/root/doris/contrib/openblas/lapack-netlib/SRC/sgesvd.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | 0 | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
239 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
240 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
241 | | #define sig_die(s, kill) { exit(1); } |
242 | | #define s_stop(s, n) {exit(0);} |
243 | | #define z_abs(z) (cabs(Cd(z))) |
244 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
245 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
246 | | #define myexit_() break; |
247 | | #define mycycle() continue; |
248 | | #define myceiling(w) {ceil(w)} |
249 | | #define myhuge(w) {HUGE_VAL} |
250 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
251 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
252 | | |
253 | | /* -- translated by f2c (version 20000121). |
254 | | You must link the resulting object file with the libraries: |
255 | | -lf2c -lm (in that order) |
256 | | */ |
257 | | |
258 | | |
259 | | |
260 | | |
261 | | /* Table of constant values */ |
262 | | |
263 | | static integer c__6 = 6; |
264 | | static integer c__0 = 0; |
265 | | static integer c__2 = 2; |
266 | | static integer c_n1 = -1; |
267 | | static real c_b57 = 0.f; |
268 | | static integer c__1 = 1; |
269 | | static real c_b79 = 1.f; |
270 | | |
271 | | /* > \brief <b> SGESVD computes the singular value decomposition (SVD) for GE matrices</b> */ |
272 | | |
273 | | /* =========== DOCUMENTATION =========== */ |
274 | | |
275 | | /* Online html documentation available at */ |
276 | | /* http://www.netlib.org/lapack/explore-html/ */ |
277 | | |
278 | | /* > \htmlonly */ |
279 | | /* > Download SGESVD + dependencies */ |
280 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvd. |
281 | | f"> */ |
282 | | /* > [TGZ]</a> */ |
283 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvd. |
284 | | f"> */ |
285 | | /* > [ZIP]</a> */ |
286 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvd. |
287 | | f"> */ |
288 | | /* > [TXT]</a> */ |
289 | | /* > \endhtmlonly */ |
290 | | |
291 | | /* Definition: */ |
292 | | /* =========== */ |
293 | | |
294 | | /* SUBROUTINE SGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */ |
295 | | /* WORK, LWORK, INFO ) */ |
296 | | |
297 | | /* CHARACTER JOBU, JOBVT */ |
298 | | /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */ |
299 | | /* REAL A( LDA, * ), S( * ), U( LDU, * ), */ |
300 | | /* $ VT( LDVT, * ), WORK( * ) */ |
301 | | |
302 | | |
303 | | /* > \par Purpose: */ |
304 | | /* ============= */ |
305 | | /* > */ |
306 | | /* > \verbatim */ |
307 | | /* > */ |
308 | | /* > SGESVD computes the singular value decomposition (SVD) of a real */ |
309 | | /* > M-by-N matrix A, optionally computing the left and/or right singular */ |
310 | | /* > vectors. The SVD is written */ |
311 | | /* > */ |
312 | | /* > A = U * SIGMA * transpose(V) */ |
313 | | /* > */ |
314 | | /* > where SIGMA is an M-by-N matrix which is zero except for its */ |
315 | | /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */ |
316 | | /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */ |
317 | | /* > are the singular values of A; they are real and non-negative, and */ |
318 | | /* > are returned in descending order. The first f2cmin(m,n) columns of */ |
319 | | /* > U and V are the left and right singular vectors of A. */ |
320 | | /* > */ |
321 | | /* > Note that the routine returns V**T, not V. */ |
322 | | /* > \endverbatim */ |
323 | | |
324 | | /* Arguments: */ |
325 | | /* ========== */ |
326 | | |
327 | | /* > \param[in] JOBU */ |
328 | | /* > \verbatim */ |
329 | | /* > JOBU is CHARACTER*1 */ |
330 | | /* > Specifies options for computing all or part of the matrix U: */ |
331 | | /* > = 'A': all M columns of U are returned in array U: */ |
332 | | /* > = 'S': the first f2cmin(m,n) columns of U (the left singular */ |
333 | | /* > vectors) are returned in the array U; */ |
334 | | /* > = 'O': the first f2cmin(m,n) columns of U (the left singular */ |
335 | | /* > vectors) are overwritten on the array A; */ |
336 | | /* > = 'N': no columns of U (no left singular vectors) are */ |
337 | | /* > computed. */ |
338 | | /* > \endverbatim */ |
339 | | /* > */ |
340 | | /* > \param[in] JOBVT */ |
341 | | /* > \verbatim */ |
342 | | /* > JOBVT is CHARACTER*1 */ |
343 | | /* > Specifies options for computing all or part of the matrix */ |
344 | | /* > V**T: */ |
345 | | /* > = 'A': all N rows of V**T are returned in the array VT; */ |
346 | | /* > = 'S': the first f2cmin(m,n) rows of V**T (the right singular */ |
347 | | /* > vectors) are returned in the array VT; */ |
348 | | /* > = 'O': the first f2cmin(m,n) rows of V**T (the right singular */ |
349 | | /* > vectors) are overwritten on the array A; */ |
350 | | /* > = 'N': no rows of V**T (no right singular vectors) are */ |
351 | | /* > computed. */ |
352 | | /* > */ |
353 | | /* > JOBVT and JOBU cannot both be 'O'. */ |
354 | | /* > \endverbatim */ |
355 | | /* > */ |
356 | | /* > \param[in] M */ |
357 | | /* > \verbatim */ |
358 | | /* > M is INTEGER */ |
359 | | /* > The number of rows of the input matrix A. M >= 0. */ |
360 | | /* > \endverbatim */ |
361 | | /* > */ |
362 | | /* > \param[in] N */ |
363 | | /* > \verbatim */ |
364 | | /* > N is INTEGER */ |
365 | | /* > The number of columns of the input matrix A. N >= 0. */ |
366 | | /* > \endverbatim */ |
367 | | /* > */ |
368 | | /* > \param[in,out] A */ |
369 | | /* > \verbatim */ |
370 | | /* > A is REAL array, dimension (LDA,N) */ |
371 | | /* > On entry, the M-by-N matrix A. */ |
372 | | /* > On exit, */ |
373 | | /* > if JOBU = 'O', A is overwritten with the first f2cmin(m,n) */ |
374 | | /* > columns of U (the left singular vectors, */ |
375 | | /* > stored columnwise); */ |
376 | | /* > if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */ |
377 | | /* > rows of V**T (the right singular vectors, */ |
378 | | /* > stored rowwise); */ |
379 | | /* > if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */ |
380 | | /* > are destroyed. */ |
381 | | /* > \endverbatim */ |
382 | | /* > */ |
383 | | /* > \param[in] LDA */ |
384 | | /* > \verbatim */ |
385 | | /* > LDA is INTEGER */ |
386 | | /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ |
387 | | /* > \endverbatim */ |
388 | | /* > */ |
389 | | /* > \param[out] S */ |
390 | | /* > \verbatim */ |
391 | | /* > S is REAL array, dimension (f2cmin(M,N)) */ |
392 | | /* > The singular values of A, sorted so that S(i) >= S(i+1). */ |
393 | | /* > \endverbatim */ |
394 | | /* > */ |
395 | | /* > \param[out] U */ |
396 | | /* > \verbatim */ |
397 | | /* > U is REAL array, dimension (LDU,UCOL) */ |
398 | | /* > (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */ |
399 | | /* > If JOBU = 'A', U contains the M-by-M orthogonal matrix U; */ |
400 | | /* > if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */ |
401 | | /* > (the left singular vectors, stored columnwise); */ |
402 | | /* > if JOBU = 'N' or 'O', U is not referenced. */ |
403 | | /* > \endverbatim */ |
404 | | /* > */ |
405 | | /* > \param[in] LDU */ |
406 | | /* > \verbatim */ |
407 | | /* > LDU is INTEGER */ |
408 | | /* > The leading dimension of the array U. LDU >= 1; if */ |
409 | | /* > JOBU = 'S' or 'A', LDU >= M. */ |
410 | | /* > \endverbatim */ |
411 | | /* > */ |
412 | | /* > \param[out] VT */ |
413 | | /* > \verbatim */ |
414 | | /* > VT is REAL array, dimension (LDVT,N) */ |
415 | | /* > If JOBVT = 'A', VT contains the N-by-N orthogonal matrix */ |
416 | | /* > V**T; */ |
417 | | /* > if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */ |
418 | | /* > V**T (the right singular vectors, stored rowwise); */ |
419 | | /* > if JOBVT = 'N' or 'O', VT is not referenced. */ |
420 | | /* > \endverbatim */ |
421 | | /* > */ |
422 | | /* > \param[in] LDVT */ |
423 | | /* > \verbatim */ |
424 | | /* > LDVT is INTEGER */ |
425 | | /* > The leading dimension of the array VT. LDVT >= 1; if */ |
426 | | /* > JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */ |
427 | | /* > \endverbatim */ |
428 | | /* > */ |
429 | | /* > \param[out] WORK */ |
430 | | /* > \verbatim */ |
431 | | /* > WORK is REAL array, dimension (MAX(1,LWORK)) */ |
432 | | /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */ |
433 | | /* > if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged */ |
434 | | /* > superdiagonal elements of an upper bidiagonal matrix B */ |
435 | | /* > whose diagonal is in S (not necessarily sorted). B */ |
436 | | /* > satisfies A = U * B * VT, so it has the same singular values */ |
437 | | /* > as A, and singular vectors related by U and VT. */ |
438 | | /* > \endverbatim */ |
439 | | /* > */ |
440 | | /* > \param[in] LWORK */ |
441 | | /* > \verbatim */ |
442 | | /* > LWORK is INTEGER */ |
443 | | /* > The dimension of the array WORK. */ |
444 | | /* > LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code): */ |
445 | | /* > - PATH 1 (M much larger than N, JOBU='N') */ |
446 | | /* > - PATH 1t (N much larger than M, JOBVT='N') */ |
447 | | /* > LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths */ |
448 | | /* > For good performance, LWORK should generally be larger. */ |
449 | | /* > */ |
450 | | /* > If LWORK = -1, then a workspace query is assumed; the routine */ |
451 | | /* > only calculates the optimal size of the WORK array, returns */ |
452 | | /* > this value as the first entry of the WORK array, and no error */ |
453 | | /* > message related to LWORK is issued by XERBLA. */ |
454 | | /* > \endverbatim */ |
455 | | /* > */ |
456 | | /* > \param[out] INFO */ |
457 | | /* > \verbatim */ |
458 | | /* > INFO is INTEGER */ |
459 | | /* > = 0: successful exit. */ |
460 | | /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ |
461 | | /* > > 0: if SBDSQR did not converge, INFO specifies how many */ |
462 | | /* > superdiagonals of an intermediate bidiagonal form B */ |
463 | | /* > did not converge to zero. See the description of WORK */ |
464 | | /* > above for details. */ |
465 | | /* > \endverbatim */ |
466 | | |
467 | | /* Authors: */ |
468 | | /* ======== */ |
469 | | |
470 | | /* > \author Univ. of Tennessee */ |
471 | | /* > \author Univ. of California Berkeley */ |
472 | | /* > \author Univ. of Colorado Denver */ |
473 | | /* > \author NAG Ltd. */ |
474 | | |
475 | | /* > \date April 2012 */ |
476 | | |
477 | | /* > \ingroup realGEsing */ |
478 | | |
479 | | /* ===================================================================== */ |
480 | | /* Subroutine */ void sgesvd_(char *jobu, char *jobvt, integer *m, integer *n, |
481 | | real *a, integer *lda, real *s, real *u, integer *ldu, real *vt, |
482 | | integer *ldvt, real *work, integer *lwork, integer *info) |
483 | 0 | { |
484 | | /* System generated locals */ |
485 | 0 | address a__1[2]; |
486 | 0 | integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2], |
487 | 0 | i__2, i__3, i__4; |
488 | 0 | char ch__1[2]; |
489 | | |
490 | | /* Local variables */ |
491 | 0 | integer iscl; |
492 | 0 | real anrm; |
493 | 0 | integer ierr, itau, ncvt, nrvt, lwork_sgebrd__, lwork_sgelqf__, |
494 | 0 | lwork_sgeqrf__, i__; |
495 | 0 | extern logical lsame_(char *, char *); |
496 | 0 | integer chunk; |
497 | 0 | extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, |
498 | 0 | integer *, real *, real *, integer *, real *, integer *, real *, |
499 | 0 | real *, integer *); |
500 | 0 | integer minmn, wrkbl, itaup, itauq, mnthr, iwork; |
501 | 0 | logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs; |
502 | 0 | integer ie, ir, bdspac, iu; |
503 | 0 | extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer |
504 | 0 | *, real *, real *, real *, real *, real *, integer *, integer *); |
505 | 0 | extern real slamch_(char *), slange_(char *, integer *, integer *, |
506 | 0 | real *, integer *, real *); |
507 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
508 | 0 | extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
509 | 0 | integer *, integer *, ftnlen, ftnlen); |
510 | 0 | real bignum; |
511 | 0 | extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer |
512 | 0 | *, real *, real *, integer *, integer *), slascl_(char *, integer |
513 | 0 | *, integer *, real *, real *, integer *, integer *, real *, |
514 | 0 | integer *, integer *), sgeqrf_(integer *, integer *, real |
515 | 0 | *, integer *, real *, real *, integer *, integer *), slacpy_(char |
516 | 0 | *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, |
517 | 0 | real *, integer *), sbdsqr_(char *, integer *, integer *, |
518 | 0 | integer *, integer *, real *, real *, real *, integer *, real *, |
519 | 0 | integer *, real *, integer *, real *, integer *), sorgbr_( |
520 | 0 | char *, integer *, integer *, integer *, real *, integer *, real * |
521 | 0 | , real *, integer *, integer *), sormbr_(char *, char *, |
522 | 0 | char *, integer *, integer *, integer *, real *, integer *, real * |
523 | 0 | , real *, integer *, real *, integer *, integer *); |
524 | 0 | integer ldwrkr, minwrk, ldwrku, maxwrk; |
525 | 0 | extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real |
526 | 0 | *, integer *, real *, real *, integer *, integer *); |
527 | 0 | real smlnum; |
528 | 0 | extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real |
529 | 0 | *, integer *, real *, real *, integer *, integer *); |
530 | 0 | logical lquery, wntuas, wntvas; |
531 | 0 | integer blk, lwork_sorgbr_p__, lwork_sorgbr_q__, lwork_sorglq_m__, |
532 | 0 | lwork_sorglq_n__, ncu, lwork_sorgqr_n__, lwork_sorgqr_m__; |
533 | 0 | real eps, dum[1]; |
534 | 0 | integer nru; |
535 | | |
536 | | |
537 | | /* -- LAPACK driver routine (version 3.7.0) -- */ |
538 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
539 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
540 | | /* April 2012 */ |
541 | | |
542 | | |
543 | | /* ===================================================================== */ |
544 | | |
545 | | |
546 | | /* Test the input arguments */ |
547 | | |
548 | | /* Parameter adjustments */ |
549 | 0 | a_dim1 = *lda; |
550 | 0 | a_offset = 1 + a_dim1 * 1; |
551 | 0 | a -= a_offset; |
552 | 0 | --s; |
553 | 0 | u_dim1 = *ldu; |
554 | 0 | u_offset = 1 + u_dim1 * 1; |
555 | 0 | u -= u_offset; |
556 | 0 | vt_dim1 = *ldvt; |
557 | 0 | vt_offset = 1 + vt_dim1 * 1; |
558 | 0 | vt -= vt_offset; |
559 | 0 | --work; |
560 | | |
561 | | /* Function Body */ |
562 | 0 | *info = 0; |
563 | 0 | minmn = f2cmin(*m,*n); |
564 | 0 | wntua = lsame_(jobu, "A"); |
565 | 0 | wntus = lsame_(jobu, "S"); |
566 | 0 | wntuas = wntua || wntus; |
567 | 0 | wntuo = lsame_(jobu, "O"); |
568 | 0 | wntun = lsame_(jobu, "N"); |
569 | 0 | wntva = lsame_(jobvt, "A"); |
570 | 0 | wntvs = lsame_(jobvt, "S"); |
571 | 0 | wntvas = wntva || wntvs; |
572 | 0 | wntvo = lsame_(jobvt, "O"); |
573 | 0 | wntvn = lsame_(jobvt, "N"); |
574 | 0 | lquery = *lwork == -1; |
575 | |
|
576 | 0 | if (! (wntua || wntus || wntuo || wntun)) { |
577 | 0 | *info = -1; |
578 | 0 | } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) { |
579 | 0 | *info = -2; |
580 | 0 | } else if (*m < 0) { |
581 | 0 | *info = -3; |
582 | 0 | } else if (*n < 0) { |
583 | 0 | *info = -4; |
584 | 0 | } else if (*lda < f2cmax(1,*m)) { |
585 | 0 | *info = -6; |
586 | 0 | } else if (*ldu < 1 || wntuas && *ldu < *m) { |
587 | 0 | *info = -9; |
588 | 0 | } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) { |
589 | 0 | *info = -11; |
590 | 0 | } |
591 | | |
592 | | /* Compute workspace */ |
593 | | /* (Note: Comments in the code beginning "Workspace:" describe the */ |
594 | | /* minimal amount of workspace needed at that point in the code, */ |
595 | | /* as well as the preferred amount for good performance. */ |
596 | | /* NB refers to the optimal block size for the immediately */ |
597 | | /* following subroutine, as returned by ILAENV.) */ |
598 | |
|
599 | 0 | if (*info == 0) { |
600 | 0 | minwrk = 1; |
601 | 0 | maxwrk = 1; |
602 | 0 | if (*m >= *n && minmn > 0) { |
603 | | |
604 | | /* Compute space needed for SBDSQR */ |
605 | | |
606 | | /* Writing concatenation */ |
607 | 0 | i__1[0] = 1, a__1[0] = jobu; |
608 | 0 | i__1[1] = 1, a__1[1] = jobvt; |
609 | 0 | s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); |
610 | 0 | mnthr = ilaenv_(&c__6, "SGESVD", ch__1, m, n, &c__0, &c__0, ( |
611 | 0 | ftnlen)6, (ftnlen)2); |
612 | 0 | bdspac = *n * 5; |
613 | | /* Compute space needed for SGEQRF */ |
614 | 0 | sgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
615 | 0 | lwork_sgeqrf__ = (integer) dum[0]; |
616 | | /* Compute space needed for SORGQR */ |
617 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
618 | 0 | lwork_sorgqr_n__ = (integer) dum[0]; |
619 | 0 | sorgqr_(m, m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
620 | 0 | lwork_sorgqr_m__ = (integer) dum[0]; |
621 | | /* Compute space needed for SGEBRD */ |
622 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, |
623 | 0 | &ierr); |
624 | 0 | lwork_sgebrd__ = (integer) dum[0]; |
625 | | /* Compute space needed for SORGBR P */ |
626 | 0 | sorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
627 | 0 | lwork_sorgbr_p__ = (integer) dum[0]; |
628 | | /* Compute space needed for SORGBR Q */ |
629 | 0 | sorgbr_("Q", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
630 | 0 | lwork_sorgbr_q__ = (integer) dum[0]; |
631 | |
|
632 | 0 | if (*m >= mnthr) { |
633 | 0 | if (wntun) { |
634 | | |
635 | | /* Path 1 (M much larger than N, JOBU='N') */ |
636 | |
|
637 | 0 | maxwrk = *n + lwork_sgeqrf__; |
638 | | /* Computing MAX */ |
639 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_sgebrd__; |
640 | 0 | maxwrk = f2cmax(i__2,i__3); |
641 | 0 | if (wntvo || wntvas) { |
642 | | /* Computing MAX */ |
643 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_sorgbr_p__; |
644 | 0 | maxwrk = f2cmax(i__2,i__3); |
645 | 0 | } |
646 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
647 | | /* Computing MAX */ |
648 | 0 | i__2 = *n << 2; |
649 | 0 | minwrk = f2cmax(i__2,bdspac); |
650 | 0 | } else if (wntuo && wntvn) { |
651 | | |
652 | | /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ |
653 | |
|
654 | 0 | wrkbl = *n + lwork_sgeqrf__; |
655 | | /* Computing MAX */ |
656 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_n__; |
657 | 0 | wrkbl = f2cmax(i__2,i__3); |
658 | | /* Computing MAX */ |
659 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
660 | 0 | wrkbl = f2cmax(i__2,i__3); |
661 | | /* Computing MAX */ |
662 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
663 | 0 | wrkbl = f2cmax(i__2,i__3); |
664 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
665 | | /* Computing MAX */ |
666 | 0 | i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n; |
667 | 0 | maxwrk = f2cmax(i__2,i__3); |
668 | | /* Computing MAX */ |
669 | 0 | i__2 = *n * 3 + *m; |
670 | 0 | minwrk = f2cmax(i__2,bdspac); |
671 | 0 | } else if (wntuo && wntvas) { |
672 | | |
673 | | /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */ |
674 | | /* 'A') */ |
675 | |
|
676 | 0 | wrkbl = *n + lwork_sgeqrf__; |
677 | | /* Computing MAX */ |
678 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_n__; |
679 | 0 | wrkbl = f2cmax(i__2,i__3); |
