Coverage Report

Created: 2025-04-28 00:11

/root/doris/be/src/pipeline/task_queue.cpp
Line
Count
Source (jump to first uncovered line)
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
18
#include "task_queue.h"
19
20
// IWYU pragma: no_include <bits/chrono.h>
21
#include <chrono> // IWYU pragma: keep
22
#include <memory>
23
#include <string>
24
25
#include "common/logging.h"
26
#include "pipeline/pipeline_task.h"
27
#include "runtime/workload_group/workload_group.h"
28
29
namespace doris::pipeline {
30
31
0
TaskQueue::~TaskQueue() = default;
32
33
0
PipelineTask* SubTaskQueue::try_take(bool is_steal) {
34
0
    if (_queue.empty()) {
35
0
        return nullptr;
36
0
    }
37
0
    auto task = _queue.front();
38
0
    _queue.pop();
39
0
    return task;
40
0
}
41
42
////////////////////  PriorityTaskQueue ////////////////////
43
44
0
PriorityTaskQueue::PriorityTaskQueue() : _closed(false) {
45
0
    double factor = 1;
46
0
    for (int i = SUB_QUEUE_LEVEL - 1; i >= 0; i--) {
47
0
        _sub_queues[i].set_level_factor(factor);
48
0
        factor *= LEVEL_QUEUE_TIME_FACTOR;
49
0
    }
50
0
}
51
52
0
void PriorityTaskQueue::close() {
53
0
    std::unique_lock<std::mutex> lock(_work_size_mutex);
54
0
    _closed = true;
55
0
    _wait_task.notify_all();
56
0
}
57
58
0
PipelineTask* PriorityTaskQueue::_try_take_unprotected(bool is_steal) {
59
0
    if (_total_task_size == 0 || _closed) {
60
0
        return nullptr;
61
0
    }
62
63
0
    double min_vruntime = 0;
64
0
    int level = -1;
65
0
    for (int i = 0; i < SUB_QUEUE_LEVEL; ++i) {
66
0
        double cur_queue_vruntime = _sub_queues[i].get_vruntime();
67
0
        if (!_sub_queues[i].empty()) {
68
0
            if (level == -1 || cur_queue_vruntime < min_vruntime) {
69
0
                level = i;
70
0
                min_vruntime = cur_queue_vruntime;
71
0
            }
72
0
        }
73
0
    }
74
0
    DCHECK(level != -1);
75
0
    _queue_level_min_vruntime = uint64_t(min_vruntime);
76
77
0
    auto task = _sub_queues[level].try_take(is_steal);
78
0
    if (task) {
79
0
        task->update_queue_level(level);
80
0
        _total_task_size--;
81
0
    }
82
0
    return task;
83
0
}
84
85
0
int PriorityTaskQueue::_compute_level(uint64_t runtime) {
86
0
    for (int i = 0; i < SUB_QUEUE_LEVEL - 1; ++i) {
87
0
        if (runtime <= _queue_level_limit[i]) {
88
0
            return i;
89
0
        }
90
0
    }
91
0
    return SUB_QUEUE_LEVEL - 1;
92
0
}
93
94
0
PipelineTask* PriorityTaskQueue::try_take(bool is_steal) {
95
    // TODO other efficient lock? e.g. if get lock fail, return null_ptr
96
0
    std::unique_lock<std::mutex> lock(_work_size_mutex);
97
0
    return _try_take_unprotected(is_steal);
98
0
}
99
100
0
PipelineTask* PriorityTaskQueue::take(uint32_t timeout_ms) {
101
0
    std::unique_lock<std::mutex> lock(_work_size_mutex);
102
0
    auto task = _try_take_unprotected(false);
103
0
    if (task) {
104
0
        return task;
105
0
    } else {
106
0
        if (timeout_ms > 0) {
107
0
            _wait_task.wait_for(lock, std::chrono::milliseconds(timeout_ms));
108
0
        } else {
109
0
            _wait_task.wait(lock);
110
0
        }
111
0
        return _try_take_unprotected(false);
112
0
    }
113
0
}
114
115
0
Status PriorityTaskQueue::push(PipelineTask* task) {
116
0
    if (_closed) {
117
0
        return Status::InternalError("WorkTaskQueue closed");
118
0
    }
119
0
    auto level = _compute_level(task->get_runtime_ns());
120
0
    std::unique_lock<std::mutex> lock(_work_size_mutex);
121
122
    // update empty queue's  runtime, to avoid too high priority
123
0
    if (_sub_queues[level].empty() &&
124
0
        _queue_level_min_vruntime > _sub_queues[level].get_vruntime()) {
125
0
        _sub_queues[level].adjust_runtime(_queue_level_min_vruntime);
126
0
    }
127
128
0
    _sub_queues[level].push_back(task);
129
0
    _total_task_size++;
130
0
    _wait_task.notify_one();
