); |
200 | 3.57k | break; |
201 | 3.07k | default: |
202 | 3.07k | break; |
203 | 6.65k | } |
204 | | |
205 | 6.65k | _state = new_state; |
206 | 6.65k | } |
207 | | |
208 | 0 | const char* ThreadPoolToken::state_to_string(State s) { |
209 | 0 | switch (s) { |
210 | 0 | case State::IDLE: |
211 | 0 | return "IDLE"; |
212 | 0 | break; |
213 | 0 | case State::RUNNING: |
214 | 0 | return "RUNNING"; |
215 | 0 | break; |
216 | 0 | case State::QUIESCING: |
217 | 0 | return "QUIESCING"; |
218 | 0 | break; |
219 | 0 | case State::QUIESCED: |
220 | 0 | return "QUIESCED"; |
221 | 0 | break; |
222 | 0 | } |
223 | 0 | return "<cannot reach here>"; |
224 | 0 | } |
225 | | |
226 | 5.87k | bool ThreadPoolToken::need_dispatch() { |
227 | 5.87k | return _state == ThreadPoolToken::State::IDLE || |
228 | 5.87k | (_mode == ThreadPool::ExecutionMode::CONCURRENT && |
229 | 3.36k | _num_submitted_tasks < _max_concurrency); |
230 | 5.87k | } |
231 | | |
232 | | ThreadPool::ThreadPool(const ThreadPoolBuilder& builder) |
233 | | : _name(builder._name), |
234 | | _min_threads(builder._min_threads), |
235 | | _max_threads(builder._max_threads), |
236 | | _max_queue_size(builder._max_queue_size), |
237 | | _idle_timeout(builder._idle_timeout), |
238 | | _pool_status(Status::Uninitialized("The pool was not initialized.")), |
239 | | _num_threads(0), |
240 | | _num_threads_pending_start(0), |
241 | | _active_threads(0), |
242 | | _total_queued_tasks(0), |
243 | 224 | _tokenless(new_token(ExecutionMode::CONCURRENT)) {} |
244 | | |
245 | 224 | ThreadPool::~ThreadPool() { |
246 | | // There should only be one live token: the one used in tokenless submission. |
247 | 224 | CHECK_EQ(1, _tokens.size()) << strings::Substitute( |
248 | 0 | "Threadpool $0 destroyed with $1 allocated tokens", _name, _tokens.size()); |
249 | 224 | shutdown(); |
250 | 224 | } |
251 | | |
252 | 224 | Status ThreadPool::init() { |
253 | 224 | if (!_pool_status.is<UNINITIALIZED>()) { |
254 | 0 | return Status::NotSupported("The thread pool {} is already initialized", _name); |
255 | 0 | } |
256 | 224 | _pool_status = Status::OK(); |
257 | 224 | _num_threads_pending_start = _min_threads; |
258 | 1.83k | for (int i = 0; i < _min_threads; i++) { |
259 | 1.60k | Status status = create_thread(); |
260 | 1.60k | if (!status.ok()) { |
261 | 0 | shutdown(); |
262 | 0 | return status; |
263 | 0 | } |
264 | 1.60k | } |
265 | 224 | return Status::OK(); |
266 | 224 | } |
267 | | |
268 | 369 | void ThreadPool::shutdown() { |
269 | 369 | debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan; |
270 | 369 | std::unique_lock<std::mutex> l(_lock); |
271 | 369 | check_not_pool_thread_unlocked(); |
272 | | |
273 | | // Note: this is the same error seen at submission if the pool is at |
274 | | // capacity, so clients can't tell them apart. This isn't really a practical |
275 | | // concern though because shutting down a pool typically requires clients to |
276 | | // be quiesced first, so there's no danger of a client getting confused. |
277 | | // Not print stack trace here |
278 | 369 | _pool_status = Status::Error<SERVICE_UNAVAILABLE, false>( |
279 | 369 | "The thread pool {} has been shut down.", _name); |
280 | | |
281 | | // Clear the various queues under the lock, but defer the releasing |
282 | | // of the tasks outside the lock, in case there are concurrent threads |
283 | | // wanting to access the ThreadPool. The task's destructors may acquire |
284 | | // locks, etc, so this also prevents lock inversions. |
285 | 369 | _queue.clear(); |
286 | | |
287 | 369 | std::deque<std::deque<Task>> to_release; |
288 | 470 | for (auto* t : _tokens) { |