680 | | /* Computing MAX */ |
681 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
682 | 0 | wrkbl = f2cmax(i__2,i__3); |
683 | | /* Computing MAX */ |
684 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
685 | 0 | wrkbl = f2cmax(i__2,i__3); |
686 | | /* Computing MAX */ |
687 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_p__; |
688 | 0 | wrkbl = f2cmax(i__2,i__3); |
689 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
690 | | /* Computing MAX */ |
691 | 0 | i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n; |
692 | 0 | maxwrk = f2cmax(i__2,i__3); |
693 | | /* Computing MAX */ |
694 | 0 | i__2 = *n * 3 + *m; |
695 | 0 | minwrk = f2cmax(i__2,bdspac); |
696 | 0 | } else if (wntus && wntvn) { |
697 | | |
698 | | /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ |
699 | |
|
700 | 0 | wrkbl = *n + lwork_sgeqrf__; |
701 | | /* Computing MAX */ |
702 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_n__; |
703 | 0 | wrkbl = f2cmax(i__2,i__3); |
704 | | /* Computing MAX */ |
705 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
706 | 0 | wrkbl = f2cmax(i__2,i__3); |
707 | | /* Computing MAX */ |
708 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
709 | 0 | wrkbl = f2cmax(i__2,i__3); |
710 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
711 | 0 | maxwrk = *n * *n + wrkbl; |
712 | | /* Computing MAX */ |
713 | 0 | i__2 = *n * 3 + *m; |
714 | 0 | minwrk = f2cmax(i__2,bdspac); |
715 | 0 | } else if (wntus && wntvo) { |
716 | | |
717 | | /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ |
718 | |
|
719 | 0 | wrkbl = *n + lwork_sgeqrf__; |
720 | | /* Computing MAX */ |
721 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_n__; |
722 | 0 | wrkbl = f2cmax(i__2,i__3); |
723 | | /* Computing MAX */ |
724 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
725 | 0 | wrkbl = f2cmax(i__2,i__3); |
726 | | /* Computing MAX */ |
727 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
728 | 0 | wrkbl = f2cmax(i__2,i__3); |
729 | | /* Computing MAX */ |
730 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_p__; |
731 | 0 | wrkbl = f2cmax(i__2,i__3); |
732 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
733 | 0 | maxwrk = (*n << 1) * *n + wrkbl; |
734 | | /* Computing MAX */ |
735 | 0 | i__2 = *n * 3 + *m; |
736 | 0 | minwrk = f2cmax(i__2,bdspac); |
737 | 0 | } else if (wntus && wntvas) { |
738 | | |
739 | | /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */ |
740 | | /* 'A') */ |
741 | |
|
742 | 0 | wrkbl = *n + lwork_sgeqrf__; |
743 | | /* Computing MAX */ |
744 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_n__; |
745 | 0 | wrkbl = f2cmax(i__2,i__3); |
746 | | /* Computing MAX */ |
747 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
748 | 0 | wrkbl = f2cmax(i__2,i__3); |
749 | | /* Computing MAX */ |
750 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
751 | 0 | wrkbl = f2cmax(i__2,i__3); |
752 | | /* Computing MAX */ |
753 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_p__; |
754 | 0 | wrkbl = f2cmax(i__2,i__3); |
755 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
756 | 0 | maxwrk = *n * *n + wrkbl; |
757 | | /* Computing MAX */ |
758 | 0 | i__2 = *n * 3 + *m; |
759 | 0 | minwrk = f2cmax(i__2,bdspac); |
760 | 0 | } else if (wntua && wntvn) { |
761 | | |
762 | | /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ |
763 | |
|
764 | 0 | wrkbl = *n + lwork_sgeqrf__; |
765 | | /* Computing MAX */ |
766 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_m__; |
767 | 0 | wrkbl = f2cmax(i__2,i__3); |
768 | | /* Computing MAX */ |
769 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
770 | 0 | wrkbl = f2cmax(i__2,i__3); |
771 | | /* Computing MAX */ |
772 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
773 | 0 | wrkbl = f2cmax(i__2,i__3); |
774 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
775 | 0 | maxwrk = *n * *n + wrkbl; |
776 | | /* Computing MAX */ |
777 | 0 | i__2 = *n * 3 + *m; |
778 | 0 | minwrk = f2cmax(i__2,bdspac); |
779 | 0 | } else if (wntua && wntvo) { |
780 | | |
781 | | /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ |
782 | |
|
783 | 0 | wrkbl = *n + lwork_sgeqrf__; |
784 | | /* Computing MAX */ |
785 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_m__; |
786 | 0 | wrkbl = f2cmax(i__2,i__3); |
787 | | /* Computing MAX */ |
788 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
789 | 0 | wrkbl = f2cmax(i__2,i__3); |
790 | | /* Computing MAX */ |
791 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
792 | 0 | wrkbl = f2cmax(i__2,i__3); |
793 | | /* Computing MAX */ |
794 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_p__; |
795 | 0 | wrkbl = f2cmax(i__2,i__3); |
796 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
797 | 0 | maxwrk = (*n << 1) * *n + wrkbl; |
798 | | /* Computing MAX */ |
799 | 0 | i__2 = *n * 3 + *m; |
800 | 0 | minwrk = f2cmax(i__2,bdspac); |
801 | 0 | } else if (wntua && wntvas) { |
802 | | |
803 | | /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */ |
804 | | /* 'A') */ |
805 | |
|
806 | 0 | wrkbl = *n + lwork_sgeqrf__; |
807 | | /* Computing MAX */ |
808 | 0 | i__2 = wrkbl, i__3 = *n + lwork_sorgqr_m__; |
809 | 0 | wrkbl = f2cmax(i__2,i__3); |
810 | | /* Computing MAX */ |
811 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sgebrd__; |
812 | 0 | wrkbl = f2cmax(i__2,i__3); |
813 | | /* Computing MAX */ |
814 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_q__; |
815 | 0 | wrkbl = f2cmax(i__2,i__3); |
816 | | /* Computing MAX */ |
817 | 0 | i__2 = wrkbl, i__3 = *n * 3 + lwork_sorgbr_p__; |
818 | 0 | wrkbl = f2cmax(i__2,i__3); |
819 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
820 | 0 | maxwrk = *n * *n + wrkbl; |
821 | | /* Computing MAX */ |
822 | 0 | i__2 = *n * 3 + *m; |
823 | 0 | minwrk = f2cmax(i__2,bdspac); |
824 | 0 | } |
825 | 0 | } else { |
826 | | |
827 | | /* Path 10 (M at least N, but not much larger) */ |
828 | |
|
829 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, & |
830 | 0 | c_n1, &ierr); |
831 | 0 | lwork_sgebrd__ = (integer) dum[0]; |
832 | 0 | maxwrk = *n * 3 + lwork_sgebrd__; |
833 | 0 | if (wntus || wntuo) { |
834 | 0 | sorgbr_("Q", m, n, n, &a[a_offset], lda, dum, dum, &c_n1, |
835 | 0 | &ierr); |
836 | 0 | lwork_sorgbr_q__ = (integer) dum[0]; |
837 | | /* Computing MAX */ |
838 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_sorgbr_q__; |
839 | 0 | maxwrk = f2cmax(i__2,i__3); |
840 | 0 | } |
841 | 0 | if (wntua) { |
842 | 0 | sorgbr_("Q", m, m, n, &a[a_offset], lda, dum, dum, &c_n1, |
843 | 0 | &ierr); |
844 | 0 | lwork_sorgbr_q__ = (integer) dum[0]; |
845 | | /* Computing MAX */ |
846 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_sorgbr_q__; |
847 | 0 | maxwrk = f2cmax(i__2,i__3); |
848 | 0 | } |
849 | 0 | if (! wntvn) { |
850 | | /* Computing MAX */ |
851 | 0 | i__2 = maxwrk, i__3 = *n * 3 + lwork_sorgbr_p__; |
852 | 0 | maxwrk = f2cmax(i__2,i__3); |
853 | 0 | } |
854 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
855 | | /* Computing MAX */ |
856 | 0 | i__2 = *n * 3 + *m; |
857 | 0 | minwrk = f2cmax(i__2,bdspac); |
858 | 0 | } |
859 | 0 | } else if (minmn > 0) { |
860 | | |
861 | | /* Compute space needed for SBDSQR */ |
862 | | |
863 | | /* Writing concatenation */ |
864 | 0 | i__1[0] = 1, a__1[0] = jobu; |
865 | 0 | i__1[1] = 1, a__1[1] = jobvt; |
866 | 0 | s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); |
867 | 0 | mnthr = ilaenv_(&c__6, "SGESVD", ch__1, m, n, &c__0, &c__0, ( |
868 | 0 | ftnlen)6, (ftnlen)2); |
869 | 0 | bdspac = *m * 5; |
870 | | /* Compute space needed for SGELQF */ |
871 | 0 | sgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
872 | 0 | lwork_sgelqf__ = (integer) dum[0]; |
873 | | /* Compute space needed for SORGLQ */ |
874 | 0 | sorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr); |
875 | 0 | lwork_sorglq_n__ = (integer) dum[0]; |
876 | 0 | sorglq_(m, n, m, &a[a_offset], lda, dum, dum, &c_n1, &ierr); |
877 | 0 | lwork_sorglq_m__ = (integer) dum[0]; |
878 | | /* Compute space needed for SGEBRD */ |
879 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, |
880 | 0 | &ierr); |
881 | 0 | lwork_sgebrd__ = (integer) dum[0]; |
882 | | /* Compute space needed for SORGBR P */ |
883 | 0 | sorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr); |
884 | 0 | lwork_sorgbr_p__ = (integer) dum[0]; |
885 | | /* Compute space needed for SORGBR Q */ |
886 | 0 | sorgbr_("Q", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr); |
887 | 0 | lwork_sorgbr_q__ = (integer) dum[0]; |
888 | 0 | if (*n >= mnthr) { |
889 | 0 | if (wntvn) { |
890 | | |
891 | | /* Path 1t(N much larger than M, JOBVT='N') */ |
892 | |
|
893 | 0 | maxwrk = *m + lwork_sgelqf__; |
894 | | /* Computing MAX */ |
895 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_sgebrd__; |
896 | 0 | maxwrk = f2cmax(i__2,i__3); |
897 | 0 | if (wntuo || wntuas) { |
898 | | /* Computing MAX */ |
899 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_sorgbr_q__; |
900 | 0 | maxwrk = f2cmax(i__2,i__3); |
901 | 0 | } |
902 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
903 | | /* Computing MAX */ |
904 | 0 | i__2 = *m << 2; |
905 | 0 | minwrk = f2cmax(i__2,bdspac); |
906 | 0 | } else if (wntvo && wntun) { |
907 | | |
908 | | /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ |
909 | |
|
910 | 0 | wrkbl = *m + lwork_sgelqf__; |
911 | | /* Computing MAX */ |
912 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_m__; |
913 | 0 | wrkbl = f2cmax(i__2,i__3); |
914 | | /* Computing MAX */ |
915 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
916 | 0 | wrkbl = f2cmax(i__2,i__3); |
917 | | /* Computing MAX */ |
918 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
919 | 0 | wrkbl = f2cmax(i__2,i__3); |
920 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
921 | | /* Computing MAX */ |
922 | 0 | i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m; |
923 | 0 | maxwrk = f2cmax(i__2,i__3); |
924 | | /* Computing MAX */ |
925 | 0 | i__2 = *m * 3 + *n; |
926 | 0 | minwrk = f2cmax(i__2,bdspac); |
927 | 0 | } else if (wntvo && wntuas) { |
928 | | |
929 | | /* Path 3t(N much larger than M, JOBU='S' or 'A', */ |
930 | | /* JOBVT='O') */ |
931 | |
|
932 | 0 | wrkbl = *m + lwork_sgelqf__; |
933 | | /* Computing MAX */ |
934 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_m__; |
935 | 0 | wrkbl = f2cmax(i__2,i__3); |
936 | | /* Computing MAX */ |
937 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
938 | 0 | wrkbl = f2cmax(i__2,i__3); |
939 | | /* Computing MAX */ |
940 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
941 | 0 | wrkbl = f2cmax(i__2,i__3); |
942 | | /* Computing MAX */ |
943 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_q__; |
944 | 0 | wrkbl = f2cmax(i__2,i__3); |
945 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
946 | | /* Computing MAX */ |
947 | 0 | i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m; |
948 | 0 | maxwrk = f2cmax(i__2,i__3); |
949 | | /* Computing MAX */ |
950 | 0 | i__2 = *m * 3 + *n; |
951 | 0 | minwrk = f2cmax(i__2,bdspac); |
952 | 0 | } else if (wntvs && wntun) { |
953 | | |
954 | | /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ |
955 | |
|
956 | 0 | wrkbl = *m + lwork_sgelqf__; |
957 | | /* Computing MAX */ |
958 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_m__; |
959 | 0 | wrkbl = f2cmax(i__2,i__3); |
960 | | /* Computing MAX */ |
961 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
962 | 0 | wrkbl = f2cmax(i__2,i__3); |
963 | | /* Computing MAX */ |
964 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
965 | 0 | wrkbl = f2cmax(i__2,i__3); |
966 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
967 | 0 | maxwrk = *m * *m + wrkbl; |
968 | | /* Computing MAX */ |
969 | 0 | i__2 = *m * 3 + *n; |
970 | 0 | minwrk = f2cmax(i__2,bdspac); |
971 | 0 | } else if (wntvs && wntuo) { |
972 | | |
973 | | /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ |
974 | |
|
975 | 0 | wrkbl = *m + lwork_sgelqf__; |
976 | | /* Computing MAX */ |
977 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_m__; |
978 | 0 | wrkbl = f2cmax(i__2,i__3); |
979 | | /* Computing MAX */ |
980 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
981 | 0 | wrkbl = f2cmax(i__2,i__3); |
982 | | /* Computing MAX */ |
983 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
984 | 0 | wrkbl = f2cmax(i__2,i__3); |
985 | | /* Computing MAX */ |
986 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_q__; |
987 | 0 | wrkbl = f2cmax(i__2,i__3); |
988 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
989 | 0 | maxwrk = (*m << 1) * *m + wrkbl; |
990 | | /* Computing MAX */ |
991 | 0 | i__2 = *m * 3 + *n; |
992 | 0 | minwrk = f2cmax(i__2,bdspac); |
993 | 0 | maxwrk = f2cmax(maxwrk,minwrk); |
994 | 0 | } else if (wntvs && wntuas) { |
995 | | |
996 | | /* Path 6t(N much larger than M, JOBU='S' or 'A', */ |
997 | | /* JOBVT='S') */ |
998 | |
|
999 | 0 | wrkbl = *m + lwork_sgelqf__; |
1000 | | /* Computing MAX */ |
1001 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_m__; |
1002 | 0 | wrkbl = f2cmax(i__2,i__3); |
1003 | | /* Computing MAX */ |
1004 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
1005 | 0 | wrkbl = f2cmax(i__2,i__3); |
1006 | | /* Computing MAX */ |
1007 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
1008 | 0 | wrkbl = f2cmax(i__2,i__3); |
1009 | | /* Computing MAX */ |
1010 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_q__; |
1011 | 0 | wrkbl = f2cmax(i__2,i__3); |
1012 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1013 | 0 | maxwrk = *m * *m + wrkbl; |
1014 | | /* Computing MAX */ |
1015 | 0 | i__2 = *m * 3 + *n; |
1016 | 0 | minwrk = f2cmax(i__2,bdspac); |
1017 | 0 | } else if (wntva && wntun) { |
1018 | | |
1019 | | /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ |
1020 | |
|
1021 | 0 | wrkbl = *m + lwork_sgelqf__; |
1022 | | /* Computing MAX */ |
1023 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_n__; |
1024 | 0 | wrkbl = f2cmax(i__2,i__3); |
1025 | | /* Computing MAX */ |
1026 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
1027 | 0 | wrkbl = f2cmax(i__2,i__3); |
1028 | | /* Computing MAX */ |
1029 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
1030 | 0 | wrkbl = f2cmax(i__2,i__3); |
1031 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1032 | 0 | maxwrk = *m * *m + wrkbl; |
1033 | | /* Computing MAX */ |
1034 | 0 | i__2 = *m * 3 + *n; |
1035 | 0 | minwrk = f2cmax(i__2,bdspac); |
1036 | 0 | } else if (wntva && wntuo) { |
1037 | | |
1038 | | /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ |
1039 | |
|
1040 | 0 | wrkbl = *m + lwork_sgelqf__; |
1041 | | /* Computing MAX */ |
1042 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_n__; |
1043 | 0 | wrkbl = f2cmax(i__2,i__3); |
1044 | | /* Computing MAX */ |
1045 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
1046 | 0 | wrkbl = f2cmax(i__2,i__3); |
1047 | | /* Computing MAX */ |
1048 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
1049 | 0 | wrkbl = f2cmax(i__2,i__3); |
1050 | | /* Computing MAX */ |
1051 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_q__; |
1052 | 0 | wrkbl = f2cmax(i__2,i__3); |
1053 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1054 | 0 | maxwrk = (*m << 1) * *m + wrkbl; |
1055 | | /* Computing MAX */ |
1056 | 0 | i__2 = *m * 3 + *n; |
1057 | 0 | minwrk = f2cmax(i__2,bdspac); |
1058 | 0 | } else if (wntva && wntuas) { |
1059 | | |
1060 | | /* Path 9t(N much larger than M, JOBU='S' or 'A', */ |
1061 | | /* JOBVT='A') */ |
1062 | |
|
1063 | 0 | wrkbl = *m + lwork_sgelqf__; |
1064 | | /* Computing MAX */ |
1065 | 0 | i__2 = wrkbl, i__3 = *m + lwork_sorglq_n__; |
1066 | 0 | wrkbl = f2cmax(i__2,i__3); |
1067 | | /* Computing MAX */ |
1068 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sgebrd__; |
1069 | 0 | wrkbl = f2cmax(i__2,i__3); |
1070 | | /* Computing MAX */ |
1071 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_p__; |
1072 | 0 | wrkbl = f2cmax(i__2,i__3); |
1073 | | /* Computing MAX */ |
1074 | 0 | i__2 = wrkbl, i__3 = *m * 3 + lwork_sorgbr_q__; |
1075 | 0 | wrkbl = f2cmax(i__2,i__3); |
1076 | 0 | wrkbl = f2cmax(wrkbl,bdspac); |
1077 | 0 | maxwrk = *m * *m + wrkbl; |
1078 | | /* Computing MAX */ |
1079 | 0 | i__2 = *m * 3 + *n; |
1080 | 0 | minwrk = f2cmax(i__2,bdspac); |
1081 | 0 | } |
1082 | 0 | } else { |
1083 | | |
1084 | | /* Path 10t(N greater than M, but not much larger) */ |
1085 | |
|
1086 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, & |
1087 | 0 | c_n1, &ierr); |
1088 | 0 | lwork_sgebrd__ = (integer) dum[0]; |
1089 | 0 | maxwrk = *m * 3 + lwork_sgebrd__; |
1090 | 0 | if (wntvs || wntvo) { |
1091 | | /* Compute space needed for SORGBR P */ |
1092 | 0 | sorgbr_("P", m, n, m, &a[a_offset], n, dum, dum, &c_n1, & |
1093 | 0 | ierr); |
1094 | 0 | lwork_sorgbr_p__ = (integer) dum[0]; |
1095 | | /* Computing MAX */ |
1096 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_sorgbr_p__; |
1097 | 0 | maxwrk = f2cmax(i__2,i__3); |
1098 | 0 | } |
1099 | 0 | if (wntva) { |
1100 | 0 | sorgbr_("P", n, n, m, &a[a_offset], n, dum, dum, &c_n1, & |
1101 | 0 | ierr); |
1102 | 0 | lwork_sorgbr_p__ = (integer) dum[0]; |
1103 | | /* Computing MAX */ |
1104 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_sorgbr_p__; |
1105 | 0 | maxwrk = f2cmax(i__2,i__3); |
1106 | 0 | } |
1107 | 0 | if (! wntun) { |
1108 | | /* Computing MAX */ |
1109 | 0 | i__2 = maxwrk, i__3 = *m * 3 + lwork_sorgbr_q__; |
1110 | 0 | maxwrk = f2cmax(i__2,i__3); |
1111 | 0 | } |
1112 | 0 | maxwrk = f2cmax(maxwrk,bdspac); |
1113 | | /* Computing MAX */ |
1114 | 0 | i__2 = *m * 3 + *n; |
1115 | 0 | minwrk = f2cmax(i__2,bdspac); |
1116 | 0 | } |
1117 | 0 | } |
1118 | 0 | maxwrk = f2cmax(maxwrk,minwrk); |
1119 | 0 | work[1] = (real) maxwrk; |
1120 | |
|
1121 | 0 | if (*lwork < minwrk && ! lquery) { |
1122 | 0 | *info = -13; |
1123 | 0 | } |
1124 | 0 | } |
1125 | |
|
1126 | 0 | if (*info != 0) { |
1127 | 0 | i__2 = -(*info); |
1128 | 0 | xerbla_("SGESVD", &i__2, (ftnlen)6); |
1129 | 0 | return; |
1130 | 0 | } else if (lquery) { |
1131 | 0 | return; |
1132 | 0 | } |
1133 | | |
1134 | | /* Quick return if possible */ |
1135 | | |
1136 | 0 | if (*m == 0 || *n == 0) { |
1137 | 0 | return; |
1138 | 0 | } |
1139 | | |
1140 | | /* Get machine constants */ |
1141 | | |
1142 | 0 | eps = slamch_("P"); |
1143 | 0 | smlnum = sqrt(slamch_("S")) / eps; |
1144 | 0 | bignum = 1.f / smlnum; |
1145 | | |
1146 | | /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */ |
1147 | |
|
1148 | 0 | anrm = slange_("M", m, n, &a[a_offset], lda, dum); |
1149 | 0 | iscl = 0; |
1150 | 0 | if (anrm > 0.f && anrm < smlnum) { |
1151 | 0 | iscl = 1; |
1152 | 0 | slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & |
1153 | 0 | ierr); |
1154 | 0 | } else if (anrm > bignum) { |
1155 | 0 | iscl = 1; |
1156 | 0 | slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & |
1157 | 0 | ierr); |
1158 | 0 | } |
1159 | |
|
1160 | 0 | if (*m >= *n) { |
1161 | | |
1162 | | /* A has at least as many rows as columns. If A has sufficiently */ |
1163 | | /* more rows than columns, first reduce using the QR */ |
1164 | | /* decomposition (if sufficient workspace available) */ |