131
0
    return Status::OK();
132
0
}
133
134
0
MultiCoreTaskQueue::~MultiCoreTaskQueue() = default;
135
136
0
MultiCoreTaskQueue::MultiCoreTaskQueue(int core_size) : TaskQueue(core_size), _closed(false) {
137
0
    _prio_task_queue_list =
138
0
            std::make_shared<std::vector<std::unique_ptr<PriorityTaskQueue>>>(core_size);
139
0
    for (int i = 0; i < core_size; i++) {
140
0
        (*_prio_task_queue_list)[i] = std::make_unique<PriorityTaskQueue>();
141
0
    }
142
0
}
143
144
0
void MultiCoreTaskQueue::close() {
145
0
    if (_closed) {
146
0
        return;
147
0
    }
148
0
    _closed = true;
149
0
    for (int i = 0; i < _core_size; ++i) {
150
0
        (*_prio_task_queue_list)[i]->close();
151
0
    }
152
0
    std::atomic_store(&_prio_task_queue_list,
153
0
                      std::shared_ptr<std::vector<std::unique_ptr<PriorityTaskQueue>>>(nullptr));
154
0
}
155
156
0
PipelineTask* MultiCoreTaskQueue::take(int core_id) {
157
0
    PipelineTask* task = nullptr;
158
0
    auto prio_task_queue_list =
159
0
            std::atomic_load_explicit(&_prio_task_queue_list, std::memory_order_relaxed);
160
0
    while (!_closed) {
161
0
        DCHECK(prio_task_queue_list->size() > core_id)
162
0
                << " list size: " << prio_task_queue_list->size() << " core_id: " << core_id
163
0
                << " _core_size: " << _core_size << " _next_core: " << _next_core.load();
164
0
        task = (*prio_task_queue_list)[core_id]->try_take(false);
165
0
        if (task) {
166
0
            task->set_core_id(core_id);
167
0
            break;
168
0
        }
169
0
        task = _steal_take(core_id, *prio_task_queue_list);
170
0
        if (task) {
171
0
            break;
172
0
        }
173
0
        task = (*prio_task_queue_list)[core_id]->take(WAIT_CORE_TASK_TIMEOUT_MS /* timeout_ms */);
174
0
        if (task) {
175
0
            task->set_core_id(core_id);
176
0
            break;
177
0
        }
178
0
    }
179
0
    if (task) {
180
0
        task->pop_out_runnable_queue();
181
0
    }
182
0
    return task;
183
0
}
184
185
PipelineTask* MultiCoreTaskQueue::_steal_take(
186
0
        int core_id, std::vector<std::unique_ptr<PriorityTaskQueue>>& prio_task_queue_list) {
187
0
    DCHECK(core_id < _core_size);
188
0
    int next_id = core_id;
189
0
    for (int i = 1; i < _core_size; ++i) {
190
0
        ++next_id;
191
0
        if (next_id == _core_size) {
192
0
            next_id = 0;
193
0
        }
194
0
        DCHECK(next_id < _core_size);
195
0
        auto task = prio_task_queue_list[next_id]->try_take(true);
196
0
        if (task) {
197
0
            task->set_core_id(next_id);
198
0
            return task;
199
0
        }
200
0
    }
201
0
    return nullptr;
202
0
}
203
204
0
Status MultiCoreTaskQueue::push_back(PipelineTask* task) {
205
0
    int core_id = task->get_previous_core_id();
206
0
    if (core_id < 0) {
207
0
        core_id = _next_core.fetch_add(1) % _core_size;
208
0
    }
209
0
    return push_back(task, core_id);
210
0
}
211
212
0
Status MultiCoreTaskQueue::push_back(PipelineTask* task, int core_id) {
213
0
    DCHECK(core_id < _core_size);
214
0
    task->put_in_runnable_queue();
215
0
    auto prio_task_queue_list =
216
0
            std::atomic_load_explicit(&_prio_task_queue_list, std::memory_order_relaxed);
217
0
    return (*prio_task_queue_list)[core_id]->push(task);
218
0
}
219
220
0
void MultiCoreTaskQueue::update_statistics(PipelineTask* task, int64_t time_spent) {
221
0
    task->inc_runtime_ns(time_spent);
222
0
    auto prio_task_queue_list =
223
0
            std::atomic_load_explicit(&_prio_task_queue_list, std::memory_order_relaxed);
224
0
    (*prio_task_queue_list)[task->get_core_id()]->inc_sub_queue_runtime(task->get_queue_level(),
225
0
                                                                        time_spent);
226
0
}
227
228
} // namespace doris::pipeline