289 | 470 | if (!t->_entries.empty()) { |
290 | 1 | to_release.emplace_back(std::move(t->_entries)); |
291 | 1 | } |
292 | 470 | switch (t->state()) { |
293 | 286 | case ThreadPoolToken::State::IDLE: |
294 | | // The token is idle; we can quiesce it immediately. |
295 | 286 | t->transition(ThreadPoolToken::State::QUIESCED); |
296 | 286 | break; |
297 | 11 | case ThreadPoolToken::State::RUNNING: |
298 | | // The token has tasks associated with it. If they're merely queued |
299 | | // (i.e. there are no active threads), the tasks will have been removed |
300 | | // above and we can quiesce immediately. Otherwise, we need to wait for |
301 | | // the threads to finish. |
302 | 11 | t->transition(t->_active_threads > 0 ? ThreadPoolToken::State::QUIESCING |
303 | 11 | : ThreadPoolToken::State::QUIESCED); |
304 | 11 | break; |
305 | 173 | default: |
306 | 173 | break; |
307 | 470 | } |
308 | 470 | } |
309 | | |
310 | | // The queues are empty. Wake any sleeping worker threads and wait for all |
311 | | // of them to exit. Some worker threads will exit immediately upon waking, |
312 | | // while others will exit after they finish executing an outstanding task. |
313 | 369 | _total_queued_tasks = 0; |
314 | 2.05k | while (!_idle_threads.empty()) { |
315 | 1.68k | _idle_threads.front().not_empty.notify_one(); |
316 | 1.68k | _idle_threads.pop_front(); |
317 | 1.68k | } |
318 | | |
319 | 559 | _no_threads_cond.wait(l, [this]() { return _num_threads + _num_threads_pending_start == 0; }); |
320 | | |
321 | | // All the threads have exited. Check the state of each token. |
322 | 470 | for (auto* t : _tokens) { |
323 | 470 | DCHECK(t->state() == ThreadPoolToken::State::IDLE || |
324 | 470 | t->state() == ThreadPoolToken::State::QUIESCED); |
325 | 470 | } |
326 | 369 | } |
327 | | |
328 | 2.00k | std::unique_ptr<ThreadPoolToken> ThreadPool::new_token(ExecutionMode mode, int max_concurrency) { |
329 | 2.00k | std::lock_guard<std::mutex> l(_lock); |
330 | 2.00k | std::unique_ptr<ThreadPoolToken> t(new ThreadPoolToken(this, mode, max_concurrency)); |
331 | 2.00k | InsertOrDie(&_tokens, t.get()); |
332 | 2.00k | return t; |
333 | 2.00k | } |
334 | | |
335 | 2.00k | void ThreadPool::release_token(ThreadPoolToken* t) { |
336 | 2.00k | std::lock_guard<std::mutex> l(_lock); |
337 | 2.00k | CHECK(!t->is_active()) << strings::Substitute("Token with state $0 may not be released", |
338 | 0 | ThreadPoolToken::state_to_string(t->state())); |
339 | 2.00k | CHECK_EQ(1, _tokens.erase(t)); |
340 | 2.00k | } |
341 | | |
342 | 1.14k | Status ThreadPool::submit(std::shared_ptr<Runnable> r) { |
343 | 1.14k | return do_submit(std::move(r), _tokenless.get()); |
344 | 1.14k | } |
345 | | |
346 | 989 | Status ThreadPool::submit_func(std::function<void()> f) { |
347 | 989 | return submit(std::make_shared<FunctionRunnable>(std::move(f))); |
348 | 989 | } |
349 | | |
350 | 8.44k | Status ThreadPool::do_submit(std::shared_ptr<Runnable> r, ThreadPoolToken* token) { |
351 | 8.44k | DCHECK(token); |
352 | 8.44k | std::chrono::time_point<std::chrono::system_clock> submit_time = |
353 | 8.44k | std::chrono::system_clock::now(); |
354 | | |
355 | 8.44k | std::unique_lock<std::mutex> l(_lock); |
356 | 8.44k | if (PREDICT_FALSE(!_pool_status.ok())) { |
357 | 0 | return _pool_status; |
358 | 0 | } |
359 | | |
360 | 8.44k | if (PREDICT_FALSE(!token->may_submit_new_tasks())) { |
361 | 2.67k | return Status::Error<SERVICE_UNAVAILABLE>("Thread pool({}) token was shut down", _name); |
362 | 2.67k | } |
363 | | |
364 | | // Size limit check. |
365 | 5.76k | int64_t capacity_remaining = static_cast<int64_t>(_max_threads) - _active_threads + |