1165 | |
|
1166 | 0 | if (*m >= mnthr) { |
1167 | |
|
1168 | 0 | if (wntun) { |
1169 | | |
1170 | | /* Path 1 (M much larger than N, JOBU='N') */ |
1171 | | /* No left singular vectors to be computed */ |
1172 | |
|
1173 | 0 | itau = 1; |
1174 | 0 | iwork = itau + *n; |
1175 | | |
1176 | | /* Compute A=Q*R */ |
1177 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1178 | |
|
1179 | 0 | i__2 = *lwork - iwork + 1; |
1180 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & |
1181 | 0 | i__2, &ierr); |
1182 | | |
1183 | | /* Zero out below R */ |
1184 | |
|
1185 | 0 | if (*n > 1) { |
1186 | 0 | i__2 = *n - 1; |
1187 | 0 | i__3 = *n - 1; |
1188 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[a_dim1 + 2], |
1189 | 0 | lda); |
1190 | 0 | } |
1191 | 0 | ie = 1; |
1192 | 0 | itauq = ie + *n; |
1193 | 0 | itaup = itauq + *n; |
1194 | 0 | iwork = itaup + *n; |
1195 | | |
1196 | | /* Bidiagonalize R in A */ |
1197 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
1198 | |
|
1199 | 0 | i__2 = *lwork - iwork + 1; |
1200 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
1201 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
1202 | 0 | ncvt = 0; |
1203 | 0 | if (wntvo || wntvas) { |
1204 | | |
1205 | | /* If right singular vectors desired, generate P'. */ |
1206 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
1207 | |
|
1208 | 0 | i__2 = *lwork - iwork + 1; |
1209 | 0 | sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], & |
1210 | 0 | work[iwork], &i__2, &ierr); |
1211 | 0 | ncvt = *n; |
1212 | 0 | } |
1213 | 0 | iwork = ie + *n; |
1214 | | |
1215 | | /* Perform bidiagonal QR iteration, computing right */ |
1216 | | /* singular vectors of A in A if desired */ |
1217 | | /* (Workspace: need BDSPAC) */ |
1218 | |
|
1219 | 0 | sbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &work[ie], &a[ |
1220 | 0 | a_offset], lda, dum, &c__1, dum, &c__1, &work[iwork], |
1221 | 0 | info); |
1222 | | |
1223 | | /* If right singular vectors desired in VT, copy them there */ |
1224 | |
|
1225 | 0 | if (wntvas) { |
1226 | 0 | slacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], |
1227 | 0 | ldvt); |
1228 | 0 | } |
1229 | |
|
1230 | 0 | } else if (wntuo && wntvn) { |
1231 | | |
1232 | | /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ |
1233 | | /* N left singular vectors to be overwritten on A and */ |
1234 | | /* no right singular vectors to be computed */ |
1235 | | |
1236 | | /* Computing MAX */ |
1237 | 0 | i__2 = *n << 2; |
1238 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
1239 | | |
1240 | | /* Sufficient workspace for a fast algorithm */ |
1241 | |
|
1242 | 0 | ir = 1; |
1243 | | /* Computing MAX */ |
1244 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *n; |
1245 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) { |
1246 | | |
1247 | | /* WORK(IU) is LDA by N, WORK(IR) is LDA by N */ |
1248 | |
|
1249 | 0 | ldwrku = *lda; |
1250 | 0 | ldwrkr = *lda; |
1251 | 0 | } else /* if(complicated condition) */ { |
1252 | | /* Computing MAX */ |
1253 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *n; |
1254 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *n * *n) { |
1255 | | |
1256 | | /* WORK(IU) is LDA by N, WORK(IR) is N by N */ |
1257 | |
|
1258 | 0 | ldwrku = *lda; |
1259 | 0 | ldwrkr = *n; |
1260 | 0 | } else { |
1261 | | |
1262 | | /* WORK(IU) is LDWRKU by N, WORK(IR) is N by N */ |
1263 | |
|
1264 | 0 | ldwrku = (*lwork - *n * *n - *n) / *n; |
1265 | 0 | ldwrkr = *n; |
1266 | 0 | } |
1267 | 0 | } |
1268 | 0 | itau = ir + ldwrkr * *n; |
1269 | 0 | iwork = itau + *n; |
1270 | | |
1271 | | /* Compute A=Q*R */ |
1272 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1273 | |
|
1274 | 0 | i__2 = *lwork - iwork + 1; |
1275 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1276 | 0 | , &i__2, &ierr); |
1277 | | |
1278 | | /* Copy R to WORK(IR) and zero out below it */ |
1279 | |
|
1280 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); |
1281 | 0 | i__2 = *n - 1; |
1282 | 0 | i__3 = *n - 1; |
1283 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + 1], |
1284 | 0 | &ldwrkr); |
1285 | | |
1286 | | /* Generate Q in A */ |
1287 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1288 | |
|
1289 | 0 | i__2 = *lwork - iwork + 1; |
1290 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1291 | 0 | iwork], &i__2, &ierr); |
1292 | 0 | ie = itau; |
1293 | 0 | itauq = ie + *n; |
1294 | 0 | itaup = itauq + *n; |
1295 | 0 | iwork = itaup + *n; |
1296 | | |
1297 | | /* Bidiagonalize R in WORK(IR) */ |
1298 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
1299 | |
|
1300 | 0 | i__2 = *lwork - iwork + 1; |
1301 | 0 | sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
1302 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
1303 | | |
1304 | | /* Generate left vectors bidiagonalizing R */ |
1305 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
1306 | |
|
1307 | 0 | i__2 = *lwork - iwork + 1; |
1308 | 0 | sorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & |
1309 | 0 | work[iwork], &i__2, &ierr); |
1310 | 0 | iwork = ie + *n; |
1311 | | |
1312 | | /* Perform bidiagonal QR iteration, computing left */ |
1313 | | /* singular vectors of R in WORK(IR) */ |
1314 | | /* (Workspace: need N*N+BDSPAC) */ |
1315 | |
|
1316 | 0 | sbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], dum, & |
1317 | 0 | c__1, &work[ir], &ldwrkr, dum, &c__1, &work[iwork] |
1318 | 0 | , info); |
1319 | 0 | iu = ie + *n; |
1320 | | |
1321 | | /* Multiply Q in A by left singular vectors of R in */ |
1322 | | /* WORK(IR), storing result in WORK(IU) and copying to A */ |
1323 | | /* (Workspace: need N*N+2*N, prefer N*N+M*N+N) */ |
1324 | |
|
1325 | 0 | i__2 = *m; |
1326 | 0 | i__3 = ldwrku; |
1327 | 0 | for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
1328 | 0 | i__3) { |
1329 | | /* Computing MIN */ |
1330 | 0 | i__4 = *m - i__ + 1; |
1331 | 0 | chunk = f2cmin(i__4,ldwrku); |
1332 | 0 | sgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ + |
1333 | 0 | a_dim1], lda, &work[ir], &ldwrkr, &c_b57, & |
1334 | 0 | work[iu], &ldwrku); |
1335 | 0 | slacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + |
1336 | 0 | a_dim1], lda); |
1337 | | /* L10: */ |
1338 | 0 | } |
1339 | |
|
1340 | 0 | } else { |
1341 | | |
1342 | | /* Insufficient workspace for a fast algorithm */ |
1343 | |
|
1344 | 0 | ie = 1; |
1345 | 0 | itauq = ie + *n; |
1346 | 0 | itaup = itauq + *n; |
1347 | 0 | iwork = itaup + *n; |
1348 | | |
1349 | | /* Bidiagonalize A */ |
1350 | | /* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) */ |
1351 | |
|
1352 | 0 | i__3 = *lwork - iwork + 1; |
1353 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
1354 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
1355 | | |
1356 | | /* Generate left vectors bidiagonalizing A */ |
1357 | | /* (Workspace: need 4*N, prefer 3*N+N*NB) */ |
1358 | |
|
1359 | 0 | i__3 = *lwork - iwork + 1; |
1360 | 0 | sorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & |
1361 | 0 | work[iwork], &i__3, &ierr); |
1362 | 0 | iwork = ie + *n; |
1363 | | |
1364 | | /* Perform bidiagonal QR iteration, computing left */ |
1365 | | /* singular vectors of A in A */ |
1366 | | /* (Workspace: need BDSPAC) */ |
1367 | |
|
1368 | 0 | sbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], dum, & |
1369 | 0 | c__1, &a[a_offset], lda, dum, &c__1, &work[iwork], |
1370 | 0 | info); |
1371 | |
|
1372 | 0 | } |
1373 | |
|
1374 | 0 | } else if (wntuo && wntvas) { |
1375 | | |
1376 | | /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */ |
1377 | | /* N left singular vectors to be overwritten on A and */ |
1378 | | /* N right singular vectors to be computed in VT */ |
1379 | | |
1380 | | /* Computing MAX */ |
1381 | 0 | i__3 = *n << 2; |
1382 | 0 | if (*lwork >= *n * *n + f2cmax(i__3,bdspac)) { |
1383 | | |
1384 | | /* Sufficient workspace for a fast algorithm */ |
1385 | |
|
1386 | 0 | ir = 1; |
1387 | | /* Computing MAX */ |
1388 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *n; |
1389 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) { |
1390 | | |
1391 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
1392 | |
|
1393 | 0 | ldwrku = *lda; |
1394 | 0 | ldwrkr = *lda; |
1395 | 0 | } else /* if(complicated condition) */ { |
1396 | | /* Computing MAX */ |
1397 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *n; |
1398 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *n * *n) { |
1399 | | |
1400 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
1401 | |
|
1402 | 0 | ldwrku = *lda; |
1403 | 0 | ldwrkr = *n; |
1404 | 0 | } else { |
1405 | | |
1406 | | /* WORK(IU) is LDWRKU by N and WORK(IR) is N by N */ |
1407 | |
|
1408 | 0 | ldwrku = (*lwork - *n * *n - *n) / *n; |
1409 | 0 | ldwrkr = *n; |
1410 | 0 | } |
1411 | 0 | } |
1412 | 0 | itau = ir + ldwrkr * *n; |
1413 | 0 | iwork = itau + *n; |
1414 | | |
1415 | | /* Compute A=Q*R */ |
1416 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1417 | |
|
1418 | 0 | i__3 = *lwork - iwork + 1; |
1419 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1420 | 0 | , &i__3, &ierr); |
1421 | | |
1422 | | /* Copy R to VT, zeroing out below it */ |
1423 | |
|
1424 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
1425 | 0 | ldvt); |
1426 | 0 | if (*n > 1) { |
1427 | 0 | i__3 = *n - 1; |
1428 | 0 | i__2 = *n - 1; |
1429 | 0 | slaset_("L", &i__3, &i__2, &c_b57, &c_b57, &vt[ |
1430 | 0 | vt_dim1 + 2], ldvt); |
1431 | 0 | } |
1432 | | |
1433 | | /* Generate Q in A */ |
1434 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1435 | |
|
1436 | 0 | i__3 = *lwork - iwork + 1; |
1437 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1438 | 0 | iwork], &i__3, &ierr); |
1439 | 0 | ie = itau; |
1440 | 0 | itauq = ie + *n; |
1441 | 0 | itaup = itauq + *n; |
1442 | 0 | iwork = itaup + *n; |
1443 | | |
1444 | | /* Bidiagonalize R in VT, copying result to WORK(IR) */ |
1445 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
1446 | |
|
1447 | 0 | i__3 = *lwork - iwork + 1; |
1448 | 0 | sgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], & |
1449 | 0 | work[itauq], &work[itaup], &work[iwork], &i__3, & |
1450 | 0 | ierr); |
1451 | 0 | slacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], & |
1452 | 0 | ldwrkr); |
1453 | | |
1454 | | /* Generate left vectors bidiagonalizing R in WORK(IR) */ |
1455 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
1456 | |
|
1457 | 0 | i__3 = *lwork - iwork + 1; |
1458 | 0 | sorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & |
1459 | 0 | work[iwork], &i__3, &ierr); |
1460 | | |
1461 | | /* Generate right vectors bidiagonalizing R in VT */ |
1462 | | /* (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB) */ |
1463 | |
|
1464 | 0 | i__3 = *lwork - iwork + 1; |
1465 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], |
1466 | 0 | &work[iwork], &i__3, &ierr); |
1467 | 0 | iwork = ie + *n; |
1468 | | |
1469 | | /* Perform bidiagonal QR iteration, computing left */ |
1470 | | /* singular vectors of R in WORK(IR) and computing right */ |
1471 | | /* singular vectors of R in VT */ |
1472 | | /* (Workspace: need N*N+BDSPAC) */ |
1473 | |
|
1474 | 0 | sbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
1475 | 0 | vt_offset], ldvt, &work[ir], &ldwrkr, dum, &c__1, |
1476 | 0 | &work[iwork], info); |
1477 | 0 | iu = ie + *n; |
1478 | | |
1479 | | /* Multiply Q in A by left singular vectors of R in */ |
1480 | | /* WORK(IR), storing result in WORK(IU) and copying to A */ |
1481 | | /* (Workspace: need N*N+2*N, prefer N*N+M*N+N) */ |
1482 | |
|
1483 | 0 | i__3 = *m; |
1484 | 0 | i__2 = ldwrku; |
1485 | 0 | for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += |
1486 | 0 | i__2) { |
1487 | | /* Computing MIN */ |
1488 | 0 | i__4 = *m - i__ + 1; |
1489 | 0 | chunk = f2cmin(i__4,ldwrku); |
1490 | 0 | sgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ + |
1491 | 0 | a_dim1], lda, &work[ir], &ldwrkr, &c_b57, & |
1492 | 0 | work[iu], &ldwrku); |
1493 | 0 | slacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + |
1494 | 0 | a_dim1], lda); |
1495 | | /* L20: */ |
1496 | 0 | } |
1497 | |
|
1498 | 0 | } else { |
1499 | | |
1500 | | /* Insufficient workspace for a fast algorithm */ |
1501 | |
|
1502 | 0 | itau = 1; |
1503 | 0 | iwork = itau + *n; |
1504 | | |
1505 | | /* Compute A=Q*R */ |
1506 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1507 | |
|
1508 | 0 | i__2 = *lwork - iwork + 1; |
1509 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
1510 | 0 | , &i__2, &ierr); |
1511 | | |
1512 | | /* Copy R to VT, zeroing out below it */ |
1513 | |
|
1514 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
1515 | 0 | ldvt); |
1516 | 0 | if (*n > 1) { |
1517 | 0 | i__2 = *n - 1; |
1518 | 0 | i__3 = *n - 1; |
1519 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
1520 | 0 | vt_dim1 + 2], ldvt); |
1521 | 0 | } |
1522 | | |
1523 | | /* Generate Q in A */ |
1524 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1525 | |
|
1526 | 0 | i__2 = *lwork - iwork + 1; |
1527 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ |
1528 | 0 | iwork], &i__2, &ierr); |
1529 | 0 | ie = itau; |
1530 | 0 | itauq = ie + *n; |
1531 | 0 | itaup = itauq + *n; |
1532 | 0 | iwork = itaup + *n; |
1533 | | |
1534 | | /* Bidiagonalize R in VT */ |
1535 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
1536 | |
|
1537 | 0 | i__2 = *lwork - iwork + 1; |
1538 | 0 | sgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], & |
1539 | 0 | work[itauq], &work[itaup], &work[iwork], &i__2, & |
1540 | 0 | ierr); |
1541 | | |
1542 | | /* Multiply Q in A by left vectors bidiagonalizing R */ |
1543 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
1544 | |
|
1545 | 0 | i__2 = *lwork - iwork + 1; |
1546 | 0 | sormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, & |
1547 | 0 | work[itauq], &a[a_offset], lda, &work[iwork], & |
1548 | 0 | i__2, &ierr); |
1549 | | |
1550 | | /* Generate right vectors bidiagonalizing R in VT */ |
1551 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
1552 | |
|
1553 | 0 | i__2 = *lwork - iwork + 1; |
1554 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], |
1555 | 0 | &work[iwork], &i__2, &ierr); |
1556 | 0 | iwork = ie + *n; |
1557 | | |
1558 | | /* Perform bidiagonal QR iteration, computing left */ |
1559 | | /* singular vectors of A in A and computing right */ |
1560 | | /* singular vectors of A in VT */ |
1561 | | /* (Workspace: need BDSPAC) */ |
1562 | |
|
1563 | 0 | sbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
1564 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
1565 | 0 | work[iwork], info); |
1566 | |
|
1567 | 0 | } |
1568 | |
|
1569 | 0 | } else if (wntus) { |
1570 | |
|
1571 | 0 | if (wntvn) { |
1572 | | |
1573 | | /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ |
1574 | | /* N left singular vectors to be computed in U and */ |
1575 | | /* no right singular vectors to be computed */ |
1576 | | |
1577 | | /* Computing MAX */ |
1578 | 0 | i__2 = *n << 2; |
1579 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
1580 | | |
1581 | | /* Sufficient workspace for a fast algorithm */ |
1582 | |
|
1583 | 0 | ir = 1; |
1584 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
1585 | | |
1586 | | /* WORK(IR) is LDA by N */ |
1587 | |
|
1588 | 0 | ldwrkr = *lda; |
1589 | 0 | } else { |
1590 | | |
1591 | | /* WORK(IR) is N by N */ |
1592 | |
|
1593 | 0 | ldwrkr = *n; |
1594 | 0 | } |
1595 | 0 | itau = ir + ldwrkr * *n; |
1596 | 0 | iwork = itau + *n; |
1597 | | |
1598 | | /* Compute A=Q*R */ |
1599 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1600 | |
|
1601 | 0 | i__2 = *lwork - iwork + 1; |
1602 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1603 | 0 | iwork], &i__2, &ierr); |
1604 | | |
1605 | | /* Copy R to WORK(IR), zeroing out below it */ |
1606 | |
|
1607 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[ir], & |
1608 | 0 | ldwrkr); |
1609 | 0 | i__2 = *n - 1; |
1610 | 0 | i__3 = *n - 1; |
1611 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
1612 | 0 | 1], &ldwrkr); |
1613 | | |
1614 | | /* Generate Q in A */ |
1615 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1616 | |
|
1617 | 0 | i__2 = *lwork - iwork + 1; |
1618 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
1619 | 0 | work[iwork], &i__2, &ierr); |
1620 | 0 | ie = itau; |
1621 | 0 | itauq = ie + *n; |
1622 | 0 | itaup = itauq + *n; |
1623 | 0 | iwork = itaup + *n; |
1624 | | |
1625 | | /* Bidiagonalize R in WORK(IR) */ |
1626 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
1627 | |
|
1628 | 0 | i__2 = *lwork - iwork + 1; |
1629 | 0 | sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], & |
1630 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1631 | 0 | i__2, &ierr); |
1632 | | |
1633 | | /* Generate left vectors bidiagonalizing R in WORK(IR) */ |
1634 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
1635 | |
|
1636 | 0 | i__2 = *lwork - iwork + 1; |
1637 | 0 | sorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] |
1638 | 0 | , &work[iwork], &i__2, &ierr); |
1639 | 0 | iwork = ie + *n; |
1640 | | |
1641 | | /* Perform bidiagonal QR iteration, computing left */ |
1642 | | /* singular vectors of R in WORK(IR) */ |
1643 | | /* (Workspace: need N*N+BDSPAC) */ |
1644 | |
|
1645 | 0 | sbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], |
1646 | 0 | dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, & |
1647 | 0 | work[iwork], info); |
1648 | | |
1649 | | /* Multiply Q in A by left singular vectors of R in */ |
1650 | | /* WORK(IR), storing result in U */ |
1651 | | /* (Workspace: need N*N) */ |
1652 | |
|
1653 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
1654 | 0 | work[ir], &ldwrkr, &c_b57, &u[u_offset], ldu); |
1655 | |
|
1656 | 0 | } else { |
1657 | | |
1658 | | /* Insufficient workspace for a fast algorithm */ |
1659 | |
|
1660 | 0 | itau = 1; |
1661 | 0 | iwork = itau + *n; |
1662 | | |
1663 | | /* Compute A=Q*R, copying result to U */ |
1664 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1665 | |
|
1666 | 0 | i__2 = *lwork - iwork + 1; |
1667 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1668 | 0 | iwork], &i__2, &ierr); |
1669 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
1670 | 0 | ldu); |
1671 | | |
1672 | | /* Generate Q in U */ |
1673 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1674 | |
|
1675 | 0 | i__2 = *lwork - iwork + 1; |
1676 | 0 | sorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
1677 | 0 | work[iwork], &i__2, &ierr); |
1678 | 0 | ie = itau; |
1679 | 0 | itauq = ie + *n; |
1680 | 0 | itaup = itauq + *n; |
1681 | 0 | iwork = itaup + *n; |
1682 | | |
1683 | | /* Zero out below R in A */ |
1684 | |
|
1685 | 0 | if (*n > 1) { |
1686 | 0 | i__2 = *n - 1; |
1687 | 0 | i__3 = *n - 1; |
1688 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
1689 | 0 | a_dim1 + 2], lda); |
1690 | 0 | } |
1691 | | |
1692 | | /* Bidiagonalize R in A */ |
1693 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
1694 | |
|
1695 | 0 | i__2 = *lwork - iwork + 1; |
1696 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
1697 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1698 | 0 | i__2, &ierr); |
1699 | | |
1700 | | /* Multiply Q in U by left vectors bidiagonalizing R */ |
1701 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
1702 | |
|
1703 | 0 | i__2 = *lwork - iwork + 1; |
1704 | 0 | sormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
1705 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
1706 | 0 | &i__2, &ierr) |
1707 | 0 | ; |
1708 | 0 | iwork = ie + *n; |
1709 | | |
1710 | | /* Perform bidiagonal QR iteration, computing left */ |
1711 | | /* singular vectors of A in U */ |
1712 | | /* (Workspace: need BDSPAC) */ |
1713 | |
|
1714 | 0 | sbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], |
1715 | 0 | dum, &c__1, &u[u_offset], ldu, dum, &c__1, & |
1716 | 0 | work[iwork], info); |
1717 | |
|
1718 | 0 | } |
1719 | |
|
1720 | 0 | } else if (wntvo) { |
1721 | | |
1722 | | /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ |
1723 | | /* N left singular vectors to be computed in U and */ |
1724 | | /* N right singular vectors to be overwritten on A */ |
1725 | | |
1726 | | /* Computing MAX */ |
1727 | 0 | i__2 = *n << 2; |
1728 | 0 | if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) { |
1729 | | |
1730 | | /* Sufficient workspace for a fast algorithm */ |
1731 | |
|
1732 | 0 | iu = 1; |
1733 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *n) { |
1734 | | |
1735 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
1736 | |
|
1737 | 0 | ldwrku = *lda; |
1738 | 0 | ir = iu + ldwrku * *n; |
1739 | 0 | ldwrkr = *lda; |
1740 | 0 | } else if (*lwork >= wrkbl + (*lda + *n) * *n) { |
1741 | | |
1742 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
1743 | |
|
1744 | 0 | ldwrku = *lda; |
1745 | 0 | ir = iu + ldwrku * *n; |
1746 | 0 | ldwrkr = *n; |
1747 | 0 | } else { |
1748 | | |
1749 | | /* WORK(IU) is N by N and WORK(IR) is N by N */ |
1750 | |
|
1751 | 0 | ldwrku = *n; |
1752 | 0 | ir = iu + ldwrku * *n; |
1753 | 0 | ldwrkr = *n; |
1754 | 0 | } |
1755 | 0 | itau = ir + ldwrkr * *n; |
1756 | 0 | iwork = itau + *n; |
1757 | | |
1758 | | /* Compute A=Q*R */ |
1759 | | /* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ |
1760 | |
|
1761 | 0 | i__2 = *lwork - iwork + 1; |
1762 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1763 | 0 | iwork], &i__2, &ierr); |
1764 | | |
1765 | | /* Copy R to WORK(IU), zeroing out below it */ |
1766 | |
|
1767 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
1768 | 0 | ldwrku); |
1769 | 0 | i__2 = *n - 1; |
1770 | 0 | i__3 = *n - 1; |
1771 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
1772 | 0 | 1], &ldwrku); |
1773 | | |
1774 | | /* Generate Q in A */ |
1775 | | /* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ |
1776 | |
|
1777 | 0 | i__2 = *lwork - iwork + 1; |
1778 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
1779 | 0 | work[iwork], &i__2, &ierr); |
1780 | 0 | ie = itau; |
1781 | 0 | itauq = ie + *n; |
1782 | 0 | itaup = itauq + *n; |
1783 | 0 | iwork = itaup + *n; |
1784 | | |
1785 | | /* Bidiagonalize R in WORK(IU), copying result to */ |
1786 | | /* WORK(IR) */ |
1787 | | /* (Workspace: need 2*N*N+4*N, */ |
1788 | | /* prefer 2*N*N+3*N+2*N*NB) */ |
1789 | |
|
1790 | 0 | i__2 = *lwork - iwork + 1; |
1791 | 0 | sgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
1792 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1793 | 0 | i__2, &ierr); |
1794 | 0 | slacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & |
1795 | 0 | ldwrkr); |
1796 | | |
1797 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
1798 | | /* (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB) */ |
1799 | |
|
1800 | 0 | i__2 = *lwork - iwork + 1; |
1801 | 0 | sorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
1802 | 0 | , &work[iwork], &i__2, &ierr); |
1803 | | |
1804 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
1805 | | /* (Workspace: need 2*N*N+4*N-1, */ |
1806 | | /* prefer 2*N*N+3*N+(N-1)*NB) */ |
1807 | |
|
1808 | 0 | i__2 = *lwork - iwork + 1; |
1809 | 0 | sorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] |
1810 | 0 | , &work[iwork], &i__2, &ierr); |
1811 | 0 | iwork = ie + *n; |
1812 | | |
1813 | | /* Perform bidiagonal QR iteration, computing left */ |
1814 | | /* singular vectors of R in WORK(IU) and computing */ |
1815 | | /* right singular vectors of R in WORK(IR) */ |
1816 | | /* (Workspace: need 2*N*N+BDSPAC) */ |
1817 | |
|
1818 | 0 | sbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[ |
1819 | 0 | ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1, |
1820 | 0 | &work[iwork], info); |
1821 | | |
1822 | | /* Multiply Q in A by left singular vectors of R in */ |
1823 | | /* WORK(IU), storing result in U */ |
1824 | | /* (Workspace: need N*N) */ |
1825 | |
|
1826 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
1827 | 0 | work[iu], &ldwrku, &c_b57, &u[u_offset], ldu); |
1828 | | |
1829 | | /* Copy right singular vectors of R to A */ |
1830 | | /* (Workspace: need N*N) */ |
1831 | |
|
1832 | 0 | slacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], |
1833 | 0 | lda); |
1834 | |
|
1835 | 0 | } else { |
1836 | | |
1837 | | /* Insufficient workspace for a fast algorithm */ |
1838 | |
|
1839 | 0 | itau = 1; |
1840 | 0 | iwork = itau + *n; |
1841 | | |
1842 | | /* Compute A=Q*R, copying result to U */ |
1843 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1844 | |
|
1845 | 0 | i__2 = *lwork - iwork + 1; |
1846 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1847 | 0 | iwork], &i__2, &ierr); |
1848 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
1849 | 0 | ldu); |
1850 | | |
1851 | | /* Generate Q in U */ |
1852 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
1853 | |
|
1854 | 0 | i__2 = *lwork - iwork + 1; |
1855 | 0 | sorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
1856 | 0 | work[iwork], &i__2, &ierr); |
1857 | 0 | ie = itau; |
1858 | 0 | itauq = ie + *n; |
1859 | 0 | itaup = itauq + *n; |
1860 | 0 | iwork = itaup + *n; |
1861 | | |
1862 | | /* Zero out below R in A */ |
1863 | |
|
1864 | 0 | if (*n > 1) { |
1865 | 0 | i__2 = *n - 1; |
1866 | 0 | i__3 = *n - 1; |
1867 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
1868 | 0 | a_dim1 + 2], lda); |
1869 | 0 | } |
1870 | | |
1871 | | /* Bidiagonalize R in A */ |
1872 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
1873 | |
|
1874 | 0 | i__2 = *lwork - iwork + 1; |
1875 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
1876 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1877 | 0 | i__2, &ierr); |
1878 | | |
1879 | | /* Multiply Q in U by left vectors bidiagonalizing R */ |
1880 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
1881 | |
|
1882 | 0 | i__2 = *lwork - iwork + 1; |
1883 | 0 | sormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
1884 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
1885 | 0 | &i__2, &ierr) |
1886 | 0 | ; |
1887 | | |
1888 | | /* Generate right vectors bidiagonalizing R in A */ |
1889 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
1890 | |
|
1891 | 0 | i__2 = *lwork - iwork + 1; |
1892 | 0 | sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], |
1893 | 0 | &work[iwork], &i__2, &ierr); |
1894 | 0 | iwork = ie + *n; |
1895 | | |
1896 | | /* Perform bidiagonal QR iteration, computing left */ |
1897 | | /* singular vectors of A in U and computing right */ |
1898 | | /* singular vectors of A in A */ |
1899 | | /* (Workspace: need BDSPAC) */ |
1900 | |
|
1901 | 0 | sbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[ |
1902 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, |
1903 | 0 | &work[iwork], info); |
1904 | |
|
1905 | 0 | } |
1906 | |
|
1907 | 0 | } else if (wntvas) { |
1908 | | |
1909 | | /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' */ |
1910 | | /* or 'A') */ |
1911 | | /* N left singular vectors to be computed in U and */ |
1912 | | /* N right singular vectors to be computed in VT */ |
1913 | | |
1914 | | /* Computing MAX */ |
1915 | 0 | i__2 = *n << 2; |
1916 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
1917 | | |
1918 | | /* Sufficient workspace for a fast algorithm */ |
1919 | |
|
1920 | 0 | iu = 1; |
1921 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
1922 | | |
1923 | | /* WORK(IU) is LDA by N */ |
1924 | |
|
1925 | 0 | ldwrku = *lda; |
1926 | 0 | } else { |
1927 | | |
1928 | | /* WORK(IU) is N by N */ |
1929 | |
|
1930 | 0 | ldwrku = *n; |
1931 | 0 | } |
1932 | 0 | itau = iu + ldwrku * *n; |
1933 | 0 | iwork = itau + *n; |
1934 | | |
1935 | | /* Compute A=Q*R */ |
1936 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1937 | |
|
1938 | 0 | i__2 = *lwork - iwork + 1; |
1939 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
1940 | 0 | iwork], &i__2, &ierr); |
1941 | | |
1942 | | /* Copy R to WORK(IU), zeroing out below it */ |
1943 | |
|
1944 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
1945 | 0 | ldwrku); |
1946 | 0 | i__2 = *n - 1; |
1947 | 0 | i__3 = *n - 1; |
1948 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
1949 | 0 | 1], &ldwrku); |
1950 | | |
1951 | | /* Generate Q in A */ |
1952 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
1953 | |
|
1954 | 0 | i__2 = *lwork - iwork + 1; |
1955 | 0 | sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], & |
1956 | 0 | work[iwork], &i__2, &ierr); |
1957 | 0 | ie = itau; |
1958 | 0 | itauq = ie + *n; |
1959 | 0 | itaup = itauq + *n; |
1960 | 0 | iwork = itaup + *n; |
1961 | | |
1962 | | /* Bidiagonalize R in WORK(IU), copying result to VT */ |
1963 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
1964 | |
|
1965 | 0 | i__2 = *lwork - iwork + 1; |
1966 | 0 | sgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
1967 | 0 | work[itauq], &work[itaup], &work[iwork], & |
1968 | 0 | i__2, &ierr); |
1969 | 0 | slacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], |
1970 | 0 | ldvt); |
1971 | | |
1972 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
1973 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
1974 | |
|
1975 | 0 | i__2 = *lwork - iwork + 1; |
1976 | 0 | sorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
1977 | 0 | , &work[iwork], &i__2, &ierr); |
1978 | | |
1979 | | /* Generate right bidiagonalizing vectors in VT */ |
1980 | | /* (Workspace: need N*N+4*N-1, */ |
1981 | | /* prefer N*N+3*N+(N-1)*NB) */ |
1982 | |
|
1983 | 0 | i__2 = *lwork - iwork + 1; |
1984 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
1985 | 0 | itaup], &work[iwork], &i__2, &ierr) |
1986 | 0 | ; |
1987 | 0 | iwork = ie + *n; |
1988 | | |
1989 | | /* Perform bidiagonal QR iteration, computing left */ |
1990 | | /* singular vectors of R in WORK(IU) and computing */ |
1991 | | /* right singular vectors of R in VT */ |
1992 | | /* (Workspace: need N*N+BDSPAC) */ |
1993 | |
|
1994 | 0 | sbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
1995 | 0 | vt_offset], ldvt, &work[iu], &ldwrku, dum, & |
1996 | 0 | c__1, &work[iwork], info); |
1997 | | |
1998 | | /* Multiply Q in A by left singular vectors of R in */ |
1999 | | /* WORK(IU), storing result in U */ |
2000 | | /* (Workspace: need N*N) */ |
2001 | |
|
2002 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, & |
2003 | 0 | work[iu], &ldwrku, &c_b57, &u[u_offset], ldu); |
2004 | |
|
2005 | 0 | } else { |
2006 | | |
2007 | | /* Insufficient workspace for a fast algorithm */ |
2008 | |
|
2009 | 0 | itau = 1; |
2010 | 0 | iwork = itau + *n; |
2011 | | |
2012 | | /* Compute A=Q*R, copying result to U */ |
2013 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
2014 | |
|
2015 | 0 | i__2 = *lwork - iwork + 1; |
2016 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2017 | 0 | iwork], &i__2, &ierr); |
2018 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2019 | 0 | ldu); |
2020 | | |
2021 | | /* Generate Q in U */ |
2022 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
2023 | |
|
2024 | 0 | i__2 = *lwork - iwork + 1; |
2025 | 0 | sorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], & |
2026 | 0 | work[iwork], &i__2, &ierr); |
2027 | | |
2028 | | /* Copy R to VT, zeroing out below it */ |
2029 | |
|
2030 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
2031 | 0 | ldvt); |
2032 | 0 | if (*n > 1) { |
2033 | 0 | i__2 = *n - 1; |
2034 | 0 | i__3 = *n - 1; |
2035 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
2036 | 0 | vt_dim1 + 2], ldvt); |
2037 | 0 | } |
2038 | 0 | ie = itau; |
2039 | 0 | itauq = ie + *n; |
2040 | 0 | itaup = itauq + *n; |
2041 | 0 | iwork = itaup + *n; |
2042 | | |
2043 | | /* Bidiagonalize R in VT */ |
2044 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
2045 | |
|
2046 | 0 | i__2 = *lwork - iwork + 1; |
2047 | 0 | sgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], |
2048 | 0 | &work[itauq], &work[itaup], &work[iwork], & |
2049 | 0 | i__2, &ierr); |
2050 | | |
2051 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2052 | | /* in VT */ |
2053 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
2054 | |
|
2055 | 0 | i__2 = *lwork - iwork + 1; |
2056 | 0 | sormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, |
2057 | 0 | &work[itauq], &u[u_offset], ldu, &work[iwork], |
2058 | 0 | &i__2, &ierr); |
2059 | | |
2060 | | /* Generate right bidiagonalizing vectors in VT */ |
2061 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
2062 | |
|
2063 | 0 | i__2 = *lwork - iwork + 1; |
2064 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2065 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2066 | 0 | ; |
2067 | 0 | iwork = ie + *n; |
2068 | | |
2069 | | /* Perform bidiagonal QR iteration, computing left */ |
2070 | | /* singular vectors of A in U and computing right */ |
2071 | | /* singular vectors of A in VT */ |
2072 | | /* (Workspace: need BDSPAC) */ |
2073 | |
|
2074 | 0 | sbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
2075 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
2076 | 0 | c__1, &work[iwork], info); |
2077 | |
|
2078 | 0 | } |
2079 | |
|
2080 | 0 | } |
2081 | |
|
2082 | 0 | } else if (wntua) { |
2083 | |
|
2084 | 0 | if (wntvn) { |
2085 | | |
2086 | | /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ |
2087 | | /* M left singular vectors to be computed in U and */ |
2088 | | /* no right singular vectors to be computed */ |
2089 | | |
2090 | | /* Computing MAX */ |
2091 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2092 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
2093 | | |
2094 | | /* Sufficient workspace for a fast algorithm */ |
2095 | |
|
2096 | 0 | ir = 1; |
2097 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
2098 | | |
2099 | | /* WORK(IR) is LDA by N */ |
2100 | |
|
2101 | 0 | ldwrkr = *lda; |
2102 | 0 | } else { |
2103 | | |
2104 | | /* WORK(IR) is N by N */ |
2105 | |
|
2106 | 0 | ldwrkr = *n; |
2107 | 0 | } |
2108 | 0 | itau = ir + ldwrkr * *n; |
2109 | 0 | iwork = itau + *n; |
2110 | | |
2111 | | /* Compute A=Q*R, copying result to U */ |
2112 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
2113 | |
|
2114 | 0 | i__2 = *lwork - iwork + 1; |
2115 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2116 | 0 | iwork], &i__2, &ierr); |
2117 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2118 | 0 | ldu); |
2119 | | |
2120 | | /* Copy R to WORK(IR), zeroing out below it */ |
2121 | |
|
2122 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[ir], & |
2123 | 0 | ldwrkr); |
2124 | 0 | i__2 = *n - 1; |
2125 | 0 | i__3 = *n - 1; |
2126 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
2127 | 0 | 1], &ldwrkr); |
2128 | | |
2129 | | /* Generate Q in U */ |
2130 | | /* (Workspace: need N*N+N+M, prefer N*N+N+M*NB) */ |
2131 | |
|
2132 | 0 | i__2 = *lwork - iwork + 1; |
2133 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2134 | 0 | work[iwork], &i__2, &ierr); |
2135 | 0 | ie = itau; |
2136 | 0 | itauq = ie + *n; |
2137 | 0 | itaup = itauq + *n; |
2138 | 0 | iwork = itaup + *n; |
2139 | | |
2140 | | /* Bidiagonalize R in WORK(IR) */ |
2141 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
2142 | |
|
2143 | 0 | i__2 = *lwork - iwork + 1; |
2144 | 0 | sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], & |
2145 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2146 | 0 | i__2, &ierr); |
2147 | | |
2148 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
2149 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
2150 | |
|
2151 | 0 | i__2 = *lwork - iwork + 1; |
2152 | 0 | sorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] |
2153 | 0 | , &work[iwork], &i__2, &ierr); |
2154 | 0 | iwork = ie + *n; |
2155 | | |
2156 | | /* Perform bidiagonal QR iteration, computing left */ |
2157 | | /* singular vectors of R in WORK(IR) */ |
2158 | | /* (Workspace: need N*N+BDSPAC) */ |
2159 | |
|
2160 | 0 | sbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], |
2161 | 0 | dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, & |
2162 | 0 | work[iwork], info); |
2163 | | |
2164 | | /* Multiply Q in U by left singular vectors of R in */ |
2165 | | /* WORK(IR), storing result in A */ |
2166 | | /* (Workspace: need N*N) */ |
2167 | |
|
2168 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2169 | 0 | work[ir], &ldwrkr, &c_b57, &a[a_offset], lda); |
2170 | | |
2171 | | /* Copy left singular vectors of A from A to U */ |
2172 | |
|
2173 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2174 | 0 | ldu); |
2175 | |
|
2176 | 0 | } else { |
2177 | | |
2178 | | /* Insufficient workspace for a fast algorithm */ |
2179 | |
|
2180 | 0 | itau = 1; |
2181 | 0 | iwork = itau + *n; |
2182 | | |
2183 | | /* Compute A=Q*R, copying result to U */ |
2184 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
2185 | |
|
2186 | 0 | i__2 = *lwork - iwork + 1; |
2187 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2188 | 0 | iwork], &i__2, &ierr); |
2189 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2190 | 0 | ldu); |
2191 | | |
2192 | | /* Generate Q in U */ |
2193 | | /* (Workspace: need N+M, prefer N+M*NB) */ |
2194 | |
|
2195 | 0 | i__2 = *lwork - iwork + 1; |
2196 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2197 | 0 | work[iwork], &i__2, &ierr); |
2198 | 0 | ie = itau; |
2199 | 0 | itauq = ie + *n; |
2200 | 0 | itaup = itauq + *n; |
2201 | 0 | iwork = itaup + *n; |
2202 | | |
2203 | | /* Zero out below R in A */ |
2204 | |
|
2205 | 0 | if (*n > 1) { |
2206 | 0 | i__2 = *n - 1; |
2207 | 0 | i__3 = *n - 1; |
2208 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
2209 | 0 | a_dim1 + 2], lda); |
2210 | 0 | } |
2211 | | |
2212 | | /* Bidiagonalize R in A */ |
2213 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
2214 | |
|
2215 | 0 | i__2 = *lwork - iwork + 1; |
2216 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
2217 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2218 | 0 | i__2, &ierr); |
2219 | | |
2220 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2221 | | /* in A */ |
2222 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
2223 | |
|
2224 | 0 | i__2 = *lwork - iwork + 1; |
2225 | 0 | sormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
2226 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
2227 | 0 | &i__2, &ierr) |
2228 | 0 | ; |
2229 | 0 | iwork = ie + *n; |
2230 | | |
2231 | | /* Perform bidiagonal QR iteration, computing left */ |