366 | 5.76k | static_cast<int64_t>(_max_queue_size) - _total_queued_tasks; |
367 | 5.76k | if (capacity_remaining < 1) { |
368 | 7 | return Status::Error<SERVICE_UNAVAILABLE>( |
369 | 7 | "Thread pool {} is at capacity ({}/{} tasks running, {}/{} tasks queued)", _name, |
370 | 7 | _num_threads + _num_threads_pending_start, _max_threads, _total_queued_tasks, |
371 | 7 | _max_queue_size); |
372 | 7 | } |
373 | | |
374 | | // Should we create another thread? |
375 | | |
376 | | // We assume that each current inactive thread will grab one item from the |
377 | | // queue. If it seems like we'll need another thread, we create one. |
378 | | // |
379 | | // Rather than creating the thread here, while holding the lock, we defer |
380 | | // it to down below. This is because thread creation can be rather slow |
381 | | // (hundreds of milliseconds in some cases) and we'd like to allow the |
382 | | // existing threads to continue to process tasks while we do so. |
383 | | // |
384 | | // In theory, a currently active thread could finish immediately after this |
385 | | // calculation but before our new worker starts running. This would mean we |
386 | | // created a thread we didn't really need. However, this race is unavoidable |
387 | | // and harmless. |
388 | | // |
389 | | // Of course, we never create more than _max_threads threads no matter what. |
390 | 5.76k | int threads_from_this_submit = |
391 | 5.76k | token->is_active() && token->mode() == ExecutionMode::SERIAL ? 0 : 1; |
392 | 5.76k | int inactive_threads = _num_threads + _num_threads_pending_start - _active_threads; |
393 | 5.76k | int additional_threads = |
394 | 5.76k | static_cast<int>(_queue.size()) + threads_from_this_submit - inactive_threads; |
395 | 5.76k | bool need_a_thread = false; |
396 | 5.76k | if (additional_threads > 0 && _num_threads + _num_threads_pending_start < _max_threads) { |
397 | 636 | need_a_thread = true; |
398 | 636 | _num_threads_pending_start++; |
399 | 636 | } |
400 | | |
401 | 5.76k | Task task; |
402 | 5.76k | task.runnable = std::move(r); |
403 | 5.76k | task.submit_time = submit_time; |
404 | | |
405 | | // Add the task to the token's queue. |
406 | 5.76k | ThreadPoolToken::State state = token->state(); |
407 | 5.76k | DCHECK(state == ThreadPoolToken::State::IDLE || state == ThreadPoolToken::State::RUNNING); |
408 | 5.76k | token->_entries.emplace_back(std::move(task)); |
409 | | // When we need to execute the task in the token, we submit the token object to the queue. |
410 | | // There are currently two places where tokens will be submitted to the queue: |
411 | | // 1. When submitting a new task, if the token is still in the IDLE state, |
412 | | // or the concurrency of the token has not reached the online level, it will be added to the queue. |
413 | | // 2. When the dispatch thread finishes executing a task: |
414 | | // 1. If it is a SERIAL token, and there are unsubmitted tasks, submit them to the queue. |
415 | | // 2. If it is a CONCURRENT token, and there are still unsubmitted tasks, and the upper limit of concurrency is not reached, |
416 | | // then submitted to the queue. |
417 | 5.76k | if (token->need_dispatch()) { |
418 | 4.32k | _queue.emplace_back(token); |
419 | 4.32k | ++token->_num_submitted_tasks; |
420 | 4.32k | if (state == ThreadPoolToken::State::IDLE) { |
421 | 2.51k | token->transition(ThreadPoolToken::State::RUNNING); |
422 | 2.51k | } |
423 | 4.32k | } else { |
424 | 1.43k | ++token->_num_unsubmitted_tasks; |
425 | 1.43k | } |
426 | 5.76k | _total_queued_tasks++; |
427 | | |
428 | | // Wake up an idle thread for this task. Choosing the thread at the front of |