2232 | | /* singular vectors of A in U */ |
2233 | | /* (Workspace: need BDSPAC) */ |
2234 | |
|
2235 | 0 | sbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], |
2236 | 0 | dum, &c__1, &u[u_offset], ldu, dum, &c__1, & |
2237 | 0 | work[iwork], info); |
2238 | |
|
2239 | 0 | } |
2240 | |
|
2241 | 0 | } else if (wntvo) { |
2242 | | |
2243 | | /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ |
2244 | | /* M left singular vectors to be computed in U and */ |
2245 | | /* N right singular vectors to be overwritten on A */ |
2246 | | |
2247 | | /* Computing MAX */ |
2248 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2249 | 0 | if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) { |
2250 | | |
2251 | | /* Sufficient workspace for a fast algorithm */ |
2252 | |
|
2253 | 0 | iu = 1; |
2254 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *n) { |
2255 | | |
2256 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ |
2257 | |
|
2258 | 0 | ldwrku = *lda; |
2259 | 0 | ir = iu + ldwrku * *n; |
2260 | 0 | ldwrkr = *lda; |
2261 | 0 | } else if (*lwork >= wrkbl + (*lda + *n) * *n) { |
2262 | | |
2263 | | /* WORK(IU) is LDA by N and WORK(IR) is N by N */ |
2264 | |
|
2265 | 0 | ldwrku = *lda; |
2266 | 0 | ir = iu + ldwrku * *n; |
2267 | 0 | ldwrkr = *n; |
2268 | 0 | } else { |
2269 | | |
2270 | | /* WORK(IU) is N by N and WORK(IR) is N by N */ |
2271 | |
|
2272 | 0 | ldwrku = *n; |
2273 | 0 | ir = iu + ldwrku * *n; |
2274 | 0 | ldwrkr = *n; |
2275 | 0 | } |
2276 | 0 | itau = ir + ldwrkr * *n; |
2277 | 0 | iwork = itau + *n; |
2278 | | |
2279 | | /* Compute A=Q*R, copying result to U */ |
2280 | | /* (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ |
2281 | |
|
2282 | 0 | i__2 = *lwork - iwork + 1; |
2283 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2284 | 0 | iwork], &i__2, &ierr); |
2285 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2286 | 0 | ldu); |
2287 | | |
2288 | | /* Generate Q in U */ |
2289 | | /* (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) */ |
2290 | |
|
2291 | 0 | i__2 = *lwork - iwork + 1; |
2292 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2293 | 0 | work[iwork], &i__2, &ierr); |
2294 | | |
2295 | | /* Copy R to WORK(IU), zeroing out below it */ |
2296 | |
|
2297 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2298 | 0 | ldwrku); |
2299 | 0 | i__2 = *n - 1; |
2300 | 0 | i__3 = *n - 1; |
2301 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2302 | 0 | 1], &ldwrku); |
2303 | 0 | ie = itau; |
2304 | 0 | itauq = ie + *n; |
2305 | 0 | itaup = itauq + *n; |
2306 | 0 | iwork = itaup + *n; |
2307 | | |
2308 | | /* Bidiagonalize R in WORK(IU), copying result to */ |
2309 | | /* WORK(IR) */ |
2310 | | /* (Workspace: need 2*N*N+4*N, */ |
2311 | | /* prefer 2*N*N+3*N+2*N*NB) */ |
2312 | |
|
2313 | 0 | i__2 = *lwork - iwork + 1; |
2314 | 0 | sgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2315 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2316 | 0 | i__2, &ierr); |
2317 | 0 | slacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & |
2318 | 0 | ldwrkr); |
2319 | | |
2320 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2321 | | /* (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB) */ |
2322 | |
|
2323 | 0 | i__2 = *lwork - iwork + 1; |
2324 | 0 | sorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2325 | 0 | , &work[iwork], &i__2, &ierr); |
2326 | | |
2327 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
2328 | | /* (Workspace: need 2*N*N+4*N-1, */ |
2329 | | /* prefer 2*N*N+3*N+(N-1)*NB) */ |
2330 | |
|
2331 | 0 | i__2 = *lwork - iwork + 1; |
2332 | 0 | sorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] |
2333 | 0 | , &work[iwork], &i__2, &ierr); |
2334 | 0 | iwork = ie + *n; |
2335 | | |
2336 | | /* Perform bidiagonal QR iteration, computing left */ |
2337 | | /* singular vectors of R in WORK(IU) and computing */ |
2338 | | /* right singular vectors of R in WORK(IR) */ |
2339 | | /* (Workspace: need 2*N*N+BDSPAC) */ |
2340 | |
|
2341 | 0 | sbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[ |
2342 | 0 | ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1, |
2343 | 0 | &work[iwork], info); |
2344 | | |
2345 | | /* Multiply Q in U by left singular vectors of R in */ |
2346 | | /* WORK(IU), storing result in A */ |
2347 | | /* (Workspace: need N*N) */ |
2348 | |
|
2349 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2350 | 0 | work[iu], &ldwrku, &c_b57, &a[a_offset], lda); |
2351 | | |
2352 | | /* Copy left singular vectors of A from A to U */ |
2353 | |
|
2354 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2355 | 0 | ldu); |
2356 | | |
2357 | | /* Copy right singular vectors of R from WORK(IR) to A */ |
2358 | |
|
2359 | 0 | slacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], |
2360 | 0 | lda); |
2361 | |
|
2362 | 0 | } else { |
2363 | | |
2364 | | /* Insufficient workspace for a fast algorithm */ |
2365 | |
|
2366 | 0 | itau = 1; |
2367 | 0 | iwork = itau + *n; |
2368 | | |
2369 | | /* Compute A=Q*R, copying result to U */ |
2370 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
2371 | |
|
2372 | 0 | i__2 = *lwork - iwork + 1; |
2373 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2374 | 0 | iwork], &i__2, &ierr); |
2375 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2376 | 0 | ldu); |
2377 | | |
2378 | | /* Generate Q in U */ |
2379 | | /* (Workspace: need N+M, prefer N+M*NB) */ |
2380 | |
|
2381 | 0 | i__2 = *lwork - iwork + 1; |
2382 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2383 | 0 | work[iwork], &i__2, &ierr); |
2384 | 0 | ie = itau; |
2385 | 0 | itauq = ie + *n; |
2386 | 0 | itaup = itauq + *n; |
2387 | 0 | iwork = itaup + *n; |
2388 | | |
2389 | | /* Zero out below R in A */ |
2390 | |
|
2391 | 0 | if (*n > 1) { |
2392 | 0 | i__2 = *n - 1; |
2393 | 0 | i__3 = *n - 1; |
2394 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[ |
2395 | 0 | a_dim1 + 2], lda); |
2396 | 0 | } |
2397 | | |
2398 | | /* Bidiagonalize R in A */ |
2399 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
2400 | |
|
2401 | 0 | i__2 = *lwork - iwork + 1; |
2402 | 0 | sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], & |
2403 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2404 | 0 | i__2, &ierr); |
2405 | | |
2406 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2407 | | /* in A */ |
2408 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
2409 | |
|
2410 | 0 | i__2 = *lwork - iwork + 1; |
2411 | 0 | sormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & |
2412 | 0 | work[itauq], &u[u_offset], ldu, &work[iwork], |
2413 | 0 | &i__2, &ierr) |
2414 | 0 | ; |
2415 | | |
2416 | | /* Generate right bidiagonalizing vectors in A */ |
2417 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
2418 | |
|
2419 | 0 | i__2 = *lwork - iwork + 1; |
2420 | 0 | sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], |
2421 | 0 | &work[iwork], &i__2, &ierr); |
2422 | 0 | iwork = ie + *n; |
2423 | | |
2424 | | /* Perform bidiagonal QR iteration, computing left */ |
2425 | | /* singular vectors of A in U and computing right */ |
2426 | | /* singular vectors of A in A */ |
2427 | | /* (Workspace: need BDSPAC) */ |
2428 | |
|
2429 | 0 | sbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[ |
2430 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, |
2431 | 0 | &work[iwork], info); |
2432 | |
|
2433 | 0 | } |
2434 | |
|
2435 | 0 | } else if (wntvas) { |
2436 | | |
2437 | | /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' */ |
2438 | | /* or 'A') */ |
2439 | | /* M left singular vectors to be computed in U and */ |
2440 | | /* N right singular vectors to be computed in VT */ |
2441 | | |
2442 | | /* Computing MAX */ |
2443 | 0 | i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3); |
2444 | 0 | if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) { |
2445 | | |
2446 | | /* Sufficient workspace for a fast algorithm */ |
2447 | |
|
2448 | 0 | iu = 1; |
2449 | 0 | if (*lwork >= wrkbl + *lda * *n) { |
2450 | | |
2451 | | /* WORK(IU) is LDA by N */ |
2452 | |
|
2453 | 0 | ldwrku = *lda; |
2454 | 0 | } else { |
2455 | | |
2456 | | /* WORK(IU) is N by N */ |
2457 | |
|
2458 | 0 | ldwrku = *n; |
2459 | 0 | } |
2460 | 0 | itau = iu + ldwrku * *n; |
2461 | 0 | iwork = itau + *n; |
2462 | | |
2463 | | /* Compute A=Q*R, copying result to U */ |
2464 | | /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
2465 | |
|
2466 | 0 | i__2 = *lwork - iwork + 1; |
2467 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2468 | 0 | iwork], &i__2, &ierr); |
2469 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2470 | 0 | ldu); |
2471 | | |
2472 | | /* Generate Q in U */ |
2473 | | /* (Workspace: need N*N+N+M, prefer N*N+N+M*NB) */ |
2474 | |
|
2475 | 0 | i__2 = *lwork - iwork + 1; |
2476 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2477 | 0 | work[iwork], &i__2, &ierr); |
2478 | | |
2479 | | /* Copy R to WORK(IU), zeroing out below it */ |
2480 | |
|
2481 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &work[iu], & |
2482 | 0 | ldwrku); |
2483 | 0 | i__2 = *n - 1; |
2484 | 0 | i__3 = *n - 1; |
2485 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
2486 | 0 | 1], &ldwrku); |
2487 | 0 | ie = itau; |
2488 | 0 | itauq = ie + *n; |
2489 | 0 | itaup = itauq + *n; |
2490 | 0 | iwork = itaup + *n; |
2491 | | |
2492 | | /* Bidiagonalize R in WORK(IU), copying result to VT */ |
2493 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
2494 | |
|
2495 | 0 | i__2 = *lwork - iwork + 1; |
2496 | 0 | sgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], & |
2497 | 0 | work[itauq], &work[itaup], &work[iwork], & |
2498 | 0 | i__2, &ierr); |
2499 | 0 | slacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], |
2500 | 0 | ldvt); |
2501 | | |
2502 | | /* Generate left bidiagonalizing vectors in WORK(IU) */ |
2503 | | /* (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) */ |
2504 | |
|
2505 | 0 | i__2 = *lwork - iwork + 1; |
2506 | 0 | sorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] |
2507 | 0 | , &work[iwork], &i__2, &ierr); |
2508 | | |
2509 | | /* Generate right bidiagonalizing vectors in VT */ |
2510 | | /* (Workspace: need N*N+4*N-1, */ |
2511 | | /* prefer N*N+3*N+(N-1)*NB) */ |
2512 | |
|
2513 | 0 | i__2 = *lwork - iwork + 1; |
2514 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2515 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2516 | 0 | ; |
2517 | 0 | iwork = ie + *n; |
2518 | | |
2519 | | /* Perform bidiagonal QR iteration, computing left */ |
2520 | | /* singular vectors of R in WORK(IU) and computing */ |
2521 | | /* right singular vectors of R in VT */ |
2522 | | /* (Workspace: need N*N+BDSPAC) */ |
2523 | |
|
2524 | 0 | sbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[ |
2525 | 0 | vt_offset], ldvt, &work[iu], &ldwrku, dum, & |
2526 | 0 | c__1, &work[iwork], info); |
2527 | | |
2528 | | /* Multiply Q in U by left singular vectors of R in */ |
2529 | | /* WORK(IU), storing result in A */ |
2530 | | /* (Workspace: need N*N) */ |
2531 | |
|
2532 | 0 | sgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, & |
2533 | 0 | work[iu], &ldwrku, &c_b57, &a[a_offset], lda); |
2534 | | |
2535 | | /* Copy left singular vectors of A from A to U */ |
2536 | |
|
2537 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], |
2538 | 0 | ldu); |
2539 | |
|
2540 | 0 | } else { |
2541 | | |
2542 | | /* Insufficient workspace for a fast algorithm */ |
2543 | |
|
2544 | 0 | itau = 1; |
2545 | 0 | iwork = itau + *n; |
2546 | | |
2547 | | /* Compute A=Q*R, copying result to U */ |
2548 | | /* (Workspace: need 2*N, prefer N+N*NB) */ |
2549 | |
|
2550 | 0 | i__2 = *lwork - iwork + 1; |
2551 | 0 | sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
2552 | 0 | iwork], &i__2, &ierr); |
2553 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], |
2554 | 0 | ldu); |
2555 | | |
2556 | | /* Generate Q in U */ |
2557 | | /* (Workspace: need N+M, prefer N+M*NB) */ |
2558 | |
|
2559 | 0 | i__2 = *lwork - iwork + 1; |
2560 | 0 | sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], & |
2561 | 0 | work[iwork], &i__2, &ierr); |
2562 | | |
2563 | | /* Copy R from A to VT, zeroing out below it */ |
2564 | |
|
2565 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], |
2566 | 0 | ldvt); |
2567 | 0 | if (*n > 1) { |
2568 | 0 | i__2 = *n - 1; |
2569 | 0 | i__3 = *n - 1; |
2570 | 0 | slaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[ |
2571 | 0 | vt_dim1 + 2], ldvt); |
2572 | 0 | } |
2573 | 0 | ie = itau; |
2574 | 0 | itauq = ie + *n; |
2575 | 0 | itaup = itauq + *n; |
2576 | 0 | iwork = itaup + *n; |
2577 | | |
2578 | | /* Bidiagonalize R in VT */ |
2579 | | /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
2580 | |
|
2581 | 0 | i__2 = *lwork - iwork + 1; |
2582 | 0 | sgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], |
2583 | 0 | &work[itauq], &work[itaup], &work[iwork], & |
2584 | 0 | i__2, &ierr); |
2585 | | |
2586 | | /* Multiply Q in U by left bidiagonalizing vectors */ |
2587 | | /* in VT */ |
2588 | | /* (Workspace: need 3*N+M, prefer 3*N+M*NB) */ |
2589 | |
|
2590 | 0 | i__2 = *lwork - iwork + 1; |
2591 | 0 | sormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, |
2592 | 0 | &work[itauq], &u[u_offset], ldu, &work[iwork], |
2593 | 0 | &i__2, &ierr); |
2594 | | |
2595 | | /* Generate right bidiagonalizing vectors in VT */ |
2596 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
2597 | |
|
2598 | 0 | i__2 = *lwork - iwork + 1; |
2599 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ |
2600 | 0 | itaup], &work[iwork], &i__2, &ierr) |
2601 | 0 | ; |
2602 | 0 | iwork = ie + *n; |
2603 | | |
2604 | | /* Perform bidiagonal QR iteration, computing left */ |
2605 | | /* singular vectors of A in U and computing right */ |
2606 | | /* singular vectors of A in VT */ |
2607 | | /* (Workspace: need BDSPAC) */ |
2608 | |
|
2609 | 0 | sbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[ |
2610 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
2611 | 0 | c__1, &work[iwork], info); |
2612 | |
|
2613 | 0 | } |
2614 | |
|
2615 | 0 | } |
2616 | |
|
2617 | 0 | } |
2618 | |
|
2619 | 0 | } else { |
2620 | | |
2621 | | /* M .LT. MNTHR */ |
2622 | | |
2623 | | /* Path 10 (M at least N, but not much larger) */ |
2624 | | /* Reduce to bidiagonal form without QR decomposition */ |
2625 | |
|
2626 | 0 | ie = 1; |
2627 | 0 | itauq = ie + *n; |
2628 | 0 | itaup = itauq + *n; |
2629 | 0 | iwork = itaup + *n; |
2630 | | |
2631 | | /* Bidiagonalize A */ |
2632 | | /* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) */ |
2633 | |
|
2634 | 0 | i__2 = *lwork - iwork + 1; |
2635 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
2636 | 0 | work[itaup], &work[iwork], &i__2, &ierr); |
2637 | 0 | if (wntuas) { |
2638 | | |
2639 | | /* If left singular vectors desired in U, copy result to U */ |
2640 | | /* and generate left bidiagonalizing vectors in U */ |
2641 | | /* (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB) */ |
2642 | |
|
2643 | 0 | slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); |
2644 | 0 | if (wntus) { |
2645 | 0 | ncu = *n; |
2646 | 0 | } |
2647 | 0 | if (wntua) { |
2648 | 0 | ncu = *m; |
2649 | 0 | } |
2650 | 0 | i__2 = *lwork - iwork + 1; |
2651 | 0 | sorgbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], & |
2652 | 0 | work[iwork], &i__2, &ierr); |
2653 | 0 | } |
2654 | 0 | if (wntvas) { |
2655 | | |
2656 | | /* If right singular vectors desired in VT, copy result to */ |
2657 | | /* VT and generate right bidiagonalizing vectors in VT */ |
2658 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
2659 | |
|
2660 | 0 | slacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
2661 | 0 | i__2 = *lwork - iwork + 1; |
2662 | 0 | sorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & |
2663 | 0 | work[iwork], &i__2, &ierr); |
2664 | 0 | } |
2665 | 0 | if (wntuo) { |
2666 | | |
2667 | | /* If left singular vectors desired in A, generate left */ |
2668 | | /* bidiagonalizing vectors in A */ |
2669 | | /* (Workspace: need 4*N, prefer 3*N+N*NB) */ |
2670 | |
|
2671 | 0 | i__2 = *lwork - iwork + 1; |
2672 | 0 | sorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[ |
2673 | 0 | iwork], &i__2, &ierr); |
2674 | 0 | } |
2675 | 0 | if (wntvo) { |
2676 | | |
2677 | | /* If right singular vectors desired in A, generate right */ |
2678 | | /* bidiagonalizing vectors in A */ |
2679 | | /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */ |
2680 | |
|
2681 | 0 | i__2 = *lwork - iwork + 1; |
2682 | 0 | sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[ |
2683 | 0 | iwork], &i__2, &ierr); |
2684 | 0 | } |
2685 | 0 | iwork = ie + *n; |
2686 | 0 | if (wntuas || wntuo) { |
2687 | 0 | nru = *m; |
2688 | 0 | } |
2689 | 0 | if (wntun) { |
2690 | 0 | nru = 0; |
2691 | 0 | } |
2692 | 0 | if (wntvas || wntvo) { |
2693 | 0 | ncvt = *n; |
2694 | 0 | } |
2695 | 0 | if (wntvn) { |
2696 | 0 | ncvt = 0; |
2697 | 0 | } |
2698 | 0 | if (! wntuo && ! wntvo) { |
2699 | | |
2700 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2701 | | /* left singular vectors in U and computing right singular */ |
2702 | | /* vectors in VT */ |
2703 | | /* (Workspace: need BDSPAC) */ |
2704 | |
|
2705 | 0 | sbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
2706 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, & |
2707 | 0 | work[iwork], info); |
2708 | 0 | } else if (! wntuo && wntvo) { |
2709 | | |
2710 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2711 | | /* left singular vectors in U and computing right singular */ |
2712 | | /* vectors in A */ |
2713 | | /* (Workspace: need BDSPAC) */ |
2714 | |
|
2715 | 0 | sbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[ |
2716 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[ |
2717 | 0 | iwork], info); |
2718 | 0 | } else { |
2719 | | |
2720 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
2721 | | /* left singular vectors in A and computing right singular */ |
2722 | | /* vectors in VT */ |
2723 | | /* (Workspace: need BDSPAC) */ |
2724 | |
|
2725 | 0 | sbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
2726 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
2727 | 0 | work[iwork], info); |
2728 | 0 | } |
2729 | |
|
2730 | 0 | } |
2731 | |
|
2732 | 0 | } else { |
2733 | | |
2734 | | /* A has more columns than rows. If A has sufficiently more */ |
2735 | | /* columns than rows, first reduce using the LQ decomposition (if */ |
2736 | | /* sufficient workspace available) */ |
2737 | |
|
2738 | 0 | if (*n >= mnthr) { |
2739 | |
|
2740 | 0 | if (wntvn) { |
2741 | | |
2742 | | /* Path 1t(N much larger than M, JOBVT='N') */ |
2743 | | /* No right singular vectors to be computed */ |
2744 | |
|
2745 | 0 | itau = 1; |
2746 | 0 | iwork = itau + *m; |
2747 | | |
2748 | | /* Compute A=L*Q */ |
2749 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
2750 | |
|
2751 | 0 | i__2 = *lwork - iwork + 1; |
2752 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & |
2753 | 0 | i__2, &ierr); |
2754 | | |
2755 | | /* Zero out above L */ |
2756 | |
|
2757 | 0 | i__2 = *m - 1; |
2758 | 0 | i__3 = *m - 1; |
2759 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 << 1) + |
2760 | 0 | 1], lda); |
2761 | 0 | ie = 1; |
2762 | 0 | itauq = ie + *m; |
2763 | 0 | itaup = itauq + *m; |
2764 | 0 | iwork = itaup + *m; |
2765 | | |
2766 | | /* Bidiagonalize L in A */ |
2767 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
2768 | |
|
2769 | 0 | i__2 = *lwork - iwork + 1; |
2770 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ |
2771 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
2772 | 0 | if (wntuo || wntuas) { |
2773 | | |
2774 | | /* If left singular vectors desired, generate Q */ |
2775 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
2776 | |
|
2777 | 0 | i__2 = *lwork - iwork + 1; |
2778 | 0 | sorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], & |
2779 | 0 | work[iwork], &i__2, &ierr); |
2780 | 0 | } |
2781 | 0 | iwork = ie + *m; |
2782 | 0 | nru = 0; |
2783 | 0 | if (wntuo || wntuas) { |
2784 | 0 | nru = *m; |
2785 | 0 | } |
2786 | | |
2787 | | /* Perform bidiagonal QR iteration, computing left singular */ |
2788 | | /* vectors of A in A if desired */ |
2789 | | /* (Workspace: need BDSPAC) */ |
2790 | |
|
2791 | 0 | sbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &work[ie], dum, & |
2792 | 0 | c__1, &a[a_offset], lda, dum, &c__1, &work[iwork], |
2793 | 0 | info); |
2794 | | |
2795 | | /* If left singular vectors desired in U, copy them there */ |
2796 | |
|
2797 | 0 | if (wntuas) { |
2798 | 0 | slacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
2799 | 0 | } |
2800 | |
|
2801 | 0 | } else if (wntvo && wntun) { |
2802 | | |
2803 | | /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ |
2804 | | /* M right singular vectors to be overwritten on A and */ |
2805 | | /* no left singular vectors to be computed */ |
2806 | | |
2807 | | /* Computing MAX */ |
2808 | 0 | i__2 = *m << 2; |
2809 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
2810 | | |
2811 | | /* Sufficient workspace for a fast algorithm */ |
2812 | |
|
2813 | 0 | ir = 1; |
2814 | | /* Computing MAX */ |
2815 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *m; |
2816 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) { |
2817 | | |
2818 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ |
2819 | |
|
2820 | 0 | ldwrku = *lda; |
2821 | 0 | chunk = *n; |
2822 | 0 | ldwrkr = *lda; |
2823 | 0 | } else /* if(complicated condition) */ { |
2824 | | /* Computing MAX */ |
2825 | 0 | i__2 = wrkbl, i__3 = *lda * *n + *m; |
2826 | 0 | if (*lwork >= f2cmax(i__2,i__3) + *m * *m) { |
2827 | | |
2828 | | /* WORK(IU) is LDA by N and WORK(IR) is M by M */ |
2829 | |
|
2830 | 0 | ldwrku = *lda; |
2831 | 0 | chunk = *n; |
2832 | 0 | ldwrkr = *m; |
2833 | 0 | } else { |
2834 | | |
2835 | | /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ |
2836 | |
|
2837 | 0 | ldwrku = *m; |
2838 | 0 | chunk = (*lwork - *m * *m - *m) / *m; |
2839 | 0 | ldwrkr = *m; |
2840 | 0 | } |
2841 | 0 | } |
2842 | 0 | itau = ir + ldwrkr * *m; |
2843 | 0 | iwork = itau + *m; |
2844 | | |
2845 | | /* Compute A=L*Q */ |
2846 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
2847 | |
|
2848 | 0 | i__2 = *lwork - iwork + 1; |
2849 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
2850 | 0 | , &i__2, &ierr); |
2851 | | |
2852 | | /* Copy L to WORK(IR) and zero out above it */ |
2853 | |
|
2854 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr); |
2855 | 0 | i__2 = *m - 1; |
2856 | 0 | i__3 = *m - 1; |
2857 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
2858 | 0 | ldwrkr], &ldwrkr); |
2859 | | |
2860 | | /* Generate Q in A */ |
2861 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
2862 | |
|
2863 | 0 | i__2 = *lwork - iwork + 1; |
2864 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
2865 | 0 | iwork], &i__2, &ierr); |
2866 | 0 | ie = itau; |
2867 | 0 | itauq = ie + *m; |
2868 | 0 | itaup = itauq + *m; |
2869 | 0 | iwork = itaup + *m; |
2870 | | |
2871 | | /* Bidiagonalize L in WORK(IR) */ |
2872 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
2873 | |
|
2874 | 0 | i__2 = *lwork - iwork + 1; |
2875 | 0 | sgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
2876 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
2877 | | |
2878 | | /* Generate right vectors bidiagonalizing L */ |
2879 | | /* (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */ |
2880 | |
|
2881 | 0 | i__2 = *lwork - iwork + 1; |
2882 | 0 | sorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & |
2883 | 0 | work[iwork], &i__2, &ierr); |
2884 | 0 | iwork = ie + *m; |
2885 | | |
2886 | | /* Perform bidiagonal QR iteration, computing right */ |
2887 | | /* singular vectors of L in WORK(IR) */ |
2888 | | /* (Workspace: need M*M+BDSPAC) */ |
2889 | |
|
2890 | 0 | sbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], &work[ |
2891 | 0 | ir], &ldwrkr, dum, &c__1, dum, &c__1, &work[iwork] |
2892 | 0 | , info); |
2893 | 0 | iu = ie + *m; |
2894 | | |
2895 | | /* Multiply right singular vectors of L in WORK(IR) by Q */ |
2896 | | /* in A, storing result in WORK(IU) and copying to A */ |
2897 | | /* (Workspace: need M*M+2*M, prefer M*M+M*N+M) */ |
2898 | |
|
2899 | 0 | i__2 = *n; |
2900 | 0 | i__3 = chunk; |
2901 | 0 | for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
2902 | 0 | i__3) { |
2903 | | /* Computing MIN */ |
2904 | 0 | i__4 = *n - i__ + 1; |
2905 | 0 | blk = f2cmin(i__4,chunk); |
2906 | 0 | sgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], & |
2907 | 0 | ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, & |
2908 | 0 | work[iu], &ldwrku); |
2909 | 0 | slacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * |
2910 | 0 | a_dim1 + 1], lda); |
2911 | | /* L30: */ |
2912 | 0 | } |
2913 | |
|
2914 | 0 | } else { |
2915 | | |
2916 | | /* Insufficient workspace for a fast algorithm */ |
2917 | |
|
2918 | 0 | ie = 1; |
2919 | 0 | itauq = ie + *m; |
2920 | 0 | itaup = itauq + *m; |
2921 | 0 | iwork = itaup + *m; |
2922 | | |
2923 | | /* Bidiagonalize A */ |
2924 | | /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */ |
2925 | |
|
2926 | 0 | i__3 = *lwork - iwork + 1; |
2927 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
2928 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
2929 | | |
2930 | | /* Generate right vectors bidiagonalizing A */ |
2931 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
2932 | |
|
2933 | 0 | i__3 = *lwork - iwork + 1; |
2934 | 0 | sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & |
2935 | 0 | work[iwork], &i__3, &ierr); |
2936 | 0 | iwork = ie + *m; |
2937 | | |
2938 | | /* Perform bidiagonal QR iteration, computing right */ |
2939 | | /* singular vectors of A in A */ |
2940 | | /* (Workspace: need BDSPAC) */ |
2941 | |
|
2942 | 0 | sbdsqr_("L", m, n, &c__0, &c__0, &s[1], &work[ie], &a[ |
2943 | 0 | a_offset], lda, dum, &c__1, dum, &c__1, &work[ |
2944 | 0 | iwork], info); |
2945 | |
|
2946 | 0 | } |
2947 | |
|
2948 | 0 | } else if (wntvo && wntuas) { |
2949 | | |
2950 | | /* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */ |
2951 | | /* M right singular vectors to be overwritten on A and */ |
2952 | | /* M left singular vectors to be computed in U */ |
2953 | | |
2954 | | /* Computing MAX */ |
2955 | 0 | i__3 = *m << 2; |
2956 | 0 | if (*lwork >= *m * *m + f2cmax(i__3,bdspac)) { |
2957 | | |
2958 | | /* Sufficient workspace for a fast algorithm */ |
2959 | |
|
2960 | 0 | ir = 1; |
2961 | | /* Computing MAX */ |
2962 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *m; |
2963 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) { |
2964 | | |
2965 | | /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ |
2966 | |
|
2967 | 0 | ldwrku = *lda; |
2968 | 0 | chunk = *n; |
2969 | 0 | ldwrkr = *lda; |
2970 | 0 | } else /* if(complicated condition) */ { |
2971 | | /* Computing MAX */ |
2972 | 0 | i__3 = wrkbl, i__2 = *lda * *n + *m; |
2973 | 0 | if (*lwork >= f2cmax(i__3,i__2) + *m * *m) { |
2974 | | |
2975 | | /* WORK(IU) is LDA by N and WORK(IR) is M by M */ |
2976 | |
|
2977 | 0 | ldwrku = *lda; |
2978 | 0 | chunk = *n; |
2979 | 0 | ldwrkr = *m; |
2980 | 0 | } else { |
2981 | | |
2982 | | /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ |
2983 | |
|
2984 | 0 | ldwrku = *m; |
2985 | 0 | chunk = (*lwork - *m * *m - *m) / *m; |
2986 | 0 | ldwrkr = *m; |
2987 | 0 | } |
2988 | 0 | } |
2989 | 0 | itau = ir + ldwrkr * *m; |
2990 | 0 | iwork = itau + *m; |
2991 | | |
2992 | | /* Compute A=L*Q */ |
2993 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
2994 | |
|
2995 | 0 | i__3 = *lwork - iwork + 1; |
2996 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
2997 | 0 | , &i__3, &ierr); |
2998 | | |
2999 | | /* Copy L to U, zeroing about above it */ |
3000 | |
|
3001 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
3002 | 0 | i__3 = *m - 1; |
3003 | 0 | i__2 = *m - 1; |
3004 | 0 | slaset_("U", &i__3, &i__2, &c_b57, &c_b57, &u[(u_dim1 << |
3005 | 0 | 1) + 1], ldu); |
3006 | | |
3007 | | /* Generate Q in A */ |
3008 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3009 | |
|
3010 | 0 | i__3 = *lwork - iwork + 1; |
3011 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
3012 | 0 | iwork], &i__3, &ierr); |
3013 | 0 | ie = itau; |
3014 | 0 | itauq = ie + *m; |
3015 | 0 | itaup = itauq + *m; |
3016 | 0 | iwork = itaup + *m; |
3017 | | |
3018 | | /* Bidiagonalize L in U, copying result to WORK(IR) */ |
3019 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
3020 | |
|
3021 | 0 | i__3 = *lwork - iwork + 1; |
3022 | 0 | sgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[ |
3023 | 0 | itauq], &work[itaup], &work[iwork], &i__3, &ierr); |
3024 | 0 | slacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr); |
3025 | | |
3026 | | /* Generate right vectors bidiagonalizing L in WORK(IR) */ |
3027 | | /* (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */ |
3028 | |
|
3029 | 0 | i__3 = *lwork - iwork + 1; |
3030 | 0 | sorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & |
3031 | 0 | work[iwork], &i__3, &ierr); |
3032 | | |
3033 | | /* Generate left vectors bidiagonalizing L in U */ |
3034 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) */ |
3035 | |
|
3036 | 0 | i__3 = *lwork - iwork + 1; |
3037 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & |
3038 | 0 | work[iwork], &i__3, &ierr); |
3039 | 0 | iwork = ie + *m; |
3040 | | |
3041 | | /* Perform bidiagonal QR iteration, computing left */ |
3042 | | /* singular vectors of L in U, and computing right */ |
3043 | | /* singular vectors of L in WORK(IR) */ |
3044 | | /* (Workspace: need M*M+BDSPAC) */ |
3045 | |
|
3046 | 0 | sbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ir], |
3047 | 0 | &ldwrkr, &u[u_offset], ldu, dum, &c__1, &work[ |
3048 | 0 | iwork], info); |
3049 | 0 | iu = ie + *m; |
3050 | | |
3051 | | /* Multiply right singular vectors of L in WORK(IR) by Q */ |
3052 | | /* in A, storing result in WORK(IU) and copying to A */ |
3053 | | /* (Workspace: need M*M+2*M, prefer M*M+M*N+M)) */ |
3054 | |
|
3055 | 0 | i__3 = *n; |
3056 | 0 | i__2 = chunk; |
3057 | 0 | for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += |
3058 | 0 | i__2) { |
3059 | | /* Computing MIN */ |
3060 | 0 | i__4 = *n - i__ + 1; |
3061 | 0 | blk = f2cmin(i__4,chunk); |
3062 | 0 | sgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], & |
3063 | 0 | ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, & |
3064 | 0 | work[iu], &ldwrku); |
3065 | 0 | slacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * |
3066 | 0 | a_dim1 + 1], lda); |
3067 | | /* L40: */ |
3068 | 0 | } |
3069 | |
|
3070 | 0 | } else { |
3071 | | |
3072 | | /* Insufficient workspace for a fast algorithm */ |
3073 | |
|
3074 | 0 | itau = 1; |
3075 | 0 | iwork = itau + *m; |
3076 | | |
3077 | | /* Compute A=L*Q */ |
3078 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3079 | |
|
3080 | 0 | i__2 = *lwork - iwork + 1; |
3081 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] |
3082 | 0 | , &i__2, &ierr); |
3083 | | |
3084 | | /* Copy L to U, zeroing out above it */ |
3085 | |
|
3086 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
3087 | 0 | i__2 = *m - 1; |
3088 | 0 | i__3 = *m - 1; |
3089 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 << |
3090 | 0 | 1) + 1], ldu); |
3091 | | |
3092 | | /* Generate Q in A */ |
3093 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3094 | |
|
3095 | 0 | i__2 = *lwork - iwork + 1; |
3096 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ |
3097 | 0 | iwork], &i__2, &ierr); |
3098 | 0 | ie = itau; |
3099 | 0 | itauq = ie + *m; |
3100 | 0 | itaup = itauq + *m; |
3101 | 0 | iwork = itaup + *m; |
3102 | | |
3103 | | /* Bidiagonalize L in U */ |
3104 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3105 | |
|
3106 | 0 | i__2 = *lwork - iwork + 1; |
3107 | 0 | sgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[ |
3108 | 0 | itauq], &work[itaup], &work[iwork], &i__2, &ierr); |
3109 | | |
3110 | | /* Multiply right vectors bidiagonalizing L by Q in A */ |
3111 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3112 | |
|
3113 | 0 | i__2 = *lwork - iwork + 1; |
3114 | 0 | sormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, &work[ |
3115 | 0 | itaup], &a[a_offset], lda, &work[iwork], &i__2, & |
3116 | 0 | ierr); |
3117 | | |
3118 | | /* Generate left vectors bidiagonalizing L in U */ |
3119 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
3120 | |
|
3121 | 0 | i__2 = *lwork - iwork + 1; |
3122 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & |
3123 | 0 | work[iwork], &i__2, &ierr); |
3124 | 0 | iwork = ie + *m; |
3125 | | |
3126 | | /* Perform bidiagonal QR iteration, computing left */ |
3127 | | /* singular vectors of A in U and computing right */ |
3128 | | /* singular vectors of A in A */ |
3129 | | /* (Workspace: need BDSPAC) */ |
3130 | |
|
3131 | 0 | sbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &a[ |
3132 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, & |
3133 | 0 | work[iwork], info); |
3134 | |
|
3135 | 0 | } |
3136 | |
|
3137 | 0 | } else if (wntvs) { |
3138 | |
|
3139 | 0 | if (wntun) { |
3140 | | |
3141 | | /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ |
3142 | | /* M right singular vectors to be computed in VT and */ |
3143 | | /* no left singular vectors to be computed */ |
3144 | | |
3145 | | /* Computing MAX */ |
3146 | 0 | i__2 = *m << 2; |
3147 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3148 | | |
3149 | | /* Sufficient workspace for a fast algorithm */ |
3150 | |
|
3151 | 0 | ir = 1; |
3152 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3153 | | |
3154 | | /* WORK(IR) is LDA by M */ |
3155 | |
|
3156 | 0 | ldwrkr = *lda; |
3157 | 0 | } else { |
3158 | | |
3159 | | /* WORK(IR) is M by M */ |
3160 | |
|
3161 | 0 | ldwrkr = *m; |
3162 | 0 | } |
3163 | 0 | itau = ir + ldwrkr * *m; |
3164 | 0 | iwork = itau + *m; |
3165 | | |
3166 | | /* Compute A=L*Q */ |
3167 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3168 | |
|
3169 | 0 | i__2 = *lwork - iwork + 1; |
3170 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3171 | 0 | iwork], &i__2, &ierr); |
3172 | | |
3173 | | /* Copy L to WORK(IR), zeroing out above it */ |
3174 | |
|
3175 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[ir], & |
3176 | 0 | ldwrkr); |
3177 | 0 | i__2 = *m - 1; |
3178 | 0 | i__3 = *m - 1; |
3179 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
3180 | 0 | ldwrkr], &ldwrkr); |
3181 | | |
3182 | | /* Generate Q in A */ |
3183 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3184 | |
|
3185 | 0 | i__2 = *lwork - iwork + 1; |
3186 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3187 | 0 | work[iwork], &i__2, &ierr); |
3188 | 0 | ie = itau; |
3189 | 0 | itauq = ie + *m; |
3190 | 0 | itaup = itauq + *m; |
3191 | 0 | iwork = itaup + *m; |
3192 | | |
3193 | | /* Bidiagonalize L in WORK(IR) */ |
3194 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
3195 | |
|
3196 | 0 | i__2 = *lwork - iwork + 1; |
3197 | 0 | sgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], & |
3198 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3199 | 0 | i__2, &ierr); |
3200 | | |
3201 | | /* Generate right vectors bidiagonalizing L in */ |
3202 | | /* WORK(IR) */ |
3203 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB) */ |
3204 | |
|
3205 | 0 | i__2 = *lwork - iwork + 1; |
3206 | 0 | sorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] |
3207 | 0 | , &work[iwork], &i__2, &ierr); |
3208 | 0 | iwork = ie + *m; |
3209 | | |
3210 | | /* Perform bidiagonal QR iteration, computing right */ |
3211 | | /* singular vectors of L in WORK(IR) */ |
3212 | | /* (Workspace: need M*M+BDSPAC) */ |
3213 | |
|
3214 | 0 | sbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], & |
3215 | 0 | work[ir], &ldwrkr, dum, &c__1, dum, &c__1, & |
3216 | 0 | work[iwork], info); |
3217 | | |
3218 | | /* Multiply right singular vectors of L in WORK(IR) by */ |
3219 | | /* Q in A, storing result in VT */ |
3220 | | /* (Workspace: need M*M) */ |
3221 | |
|
3222 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr, |
3223 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3224 | 0 | ldvt); |
3225 | |
|
3226 | 0 | } else { |
3227 | | |
3228 | | /* Insufficient workspace for a fast algorithm */ |
3229 | |
|
3230 | 0 | itau = 1; |
3231 | 0 | iwork = itau + *m; |
3232 | | |
3233 | | /* Compute A=L*Q */ |
3234 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3235 | |
|
3236 | 0 | i__2 = *lwork - iwork + 1; |
3237 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3238 | 0 | iwork], &i__2, &ierr); |
3239 | | |
3240 | | /* Copy result to VT */ |
3241 | |
|
3242 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3243 | 0 | ldvt); |
3244 | | |
3245 | | /* Generate Q in VT */ |
3246 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3247 | |
|
3248 | 0 | i__2 = *lwork - iwork + 1; |
3249 | 0 | sorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3250 | 0 | work[iwork], &i__2, &ierr); |
3251 | 0 | ie = itau; |
3252 | 0 | itauq = ie + *m; |
3253 | 0 | itaup = itauq + *m; |
3254 | 0 | iwork = itaup + *m; |
3255 | | |
3256 | | /* Zero out above L in A */ |
3257 | |
|
3258 | 0 | i__2 = *m - 1; |
3259 | 0 | i__3 = *m - 1; |
3260 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3261 | 0 | << 1) + 1], lda); |
3262 | | |
3263 | | /* Bidiagonalize L in A */ |
3264 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3265 | |
|
3266 | 0 | i__2 = *lwork - iwork + 1; |
3267 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3268 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3269 | 0 | i__2, &ierr); |
3270 | | |
3271 | | /* Multiply right vectors bidiagonalizing L by Q in VT */ |
3272 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3273 | |
|
3274 | 0 | i__2 = *lwork - iwork + 1; |
3275 | 0 | sormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3276 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3277 | 0 | iwork], &i__2, &ierr); |
3278 | 0 | iwork = ie + *m; |
3279 | | |
3280 | | /* Perform bidiagonal QR iteration, computing right */ |
3281 | | /* singular vectors of A in VT */ |
3282 | | /* (Workspace: need BDSPAC) */ |
3283 | |
|
3284 | 0 | sbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], & |
3285 | 0 | vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, & |