429 | | // the list ensures LIFO semantics as idling threads are also added to the front. |
430 | | // |
431 | | // If there are no idle threads, the new task remains on the queue and is |
432 | | // processed by an active thread (or a thread we're about to create) at some |
433 | | // point in the future. |
434 | 5.76k | if (!_idle_threads.empty()) { |
435 | 1.18k | _idle_threads.front().not_empty.notify_one(); |
436 | 1.18k | _idle_threads.pop_front(); |
437 | 1.18k | } |
438 | 5.76k | l.unlock(); |
439 | | |
440 | 5.76k | if (need_a_thread) { |
441 | 636 | Status status = create_thread(); |
442 | 636 | if (!status.ok()) { |
443 | 0 | l.lock(); |
444 | 0 | _num_threads_pending_start--; |
445 | 0 | if (_num_threads + _num_threads_pending_start == 0) { |
446 | | // If we have no threads, we can't do any work. |
447 | 0 | return status; |
448 | 0 | } |
449 | | // If we failed to create a thread, but there are still some other |
450 | | // worker threads, log a warning message and continue. |
451 | 0 | LOG(WARNING) << "Thread pool " << _name |
452 | 0 | << " failed to create thread: " << status.to_string(); |
453 | 0 | } |
454 | 636 | } |
455 | | |
456 | 5.76k | return Status::OK(); |
457 | 5.76k | } |
458 | | |
459 | 30 | void ThreadPool::wait() { |
460 | 30 | std::unique_lock<std::mutex> l(_lock); |
461 | 30 | check_not_pool_thread_unlocked(); |
462 | 73 | _idle_cond.wait(l, [this]() { return _total_queued_tasks == 0 && _active_threads == 0; }); |
463 | 30 | } |
464 | | |
465 | 2.24k | void ThreadPool::dispatch_thread() { |
466 | 2.24k | std::unique_lock<std::mutex> l(_lock); |
467 | 2.24k | debug::ScopedTSANIgnoreReadsAndWrites ignore_tsan; |
468 | 2.24k | InsertOrDie(&_threads, Thread::current_thread()); |
469 | 2.24k | DCHECK_GT(_num_threads_pending_start, 0); |
470 | 2.24k | _num_threads++; |
471 | 2.24k | _num_threads_pending_start--; |
472 | | |
473 | | // Owned by this worker thread and added/removed from _idle_threads as needed. |
474 | 2.24k | IdleThread me; |
475 | | |
476 | 45.7k | while (true) { |
477 | | // Note: Status::Aborted() is used to indicate normal shutdown. |
478 | 45.7k | if (!_pool_status.ok()) { |
479 | 1.72k | VLOG_CRITICAL << "DispatchThread exiting: " << _pool_status.to_string(); |
480 | 1.72k | break; |
481 | 1.72k | } |
482 | | |
483 | 44.0k | if (_num_threads + _num_threads_pending_start > _max_threads) { |
484 | 2 | break; |
485 | 2 | } |
486 | | |
487 | 44.0k | if (_queue.empty()) { |
488 | | // There's no work to do, let's go idle. |
489 | | // |
490 | | // Note: if FIFO behavior is desired, it's as simple as changing this to push_back(). |
491 | 39.6k | _idle_threads.push_front(me); |
492 | 39.6k | SCOPED_CLEANUP({ |
493 | | // For some wake ups (i.e. shutdown or do_submit) this thread is |
494 | | // guaranteed to be unlinked after being awakened. In others (i.e. |
495 | | // spurious wake-up or Wait timeout), it'll still be linked. |
496 | 39.6k | if (me.is_linked()) { |
497 | 39.6k | _idle_threads.erase(_idle_threads.iterator_to(me)); |
498 | 39.6k | } |
499 | 39.6k | }); |
500 | 39.6k | if (me.not_empty.wait_for(l, _idle_timeout) == std::cv_status::timeout) { |
501 | | // After much investigation, it appears that pthread condition variables have |
502 | | // a weird behavior in which they can return ETIMEDOUT from timed_wait even if |
503 | | // another thread did in fact signal. Apparently after a timeout there is some |
504 | | // brief period during which another thread may actually grab the internal mutex |
505 | | // protecting the state, signal, and release again before we get the mutex. So, |
506 | | // we'll recheck the empty queue case regardless. |