3286 | 0 | work[iwork], info); |
3287 | |
|
3288 | 0 | } |
3289 | |
|
3290 | 0 | } else if (wntuo) { |
3291 | | |
3292 | | /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ |
3293 | | /* M right singular vectors to be computed in VT and */ |
3294 | | /* M left singular vectors to be overwritten on A */ |
3295 | | |
3296 | | /* Computing MAX */ |
3297 | 0 | i__2 = *m << 2; |
3298 | 0 | if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) { |
3299 | | |
3300 | | /* Sufficient workspace for a fast algorithm */ |
3301 | |
|
3302 | 0 | iu = 1; |
3303 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *m) { |
3304 | | |
3305 | | /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ |
3306 | |
|
3307 | 0 | ldwrku = *lda; |
3308 | 0 | ir = iu + ldwrku * *m; |
3309 | 0 | ldwrkr = *lda; |
3310 | 0 | } else if (*lwork >= wrkbl + (*lda + *m) * *m) { |
3311 | | |
3312 | | /* WORK(IU) is LDA by M and WORK(IR) is M by M */ |
3313 | |
|
3314 | 0 | ldwrku = *lda; |
3315 | 0 | ir = iu + ldwrku * *m; |
3316 | 0 | ldwrkr = *m; |
3317 | 0 | } else { |
3318 | | |
3319 | | /* WORK(IU) is M by M and WORK(IR) is M by M */ |
3320 | |
|
3321 | 0 | ldwrku = *m; |
3322 | 0 | ir = iu + ldwrku * *m; |
3323 | 0 | ldwrkr = *m; |
3324 | 0 | } |
3325 | 0 | itau = ir + ldwrkr * *m; |
3326 | 0 | iwork = itau + *m; |
3327 | | |
3328 | | /* Compute A=L*Q */ |
3329 | | /* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ |
3330 | |
|
3331 | 0 | i__2 = *lwork - iwork + 1; |
3332 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3333 | 0 | iwork], &i__2, &ierr); |
3334 | | |
3335 | | /* Copy L to WORK(IU), zeroing out below it */ |
3336 | |
|
3337 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
3338 | 0 | ldwrku); |
3339 | 0 | i__2 = *m - 1; |
3340 | 0 | i__3 = *m - 1; |
3341 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
3342 | 0 | ldwrku], &ldwrku); |
3343 | | |
3344 | | /* Generate Q in A */ |
3345 | | /* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ |
3346 | |
|
3347 | 0 | i__2 = *lwork - iwork + 1; |
3348 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3349 | 0 | work[iwork], &i__2, &ierr); |
3350 | 0 | ie = itau; |
3351 | 0 | itauq = ie + *m; |
3352 | 0 | itaup = itauq + *m; |
3353 | 0 | iwork = itaup + *m; |
3354 | | |
3355 | | /* Bidiagonalize L in WORK(IU), copying result to */ |
3356 | | /* WORK(IR) */ |
3357 | | /* (Workspace: need 2*M*M+4*M, */ |
3358 | | /* prefer 2*M*M+3*M+2*M*NB) */ |
3359 | |
|
3360 | 0 | i__2 = *lwork - iwork + 1; |
3361 | 0 | sgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
3362 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3363 | 0 | i__2, &ierr); |
3364 | 0 | slacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & |
3365 | 0 | ldwrkr); |
3366 | | |
3367 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
3368 | | /* (Workspace: need 2*M*M+4*M-1, */ |
3369 | | /* prefer 2*M*M+3*M+(M-1)*NB) */ |
3370 | |
|
3371 | 0 | i__2 = *lwork - iwork + 1; |
3372 | 0 | sorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
3373 | 0 | , &work[iwork], &i__2, &ierr); |
3374 | | |
3375 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
3376 | | /* (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB) */ |
3377 | |
|
3378 | 0 | i__2 = *lwork - iwork + 1; |
3379 | 0 | sorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] |
3380 | 0 | , &work[iwork], &i__2, &ierr); |
3381 | 0 | iwork = ie + *m; |
3382 | | |
3383 | | /* Perform bidiagonal QR iteration, computing left */ |
3384 | | /* singular vectors of L in WORK(IR) and computing */ |
3385 | | /* right singular vectors of L in WORK(IU) */ |
3386 | | /* (Workspace: need 2*M*M+BDSPAC) */ |
3387 | |
|
3388 | 0 | sbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
3389 | 0 | iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1, |
3390 | 0 | &work[iwork], info); |
3391 | | |
3392 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
3393 | | /* Q in A, storing result in VT */ |
3394 | | /* (Workspace: need M*M) */ |
3395 | |
|
3396 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
3397 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3398 | 0 | ldvt); |
3399 | | |
3400 | | /* Copy left singular vectors of L to A */ |
3401 | | /* (Workspace: need M*M) */ |
3402 | |
|
3403 | 0 | slacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], |
3404 | 0 | lda); |
3405 | |
|
3406 | 0 | } else { |
3407 | | |
3408 | | /* Insufficient workspace for a fast algorithm */ |
3409 | |
|
3410 | 0 | itau = 1; |
3411 | 0 | iwork = itau + *m; |
3412 | | |
3413 | | /* Compute A=L*Q, copying result to VT */ |
3414 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3415 | |
|
3416 | 0 | i__2 = *lwork - iwork + 1; |
3417 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3418 | 0 | iwork], &i__2, &ierr); |
3419 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3420 | 0 | ldvt); |
3421 | | |
3422 | | /* Generate Q in VT */ |
3423 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3424 | |
|
3425 | 0 | i__2 = *lwork - iwork + 1; |
3426 | 0 | sorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3427 | 0 | work[iwork], &i__2, &ierr); |
3428 | 0 | ie = itau; |
3429 | 0 | itauq = ie + *m; |
3430 | 0 | itaup = itauq + *m; |
3431 | 0 | iwork = itaup + *m; |
3432 | | |
3433 | | /* Zero out above L in A */ |
3434 | |
|
3435 | 0 | i__2 = *m - 1; |
3436 | 0 | i__3 = *m - 1; |
3437 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3438 | 0 | << 1) + 1], lda); |
3439 | | |
3440 | | /* Bidiagonalize L in A */ |
3441 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3442 | |
|
3443 | 0 | i__2 = *lwork - iwork + 1; |
3444 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3445 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3446 | 0 | i__2, &ierr); |
3447 | | |
3448 | | /* Multiply right vectors bidiagonalizing L by Q in VT */ |
3449 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3450 | |
|
3451 | 0 | i__2 = *lwork - iwork + 1; |
3452 | 0 | sormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3453 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3454 | 0 | iwork], &i__2, &ierr); |
3455 | | |
3456 | | /* Generate left bidiagonalizing vectors of L in A */ |
3457 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
3458 | |
|
3459 | 0 | i__2 = *lwork - iwork + 1; |
3460 | 0 | sorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], |
3461 | 0 | &work[iwork], &i__2, &ierr); |
3462 | 0 | iwork = ie + *m; |
3463 | | |
3464 | | /* Perform bidiagonal QR iteration, compute left */ |
3465 | | /* singular vectors of A in A and compute right */ |
3466 | | /* singular vectors of A in VT */ |
3467 | | /* (Workspace: need BDSPAC) */ |
3468 | |
|
3469 | 0 | sbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
3470 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, & |
3471 | 0 | c__1, &work[iwork], info); |
3472 | |
|
3473 | 0 | } |
3474 | |
|
3475 | 0 | } else if (wntuas) { |
3476 | | |
3477 | | /* Path 6t(N much larger than M, JOBU='S' or 'A', */ |
3478 | | /* JOBVT='S') */ |
3479 | | /* M right singular vectors to be computed in VT and */ |
3480 | | /* M left singular vectors to be computed in U */ |
3481 | | |
3482 | | /* Computing MAX */ |
3483 | 0 | i__2 = *m << 2; |
3484 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3485 | | |
3486 | | /* Sufficient workspace for a fast algorithm */ |
3487 | |
|
3488 | 0 | iu = 1; |
3489 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3490 | | |
3491 | | /* WORK(IU) is LDA by N */ |
3492 | |
|
3493 | 0 | ldwrku = *lda; |
3494 | 0 | } else { |
3495 | | |
3496 | | /* WORK(IU) is LDA by M */ |
3497 | |
|
3498 | 0 | ldwrku = *m; |
3499 | 0 | } |
3500 | 0 | itau = iu + ldwrku * *m; |
3501 | 0 | iwork = itau + *m; |
3502 | | |
3503 | | /* Compute A=L*Q */ |
3504 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3505 | |
|
3506 | 0 | i__2 = *lwork - iwork + 1; |
3507 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3508 | 0 | iwork], &i__2, &ierr); |
3509 | | |
3510 | | /* Copy L to WORK(IU), zeroing out above it */ |
3511 | |
|
3512 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
3513 | 0 | ldwrku); |
3514 | 0 | i__2 = *m - 1; |
3515 | 0 | i__3 = *m - 1; |
3516 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
3517 | 0 | ldwrku], &ldwrku); |
3518 | | |
3519 | | /* Generate Q in A */ |
3520 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3521 | |
|
3522 | 0 | i__2 = *lwork - iwork + 1; |
3523 | 0 | sorglq_(m, n, m, &a[a_offset], lda, &work[itau], & |
3524 | 0 | work[iwork], &i__2, &ierr); |
3525 | 0 | ie = itau; |
3526 | 0 | itauq = ie + *m; |
3527 | 0 | itaup = itauq + *m; |
3528 | 0 | iwork = itaup + *m; |
3529 | | |
3530 | | /* Bidiagonalize L in WORK(IU), copying result to U */ |
3531 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
3532 | |
|
3533 | 0 | i__2 = *lwork - iwork + 1; |
3534 | 0 | sgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
3535 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3536 | 0 | i__2, &ierr); |
3537 | 0 | slacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], |
3538 | 0 | ldu); |
3539 | | |
3540 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
3541 | | /* (Workspace: need M*M+4*M-1, */ |
3542 | | /* prefer M*M+3*M+(M-1)*NB) */ |
3543 | |
|
3544 | 0 | i__2 = *lwork - iwork + 1; |
3545 | 0 | sorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
3546 | 0 | , &work[iwork], &i__2, &ierr); |
3547 | | |
3548 | | /* Generate left bidiagonalizing vectors in U */ |
3549 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) */ |
3550 | |
|
3551 | 0 | i__2 = *lwork - iwork + 1; |
3552 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
3553 | 0 | &work[iwork], &i__2, &ierr); |
3554 | 0 | iwork = ie + *m; |
3555 | | |
3556 | | /* Perform bidiagonal QR iteration, computing left */ |
3557 | | /* singular vectors of L in U and computing right */ |
3558 | | /* singular vectors of L in WORK(IU) */ |
3559 | | /* (Workspace: need M*M+BDSPAC) */ |
3560 | |
|
3561 | 0 | sbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
3562 | 0 | iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, & |
3563 | 0 | work[iwork], info); |
3564 | | |
3565 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
3566 | | /* Q in A, storing result in VT */ |
3567 | | /* (Workspace: need M*M) */ |
3568 | |
|
3569 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
3570 | 0 | &a[a_offset], lda, &c_b57, &vt[vt_offset], |
3571 | 0 | ldvt); |
3572 | |
|
3573 | 0 | } else { |
3574 | | |
3575 | | /* Insufficient workspace for a fast algorithm */ |
3576 | |
|
3577 | 0 | itau = 1; |
3578 | 0 | iwork = itau + *m; |
3579 | | |
3580 | | /* Compute A=L*Q, copying result to VT */ |
3581 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3582 | |
|
3583 | 0 | i__2 = *lwork - iwork + 1; |
3584 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3585 | 0 | iwork], &i__2, &ierr); |
3586 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3587 | 0 | ldvt); |
3588 | | |
3589 | | /* Generate Q in VT */ |
3590 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3591 | |
|
3592 | 0 | i__2 = *lwork - iwork + 1; |
3593 | 0 | sorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3594 | 0 | work[iwork], &i__2, &ierr); |
3595 | | |
3596 | | /* Copy L to U, zeroing out above it */ |
3597 | |
|
3598 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], |
3599 | 0 | ldu); |
3600 | 0 | i__2 = *m - 1; |
3601 | 0 | i__3 = *m - 1; |
3602 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 |
3603 | 0 | << 1) + 1], ldu); |
3604 | 0 | ie = itau; |
3605 | 0 | itauq = ie + *m; |
3606 | 0 | itaup = itauq + *m; |
3607 | 0 | iwork = itaup + *m; |
3608 | | |
3609 | | /* Bidiagonalize L in U */ |
3610 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3611 | |
|
3612 | 0 | i__2 = *lwork - iwork + 1; |
3613 | 0 | sgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], & |
3614 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3615 | 0 | i__2, &ierr); |
3616 | | |
3617 | | /* Multiply right bidiagonalizing vectors in U by Q */ |
3618 | | /* in VT */ |
3619 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3620 | |
|
3621 | 0 | i__2 = *lwork - iwork + 1; |
3622 | 0 | sormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, & |
3623 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3624 | 0 | iwork], &i__2, &ierr); |
3625 | | |
3626 | | /* Generate left bidiagonalizing vectors in U */ |
3627 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
3628 | |
|
3629 | 0 | i__2 = *lwork - iwork + 1; |
3630 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
3631 | 0 | &work[iwork], &i__2, &ierr); |
3632 | 0 | iwork = ie + *m; |
3633 | | |
3634 | | /* Perform bidiagonal QR iteration, computing left */ |
3635 | | /* singular vectors of A in U and computing right */ |
3636 | | /* singular vectors of A in VT */ |
3637 | | /* (Workspace: need BDSPAC) */ |
3638 | |
|
3639 | 0 | sbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
3640 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
3641 | 0 | c__1, &work[iwork], info); |
3642 | |
|
3643 | 0 | } |
3644 | |
|
3645 | 0 | } |
3646 | |
|
3647 | 0 | } else if (wntva) { |
3648 | |
|
3649 | 0 | if (wntun) { |
3650 | | |
3651 | | /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ |
3652 | | /* N right singular vectors to be computed in VT and */ |
3653 | | /* no left singular vectors to be computed */ |
3654 | | |
3655 | | /* Computing MAX */ |
3656 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
3657 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
3658 | | |
3659 | | /* Sufficient workspace for a fast algorithm */ |
3660 | |
|
3661 | 0 | ir = 1; |
3662 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
3663 | | |
3664 | | /* WORK(IR) is LDA by M */ |
3665 | |
|
3666 | 0 | ldwrkr = *lda; |
3667 | 0 | } else { |
3668 | | |
3669 | | /* WORK(IR) is M by M */ |
3670 | |
|
3671 | 0 | ldwrkr = *m; |
3672 | 0 | } |
3673 | 0 | itau = ir + ldwrkr * *m; |
3674 | 0 | iwork = itau + *m; |
3675 | | |
3676 | | /* Compute A=L*Q, copying result to VT */ |
3677 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
3678 | |
|
3679 | 0 | i__2 = *lwork - iwork + 1; |
3680 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3681 | 0 | iwork], &i__2, &ierr); |
3682 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3683 | 0 | ldvt); |
3684 | | |
3685 | | /* Copy L to WORK(IR), zeroing out above it */ |
3686 | |
|
3687 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[ir], & |
3688 | 0 | ldwrkr); |
3689 | 0 | i__2 = *m - 1; |
3690 | 0 | i__3 = *m - 1; |
3691 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir + |
3692 | 0 | ldwrkr], &ldwrkr); |
3693 | | |
3694 | | /* Generate Q in VT */ |
3695 | | /* (Workspace: need M*M+M+N, prefer M*M+M+N*NB) */ |
3696 | |
|
3697 | 0 | i__2 = *lwork - iwork + 1; |
3698 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3699 | 0 | work[iwork], &i__2, &ierr); |
3700 | 0 | ie = itau; |
3701 | 0 | itauq = ie + *m; |
3702 | 0 | itaup = itauq + *m; |
3703 | 0 | iwork = itaup + *m; |
3704 | | |
3705 | | /* Bidiagonalize L in WORK(IR) */ |
3706 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
3707 | |
|
3708 | 0 | i__2 = *lwork - iwork + 1; |
3709 | 0 | sgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], & |
3710 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3711 | 0 | i__2, &ierr); |
3712 | | |
3713 | | /* Generate right bidiagonalizing vectors in WORK(IR) */ |
3714 | | /* (Workspace: need M*M+4*M-1, */ |
3715 | | /* prefer M*M+3*M+(M-1)*NB) */ |
3716 | |
|
3717 | 0 | i__2 = *lwork - iwork + 1; |
3718 | 0 | sorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] |
3719 | 0 | , &work[iwork], &i__2, &ierr); |
3720 | 0 | iwork = ie + *m; |
3721 | | |
3722 | | /* Perform bidiagonal QR iteration, computing right */ |
3723 | | /* singular vectors of L in WORK(IR) */ |
3724 | | /* (Workspace: need M*M+BDSPAC) */ |
3725 | |
|
3726 | 0 | sbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], & |
3727 | 0 | work[ir], &ldwrkr, dum, &c__1, dum, &c__1, & |
3728 | 0 | work[iwork], info); |
3729 | | |
3730 | | /* Multiply right singular vectors of L in WORK(IR) by */ |
3731 | | /* Q in VT, storing result in A */ |
3732 | | /* (Workspace: need M*M) */ |
3733 | |
|
3734 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr, |
3735 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
3736 | 0 | lda); |
3737 | | |
3738 | | /* Copy right singular vectors of A from A to VT */ |
3739 | |
|
3740 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
3741 | 0 | ldvt); |
3742 | |
|
3743 | 0 | } else { |
3744 | | |
3745 | | /* Insufficient workspace for a fast algorithm */ |
3746 | |
|
3747 | 0 | itau = 1; |
3748 | 0 | iwork = itau + *m; |
3749 | | |
3750 | | /* Compute A=L*Q, copying result to VT */ |
3751 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3752 | |
|
3753 | 0 | i__2 = *lwork - iwork + 1; |
3754 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3755 | 0 | iwork], &i__2, &ierr); |
3756 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3757 | 0 | ldvt); |
3758 | | |
3759 | | /* Generate Q in VT */ |
3760 | | /* (Workspace: need M+N, prefer M+N*NB) */ |
3761 | |
|
3762 | 0 | i__2 = *lwork - iwork + 1; |
3763 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3764 | 0 | work[iwork], &i__2, &ierr); |
3765 | 0 | ie = itau; |
3766 | 0 | itauq = ie + *m; |
3767 | 0 | itaup = itauq + *m; |
3768 | 0 | iwork = itaup + *m; |
3769 | | |
3770 | | /* Zero out above L in A */ |
3771 | |
|
3772 | 0 | i__2 = *m - 1; |
3773 | 0 | i__3 = *m - 1; |
3774 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3775 | 0 | << 1) + 1], lda); |
3776 | | |
3777 | | /* Bidiagonalize L in A */ |
3778 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3779 | |
|
3780 | 0 | i__2 = *lwork - iwork + 1; |
3781 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3782 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3783 | 0 | i__2, &ierr); |
3784 | | |
3785 | | /* Multiply right bidiagonalizing vectors in A by Q */ |
3786 | | /* in VT */ |
3787 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3788 | |
|
3789 | 0 | i__2 = *lwork - iwork + 1; |
3790 | 0 | sormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3791 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3792 | 0 | iwork], &i__2, &ierr); |
3793 | 0 | iwork = ie + *m; |
3794 | | |
3795 | | /* Perform bidiagonal QR iteration, computing right */ |
3796 | | /* singular vectors of A in VT */ |
3797 | | /* (Workspace: need BDSPAC) */ |
3798 | |
|
3799 | 0 | sbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], & |
3800 | 0 | vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, & |
3801 | 0 | work[iwork], info); |
3802 | |
|
3803 | 0 | } |
3804 | |
|
3805 | 0 | } else if (wntuo) { |
3806 | | |
3807 | | /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ |
3808 | | /* N right singular vectors to be computed in VT and */ |
3809 | | /* M left singular vectors to be overwritten on A */ |
3810 | | |
3811 | | /* Computing MAX */ |
3812 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
3813 | 0 | if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) { |
3814 | | |