507 | 36.9k | if (_queue.empty() && _num_threads + _num_threads_pending_start > _min_threads) { |
508 | 518 | VLOG_NOTICE << "Releasing worker thread from pool " << _name << " after " |
509 | 0 | << std::chrono::duration_cast<std::chrono::milliseconds>( |
510 | 0 | _idle_timeout) |
511 | 0 | .count() |
512 | 0 | << "ms of idle time."; |
513 | 518 | break; |
514 | 518 | } |
515 | 36.9k | } |
516 | 39.1k | continue; |
517 | 39.6k | } |
518 | | |
519 | | // Get the next token and task to execute. |
520 | 4.35k | ThreadPoolToken* token = _queue.front(); |
521 | 4.35k | _queue.pop_front(); |
522 | 4.35k | DCHECK_EQ(ThreadPoolToken::State::RUNNING, token->state()); |
523 | 4.35k | DCHECK(!token->_entries.empty()); |
524 | 4.35k | Task task = std::move(token->_entries.front()); |
525 | 4.35k | token->_entries.pop_front(); |
526 | 4.35k | token->_active_threads++; |
527 | 4.35k | --_total_queued_tasks; |
528 | 4.35k | ++_active_threads; |
529 | | |
530 | 4.35k | l.unlock(); |
531 | | |
532 | | // Execute the task |
533 | 4.35k | task.runnable->run(); |
534 | | |
535 | | // Destruct the task while we do not hold the lock. |
536 | | // |
537 | | // The task's destructor may be expensive if it has a lot of bound |
538 | | // objects, and we don't want to block submission of the threadpool. |
539 | | // In the worst case, the destructor might even try to do something |
540 | | // with this threadpool, and produce a deadlock. |
541 | 4.35k | task.runnable.reset(); |
542 | 4.35k | l.lock(); |
543 | | |
544 | | // Possible states: |
545 | | // 1. The token was shut down while we ran its task. Transition to QUIESCED. |
546 | | // 2. The token has no more queued tasks. Transition back to IDLE. |
547 | | // 3. The token has more tasks. Requeue it and transition back to RUNNABLE. |
548 | 4.35k | ThreadPoolToken::State state = token->state(); |
549 | 4.35k | DCHECK(state == ThreadPoolToken::State::RUNNING || |
550 | 4.35k | state == ThreadPoolToken::State::QUIESCING); |
551 | 4.35k | --token->_active_threads; |
552 | 4.35k | --token->_num_submitted_tasks; |
553 | | |
554 | | // handle shutdown && idle |
555 | 4.35k | if (token->_active_threads == 0) { |
556 | 3.10k | if (state == ThreadPoolToken::State::QUIESCING) { |
557 | 563 | DCHECK(token->_entries.empty()); |
558 | 563 | token->transition(ThreadPoolToken::State::QUIESCED); |
559 | 2.53k | } else if (token->_entries.empty()) { |
560 | 1.57k | token->transition(ThreadPoolToken::State::IDLE); |
561 | 1.57k | } |
562 | 3.10k | } |
563 | | |
564 | | // We decrease _num_submitted_tasks holding lock, so the following DCHECK works. |
565 | 4.35k | DCHECK(token->_num_submitted_tasks < token->_max_concurrency); |
566 | | |
567 | | // If token->state is running and there are unsubmitted tasks in the token, we put |
568 | | // the token back. |
569 | 4.35k | if (token->_num_unsubmitted_tasks > 0 && state == ThreadPoolToken::State::RUNNING) { |
570 | | // SERIAL: if _entries is not empty, then num_unsubmitted_tasks must be greater than 0. |
571 | | // CONCURRENT: we have to check _num_unsubmitted_tasks because there may be at least 2 |
572 | | // threads are running for the token. |
573 | 787 | _queue.emplace_back(token); |
574 | 787 | ++token->_num_submitted_tasks; |
575 | 787 | --token->_num_unsubmitted_tasks; |
576 | 787 | } |
577 | | |
578 | 4.35k | if (--_active_threads == 0) { |
579 | 700 | _idle_cond.notify_all(); |
580 | 700 | } |
581 | 4.35k | } |
582 | | |
583 | | // It's important that we hold the lock between exiting the loop and dropping |
584 | | // _num_threads. Otherwise it's possible someone else could come along here |