3815 | | /* Sufficient workspace for a fast algorithm */ |
3816 | |
|
3817 | 0 | iu = 1; |
3818 | 0 | if (*lwork >= wrkbl + (*lda << 1) * *m) { |
3819 | | |
3820 | | /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ |
3821 | |
|
3822 | 0 | ldwrku = *lda; |
3823 | 0 | ir = iu + ldwrku * *m; |
3824 | 0 | ldwrkr = *lda; |
3825 | 0 | } else if (*lwork >= wrkbl + (*lda + *m) * *m) { |
3826 | | |
3827 | | /* WORK(IU) is LDA by M and WORK(IR) is M by M */ |
3828 | |
|
3829 | 0 | ldwrku = *lda; |
3830 | 0 | ir = iu + ldwrku * *m; |
3831 | 0 | ldwrkr = *m; |
3832 | 0 | } else { |
3833 | | |
3834 | | /* WORK(IU) is M by M and WORK(IR) is M by M */ |
3835 | |
|
3836 | 0 | ldwrku = *m; |
3837 | 0 | ir = iu + ldwrku * *m; |
3838 | 0 | ldwrkr = *m; |
3839 | 0 | } |
3840 | 0 | itau = ir + ldwrkr * *m; |
3841 | 0 | iwork = itau + *m; |
3842 | | |
3843 | | /* Compute A=L*Q, copying result to VT */ |
3844 | | /* (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ |
3845 | |
|
3846 | 0 | i__2 = *lwork - iwork + 1; |
3847 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3848 | 0 | iwork], &i__2, &ierr); |
3849 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3850 | 0 | ldvt); |
3851 | | |
3852 | | /* Generate Q in VT */ |
3853 | | /* (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) */ |
3854 | |
|
3855 | 0 | i__2 = *lwork - iwork + 1; |
3856 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3857 | 0 | work[iwork], &i__2, &ierr); |
3858 | | |
3859 | | /* Copy L to WORK(IU), zeroing out above it */ |
3860 | |
|
3861 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
3862 | 0 | ldwrku); |
3863 | 0 | i__2 = *m - 1; |
3864 | 0 | i__3 = *m - 1; |
3865 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
3866 | 0 | ldwrku], &ldwrku); |
3867 | 0 | ie = itau; |
3868 | 0 | itauq = ie + *m; |
3869 | 0 | itaup = itauq + *m; |
3870 | 0 | iwork = itaup + *m; |
3871 | | |
3872 | | /* Bidiagonalize L in WORK(IU), copying result to */ |
3873 | | /* WORK(IR) */ |
3874 | | /* (Workspace: need 2*M*M+4*M, */ |
3875 | | /* prefer 2*M*M+3*M+2*M*NB) */ |
3876 | |
|
3877 | 0 | i__2 = *lwork - iwork + 1; |
3878 | 0 | sgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
3879 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3880 | 0 | i__2, &ierr); |
3881 | 0 | slacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & |
3882 | 0 | ldwrkr); |
3883 | | |
3884 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
3885 | | /* (Workspace: need 2*M*M+4*M-1, */ |
3886 | | /* prefer 2*M*M+3*M+(M-1)*NB) */ |
3887 | |
|
3888 | 0 | i__2 = *lwork - iwork + 1; |
3889 | 0 | sorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
3890 | 0 | , &work[iwork], &i__2, &ierr); |
3891 | | |
3892 | | /* Generate left bidiagonalizing vectors in WORK(IR) */ |
3893 | | /* (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB) */ |
3894 | |
|
3895 | 0 | i__2 = *lwork - iwork + 1; |
3896 | 0 | sorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] |
3897 | 0 | , &work[iwork], &i__2, &ierr); |
3898 | 0 | iwork = ie + *m; |
3899 | | |
3900 | | /* Perform bidiagonal QR iteration, computing left */ |
3901 | | /* singular vectors of L in WORK(IR) and computing */ |
3902 | | /* right singular vectors of L in WORK(IU) */ |
3903 | | /* (Workspace: need 2*M*M+BDSPAC) */ |
3904 | |
|
3905 | 0 | sbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
3906 | 0 | iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1, |
3907 | 0 | &work[iwork], info); |
3908 | | |
3909 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
3910 | | /* Q in VT, storing result in A */ |
3911 | | /* (Workspace: need M*M) */ |
3912 | |
|
3913 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
3914 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
3915 | 0 | lda); |
3916 | | |
3917 | | /* Copy right singular vectors of A from A to VT */ |
3918 | |
|
3919 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
3920 | 0 | ldvt); |
3921 | | |
3922 | | /* Copy left singular vectors of A from WORK(IR) to A */ |
3923 | |
|
3924 | 0 | slacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], |
3925 | 0 | lda); |
3926 | |
|
3927 | 0 | } else { |
3928 | | |
3929 | | /* Insufficient workspace for a fast algorithm */ |
3930 | |
|
3931 | 0 | itau = 1; |
3932 | 0 | iwork = itau + *m; |
3933 | | |
3934 | | /* Compute A=L*Q, copying result to VT */ |
3935 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
3936 | |
|
3937 | 0 | i__2 = *lwork - iwork + 1; |
3938 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
3939 | 0 | iwork], &i__2, &ierr); |
3940 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
3941 | 0 | ldvt); |
3942 | | |
3943 | | /* Generate Q in VT */ |
3944 | | /* (Workspace: need M+N, prefer M+N*NB) */ |
3945 | |
|
3946 | 0 | i__2 = *lwork - iwork + 1; |
3947 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
3948 | 0 | work[iwork], &i__2, &ierr); |
3949 | 0 | ie = itau; |
3950 | 0 | itauq = ie + *m; |
3951 | 0 | itaup = itauq + *m; |
3952 | 0 | iwork = itaup + *m; |
3953 | | |
3954 | | /* Zero out above L in A */ |
3955 | |
|
3956 | 0 | i__2 = *m - 1; |
3957 | 0 | i__3 = *m - 1; |
3958 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 |
3959 | 0 | << 1) + 1], lda); |
3960 | | |
3961 | | /* Bidiagonalize L in A */ |
3962 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
3963 | |
|
3964 | 0 | i__2 = *lwork - iwork + 1; |
3965 | 0 | sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], & |
3966 | 0 | work[itauq], &work[itaup], &work[iwork], & |
3967 | 0 | i__2, &ierr); |
3968 | | |
3969 | | /* Multiply right bidiagonalizing vectors in A by Q */ |
3970 | | /* in VT */ |
3971 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
3972 | |
|
3973 | 0 | i__2 = *lwork - iwork + 1; |
3974 | 0 | sormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, & |
3975 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
3976 | 0 | iwork], &i__2, &ierr); |
3977 | | |
3978 | | /* Generate left bidiagonalizing vectors in A */ |
3979 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
3980 | |
|
3981 | 0 | i__2 = *lwork - iwork + 1; |
3982 | 0 | sorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], |
3983 | 0 | &work[iwork], &i__2, &ierr); |
3984 | 0 | iwork = ie + *m; |
3985 | | |
3986 | | /* Perform bidiagonal QR iteration, computing left */ |
3987 | | /* singular vectors of A in A and computing right */ |
3988 | | /* singular vectors of A in VT */ |
3989 | | /* (Workspace: need BDSPAC) */ |
3990 | |
|
3991 | 0 | sbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
3992 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, & |
3993 | 0 | c__1, &work[iwork], info); |
3994 | |
|
3995 | 0 | } |
3996 | |
|
3997 | 0 | } else if (wntuas) { |
3998 | | |
3999 | | /* Path 9t(N much larger than M, JOBU='S' or 'A', */ |
4000 | | /* JOBVT='A') */ |
4001 | | /* N right singular vectors to be computed in VT and */ |
4002 | | /* M left singular vectors to be computed in U */ |
4003 | | |
4004 | | /* Computing MAX */ |
4005 | 0 | i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3); |
4006 | 0 | if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) { |
4007 | | |
4008 | | /* Sufficient workspace for a fast algorithm */ |
4009 | |
|
4010 | 0 | iu = 1; |
4011 | 0 | if (*lwork >= wrkbl + *lda * *m) { |
4012 | | |
4013 | | /* WORK(IU) is LDA by M */ |
4014 | |
|
4015 | 0 | ldwrku = *lda; |
4016 | 0 | } else { |
4017 | | |
4018 | | /* WORK(IU) is M by M */ |
4019 | |
|
4020 | 0 | ldwrku = *m; |
4021 | 0 | } |
4022 | 0 | itau = iu + ldwrku * *m; |
4023 | 0 | iwork = itau + *m; |
4024 | | |
4025 | | /* Compute A=L*Q, copying result to VT */ |
4026 | | /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
4027 | |
|
4028 | 0 | i__2 = *lwork - iwork + 1; |
4029 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4030 | 0 | iwork], &i__2, &ierr); |
4031 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4032 | 0 | ldvt); |
4033 | | |
4034 | | /* Generate Q in VT */ |
4035 | | /* (Workspace: need M*M+M+N, prefer M*M+M+N*NB) */ |
4036 | |
|
4037 | 0 | i__2 = *lwork - iwork + 1; |
4038 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4039 | 0 | work[iwork], &i__2, &ierr); |
4040 | | |
4041 | | /* Copy L to WORK(IU), zeroing out above it */ |
4042 | |
|
4043 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &work[iu], & |
4044 | 0 | ldwrku); |
4045 | 0 | i__2 = *m - 1; |
4046 | 0 | i__3 = *m - 1; |
4047 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu + |
4048 | 0 | ldwrku], &ldwrku); |
4049 | 0 | ie = itau; |
4050 | 0 | itauq = ie + *m; |
4051 | 0 | itaup = itauq + *m; |
4052 | 0 | iwork = itaup + *m; |
4053 | | |
4054 | | /* Bidiagonalize L in WORK(IU), copying result to U */ |
4055 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
4056 | |
|
4057 | 0 | i__2 = *lwork - iwork + 1; |
4058 | 0 | sgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], & |
4059 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4060 | 0 | i__2, &ierr); |
4061 | 0 | slacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], |
4062 | 0 | ldu); |
4063 | | |
4064 | | /* Generate right bidiagonalizing vectors in WORK(IU) */ |
4065 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB) */ |
4066 | |
|
4067 | 0 | i__2 = *lwork - iwork + 1; |
4068 | 0 | sorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] |
4069 | 0 | , &work[iwork], &i__2, &ierr); |
4070 | | |
4071 | | /* Generate left bidiagonalizing vectors in U */ |
4072 | | /* (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) */ |
4073 | |
|
4074 | 0 | i__2 = *lwork - iwork + 1; |
4075 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
4076 | 0 | &work[iwork], &i__2, &ierr); |
4077 | 0 | iwork = ie + *m; |
4078 | | |
4079 | | /* Perform bidiagonal QR iteration, computing left */ |
4080 | | /* singular vectors of L in U and computing right */ |
4081 | | /* singular vectors of L in WORK(IU) */ |
4082 | | /* (Workspace: need M*M+BDSPAC) */ |
4083 | |
|
4084 | 0 | sbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ |
4085 | 0 | iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, & |
4086 | 0 | work[iwork], info); |
4087 | | |
4088 | | /* Multiply right singular vectors of L in WORK(IU) by */ |
4089 | | /* Q in VT, storing result in A */ |
4090 | | /* (Workspace: need M*M) */ |
4091 | |
|
4092 | 0 | sgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku, |
4093 | 0 | &vt[vt_offset], ldvt, &c_b57, &a[a_offset], |
4094 | 0 | lda); |
4095 | | |
4096 | | /* Copy right singular vectors of A from A to VT */ |
4097 | |
|
4098 | 0 | slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], |
4099 | 0 | ldvt); |
4100 | |
|
4101 | 0 | } else { |
4102 | | |
4103 | | /* Insufficient workspace for a fast algorithm */ |
4104 | |
|
4105 | 0 | itau = 1; |
4106 | 0 | iwork = itau + *m; |
4107 | | |
4108 | | /* Compute A=L*Q, copying result to VT */ |
4109 | | /* (Workspace: need 2*M, prefer M+M*NB) */ |
4110 | |
|
4111 | 0 | i__2 = *lwork - iwork + 1; |
4112 | 0 | sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ |
4113 | 0 | iwork], &i__2, &ierr); |
4114 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], |
4115 | 0 | ldvt); |
4116 | | |
4117 | | /* Generate Q in VT */ |
4118 | | /* (Workspace: need M+N, prefer M+N*NB) */ |
4119 | |
|
4120 | 0 | i__2 = *lwork - iwork + 1; |
4121 | 0 | sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & |
4122 | 0 | work[iwork], &i__2, &ierr); |
4123 | | |
4124 | | /* Copy L to U, zeroing out above it */ |
4125 | |
|
4126 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], |
4127 | 0 | ldu); |
4128 | 0 | i__2 = *m - 1; |
4129 | 0 | i__3 = *m - 1; |
4130 | 0 | slaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 |
4131 | 0 | << 1) + 1], ldu); |
4132 | 0 | ie = itau; |
4133 | 0 | itauq = ie + *m; |
4134 | 0 | itaup = itauq + *m; |
4135 | 0 | iwork = itaup + *m; |
4136 | | |
4137 | | /* Bidiagonalize L in U */ |
4138 | | /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
4139 | |
|
4140 | 0 | i__2 = *lwork - iwork + 1; |
4141 | 0 | sgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], & |
4142 | 0 | work[itauq], &work[itaup], &work[iwork], & |
4143 | 0 | i__2, &ierr); |
4144 | | |
4145 | | /* Multiply right bidiagonalizing vectors in U by Q */ |
4146 | | /* in VT */ |
4147 | | /* (Workspace: need 3*M+N, prefer 3*M+N*NB) */ |
4148 | |
|
4149 | 0 | i__2 = *lwork - iwork + 1; |
4150 | 0 | sormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, & |
4151 | 0 | work[itaup], &vt[vt_offset], ldvt, &work[ |
4152 | 0 | iwork], &i__2, &ierr); |
4153 | | |
4154 | | /* Generate left bidiagonalizing vectors in U */ |
4155 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
4156 | |
|
4157 | 0 | i__2 = *lwork - iwork + 1; |
4158 | 0 | sorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], |
4159 | 0 | &work[iwork], &i__2, &ierr); |
4160 | 0 | iwork = ie + *m; |
4161 | | |
4162 | | /* Perform bidiagonal QR iteration, computing left */ |
4163 | | /* singular vectors of A in U and computing right */ |
4164 | | /* singular vectors of A in VT */ |
4165 | | /* (Workspace: need BDSPAC) */ |
4166 | |
|
4167 | 0 | sbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[ |
4168 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, & |
4169 | 0 | c__1, &work[iwork], info); |
4170 | |
|
4171 | 0 | } |
4172 | |
|
4173 | 0 | } |
4174 | |
|
4175 | 0 | } |
4176 | |
|
4177 | 0 | } else { |
4178 | | |
4179 | | /* N .LT. MNTHR */ |
4180 | | |
4181 | | /* Path 10t(N greater than M, but not much larger) */ |
4182 | | /* Reduce to bidiagonal form without LQ decomposition */ |
4183 | |
|
4184 | 0 | ie = 1; |
4185 | 0 | itauq = ie + *m; |
4186 | 0 | itaup = itauq + *m; |
4187 | 0 | iwork = itaup + *m; |
4188 | | |
4189 | | /* Bidiagonalize A */ |
4190 | | /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */ |
4191 | |
|
4192 | 0 | i__2 = *lwork - iwork + 1; |
4193 | 0 | sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
4194 | 0 | work[itaup], &work[iwork], &i__2, &ierr); |
4195 | 0 | if (wntuas) { |
4196 | | |
4197 | | /* If left singular vectors desired in U, copy result to U */ |
4198 | | /* and generate left bidiagonalizing vectors in U */ |
4199 | | /* (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB) */ |
4200 | |
|
4201 | 0 | slacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); |
4202 | 0 | i__2 = *lwork - iwork + 1; |
4203 | 0 | sorgbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ |
4204 | 0 | iwork], &i__2, &ierr); |
4205 | 0 | } |
4206 | 0 | if (wntvas) { |
4207 | | |
4208 | | /* If right singular vectors desired in VT, copy result to */ |
4209 | | /* VT and generate right bidiagonalizing vectors in VT */ |
4210 | | /* (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB) */ |
4211 | |
|
4212 | 0 | slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
4213 | 0 | if (wntva) { |
4214 | 0 | nrvt = *n; |
4215 | 0 | } |
4216 | 0 | if (wntvs) { |
4217 | 0 | nrvt = *m; |
4218 | 0 | } |
4219 | 0 | i__2 = *lwork - iwork + 1; |
4220 | 0 | sorgbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup], |
4221 | 0 | &work[iwork], &i__2, &ierr); |
4222 | 0 | } |
4223 | 0 | if (wntuo) { |
4224 | | |
4225 | | /* If left singular vectors desired in A, generate left */ |
4226 | | /* bidiagonalizing vectors in A */ |
4227 | | /* (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB) */ |
4228 | |
|
4229 | 0 | i__2 = *lwork - iwork + 1; |
4230 | 0 | sorgbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[ |
4231 | 0 | iwork], &i__2, &ierr); |
4232 | 0 | } |
4233 | 0 | if (wntvo) { |
4234 | | |
4235 | | /* If right singular vectors desired in A, generate right */ |
4236 | | /* bidiagonalizing vectors in A */ |
4237 | | /* (Workspace: need 4*M, prefer 3*M+M*NB) */ |
4238 | |
|
4239 | 0 | i__2 = *lwork - iwork + 1; |
4240 | 0 | sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ |
4241 | 0 | iwork], &i__2, &ierr); |
4242 | 0 | } |
4243 | 0 | iwork = ie + *m; |
4244 | 0 | if (wntuas || wntuo) { |
4245 | 0 | nru = *m; |
4246 | 0 | } |
4247 | 0 | if (wntun) { |
4248 | 0 | nru = 0; |
4249 | 0 | } |
4250 | 0 | if (wntvas || wntvo) { |
4251 | 0 | ncvt = *n; |
4252 | 0 | } |
4253 | 0 | if (wntvn) { |
4254 | 0 | ncvt = 0; |
4255 | 0 | } |
4256 | 0 | if (! wntuo && ! wntvo) { |
4257 | | |
4258 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4259 | | /* left singular vectors in U and computing right singular */ |
4260 | | /* vectors in VT */ |
4261 | | /* (Workspace: need BDSPAC) */ |
4262 | |
|
4263 | 0 | sbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
4264 | 0 | vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, & |
4265 | 0 | work[iwork], info); |
4266 | 0 | } else if (! wntuo && wntvo) { |
4267 | | |
4268 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4269 | | /* left singular vectors in U and computing right singular */ |
4270 | | /* vectors in A */ |
4271 | | /* (Workspace: need BDSPAC) */ |
4272 | |
|
4273 | 0 | sbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[ |
4274 | 0 | a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[ |
4275 | 0 | iwork], info); |
4276 | 0 | } else { |
4277 | | |
4278 | | /* Perform bidiagonal QR iteration, if desired, computing */ |
4279 | | /* left singular vectors in A and computing right singular */ |
4280 | | /* vectors in VT */ |
4281 | | /* (Workspace: need BDSPAC) */ |
4282 | |
|
4283 | 0 | sbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[ |
4284 | 0 | vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, & |
4285 | 0 | work[iwork], info); |
4286 | 0 | } |
4287 | |
|
4288 | 0 | } |
4289 | |
|
4290 | 0 | } |
4291 | | |
4292 | | /* If SBDSQR failed to converge, copy unconverged superdiagonals */ |
4293 | | /* to WORK( 2:MINMN ) */ |
4294 | |
|
4295 | 0 | if (*info != 0) { |
4296 | 0 | if (ie > 2) { |
4297 | 0 | i__2 = minmn - 1; |
4298 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
4299 | 0 | work[i__ + 1] = work[i__ + ie - 1]; |
4300 | | /* L50: */ |
4301 | 0 | } |
4302 | 0 | } |
4303 | 0 | if (ie < 2) { |
4304 | 0 | for (i__ = minmn - 1; i__ >= 1; --i__) { |
4305 | 0 | work[i__ + 1] = work[i__ + ie - 1]; |
4306 | | /* L60: */ |
4307 | 0 | } |
4308 | 0 | } |
4309 | 0 | } |
4310 | | |
4311 | | /* Undo scaling if necessary */ |
4312 | |
|
4313 | 0 | if (iscl == 1) { |
4314 | 0 | if (anrm > bignum) { |
4315 | 0 | slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & |
4316 | 0 | minmn, &ierr); |
4317 | 0 | } |
4318 | 0 | if (*info != 0 && anrm > bignum) { |
4319 | 0 | i__2 = minmn - 1; |
4320 | 0 | slascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &work[2], |
4321 | 0 | &minmn, &ierr); |
4322 | 0 | } |
4323 | 0 | if (anrm < smlnum) { |
4324 | 0 | slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & |
4325 | 0 | minmn, &ierr); |
4326 | 0 | } |
4327 | 0 | if (*info != 0 && anrm < smlnum) { |
4328 | 0 | i__2 = minmn - 1; |
4329 | 0 | slascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &work[2], |
4330 | 0 | &minmn, &ierr); |
4331 | 0 | } |
4332 | 0 | } |
4333 | | |
4334 | | /* Return optimal workspace in WORK(1) */ |
4335 | |
|
4336 | 0 | work[1] = (real) maxwrk; |
4337 | |
|
4338 | 0 | return; |
4339 | | |
4340 | | /* End of SGESVD */ |
4341 | |
|
4342 | 0 | } /* sgesvd_ */ |
4343 | | |