585 | | // and add a new task just as the last running thread is about to exit. |
586 | 2.24k | CHECK(l.owns_lock()); |
587 | | |
588 | 2.24k | CHECK_EQ(_threads.erase(Thread::current_thread()), 1); |
589 | 2.24k | _num_threads--; |
590 | 2.24k | if (_num_threads + _num_threads_pending_start == 0) { |
591 | 700 | _no_threads_cond.notify_all(); |
592 | | |
593 | | // Sanity check: if we're the last thread exiting, the queue ought to be |
594 | | // empty. Otherwise it will never get processed. |
595 | 700 | CHECK(_queue.empty()); |
596 | 700 | DCHECK_EQ(0, _total_queued_tasks); |
597 | 700 | } |
598 | 2.24k | } |
599 | | |
600 | 2.24k | Status ThreadPool::create_thread() { |
601 | 2.24k | return Thread::create("thread pool", strings::Substitute("$0 [worker]", _name), |
602 | 2.24k | &ThreadPool::dispatch_thread, this, nullptr); |
603 | 2.24k | } |
604 | | |
605 | 4.14k | void ThreadPool::check_not_pool_thread_unlocked() { |
606 | 4.14k | Thread* current = Thread::current_thread(); |
607 | 4.14k | if (ContainsKey(_threads, current)) { |
608 | 0 | LOG(FATAL) << strings::Substitute( |
609 | 0 | "Thread belonging to thread pool '$0' with " |
610 | 0 | "name '$1' called pool function that would result in deadlock", |
611 | 0 | _name, current->name()); |
612 | 0 | } |
613 | 4.14k | } |
614 | | |
615 | 4 | Status ThreadPool::set_min_threads(int min_threads) { |
616 | 4 | std::lock_guard<std::mutex> l(_lock); |
617 | 4 | if (min_threads > _max_threads) { |
618 | | // min threads can not be set greater than max threads |
619 | 1 | return Status::InternalError("set thread pool {} min_threads failed", _name); |
620 | 1 | } |
621 | 3 | _min_threads = min_threads; |
622 | 3 | if (min_threads > _num_threads + _num_threads_pending_start) { |
623 | 0 | int addition_threads = min_threads - _num_threads - _num_threads_pending_start; |
624 | 0 | _num_threads_pending_start += addition_threads; |
625 | 0 | for (int i = 0; i < addition_threads; i++) { |
626 | 0 | Status status = create_thread(); |
627 | 0 | if (!status.ok()) { |
628 | 0 | _num_threads_pending_start--; |
629 | 0 | LOG(WARNING) << "Thread pool " << _name |
630 | 0 | << " failed to create thread: " << status.to_string(); |
631 | 0 | return status; |
632 | 0 | } |
633 | 0 | } |
634 | 0 | } |
635 | 3 | return Status::OK(); |
636 | 3 | } |
637 | | |
638 | 7 | Status ThreadPool::set_max_threads(int max_threads) { |
639 | 7 | std::lock_guard<std::mutex> l(_lock); |
640 | 7 | if (_min_threads > max_threads) { |
641 | | // max threads can not be set less than min threads |
642 | 1 | return Status::InternalError("set thread pool {} max_threads failed", _name); |
643 | 1 | } |
644 | | |
645 | 6 | _max_threads = max_threads; |
646 | 6 | if (_max_threads > _num_threads + _num_threads_pending_start) { |
647 | 4 | int addition_threads = _max_threads - _num_threads - _num_threads_pending_start; |
648 | 4 | addition_threads = std::min(addition_threads, _total_queued_tasks); |
649 | 4 | _num_threads_pending_start += addition_threads; |
650 | 7 | for (int i = 0; i < addition_threads; i++) { |
651 | 3 | Status status = create_thread(); |
652 | 3 | if (!status.ok()) { |
653 | 0 | _num_threads_pending_start--; |
654 | 0 | LOG(WARNING) << "Thread pool " << _name |
655 | 0 | << " failed to create thread: " << status.to_string(); |
656 | 0 | return status; |
657 | 0 | } |
658 | 3 | } |
659 | 4 | } |
660 | 6 | return Status::OK(); |
661 | 6 | } |
662 | | |
663 | 0 | std::ostream& operator<<(std::ostream& o, ThreadPoolToken::State s) { |
664 | 0 | return o << ThreadPoolToken::state_to_string(s); |
665 | 0 | } |
666 | | |
667 | | } // namespace doris |