Coverage Report

Created: 2025-09-12 18:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dlasq3.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr. */
514
515
/*  =========== DOCUMENTATION =========== */
516
517
/* Online html documentation available at */
518
/*            http://www.netlib.org/lapack/explore-html/ */
519
520
/* > \htmlonly */
521
/* > Download DLASQ3 + dependencies */
522
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq3.
523
f"> */
524
/* > [TGZ]</a> */
525
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq3.
526
f"> */
527
/* > [ZIP]</a> */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq3.
529
f"> */
530
/* > [TXT]</a> */
531
/* > \endhtmlonly */
532
533
/*  Definition: */
534
/*  =========== */
535
536
/*       SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, */
537
/*                          ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, */
538
/*                          DN2, G, TAU ) */
539
540
/*       LOGICAL            IEEE */
541
/*       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP */
542
/*       DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, */
543
/*      $                   QMAX, SIGMA, TAU */
544
/*       DOUBLE PRECISION   Z( * ) */
545
546
547
/* > \par Purpose: */
548
/*  ============= */
549
/* > */
550
/* > \verbatim */
551
/* > */
552
/* > DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. */
553
/* > In case of failure it changes shifts, and tries again until output */
554
/* > is positive. */
555
/* > \endverbatim */
556
557
/*  Arguments: */
558
/*  ========== */
559
560
/* > \param[in] I0 */
561
/* > \verbatim */
562
/* >          I0 is INTEGER */
563
/* >         First index. */
564
/* > \endverbatim */
565
/* > */
566
/* > \param[in,out] N0 */
567
/* > \verbatim */
568
/* >          N0 is INTEGER */
569
/* >         Last index. */
570
/* > \endverbatim */
571
/* > */
572
/* > \param[in,out] Z */
573
/* > \verbatim */
574
/* >          Z is DOUBLE PRECISION array, dimension ( 4*N0 ) */
575
/* >         Z holds the qd array. */
576
/* > \endverbatim */
577
/* > */
578
/* > \param[in,out] PP */
579
/* > \verbatim */
580
/* >          PP is INTEGER */
581
/* >         PP=0 for ping, PP=1 for pong. */
582
/* >         PP=2 indicates that flipping was applied to the Z array */
583
/* >         and that the initial tests for deflation should not be */
584
/* >         performed. */
585
/* > \endverbatim */
586
/* > */
587
/* > \param[out] DMIN */
588
/* > \verbatim */
589
/* >          DMIN is DOUBLE PRECISION */
590
/* >         Minimum value of d. */
591
/* > \endverbatim */
592
/* > */
593
/* > \param[out] SIGMA */
594
/* > \verbatim */
595
/* >          SIGMA is DOUBLE PRECISION */
596
/* >         Sum of shifts used in current segment. */
597
/* > \endverbatim */
598
/* > */
599
/* > \param[in,out] DESIG */
600
/* > \verbatim */
601
/* >          DESIG is DOUBLE PRECISION */
602
/* >         Lower order part of SIGMA */
603
/* > \endverbatim */
604
/* > */
605
/* > \param[in] QMAX */
606
/* > \verbatim */
607
/* >          QMAX is DOUBLE PRECISION */
608
/* >         Maximum value of q. */
609
/* > \endverbatim */
610
/* > */
611
/* > \param[in,out] NFAIL */
612
/* > \verbatim */
613
/* >          NFAIL is INTEGER */
614
/* >         Increment NFAIL by 1 each time the shift was too big. */
615
/* > \endverbatim */
616
/* > */
617
/* > \param[in,out] ITER */
618
/* > \verbatim */
619
/* >          ITER is INTEGER */
620
/* >         Increment ITER by 1 for each iteration. */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[in,out] NDIV */
624
/* > \verbatim */
625
/* >          NDIV is INTEGER */
626
/* >         Increment NDIV by 1 for each division. */
627
/* > \endverbatim */
628
/* > */
629
/* > \param[in] IEEE */
630
/* > \verbatim */
631
/* >          IEEE is LOGICAL */
632
/* >         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5). */
633
/* > \endverbatim */
634
/* > */
635
/* > \param[in,out] TTYPE */
636
/* > \verbatim */
637
/* >          TTYPE is INTEGER */
638
/* >         Shift type. */
639
/* > \endverbatim */
640
/* > */
641
/* > \param[in,out] DMIN1 */
642
/* > \verbatim */
643
/* >          DMIN1 is DOUBLE PRECISION */
644
/* > \endverbatim */
645
/* > */
646
/* > \param[in,out] DMIN2 */
647
/* > \verbatim */
648
/* >          DMIN2 is DOUBLE PRECISION */
649
/* > \endverbatim */
650
/* > */
651
/* > \param[in,out] DN */
652
/* > \verbatim */
653
/* >          DN is DOUBLE PRECISION */
654
/* > \endverbatim */
655
/* > */
656
/* > \param[in,out] DN1 */
657
/* > \verbatim */
658
/* >          DN1 is DOUBLE PRECISION */
659
/* > \endverbatim */
660
/* > */
661
/* > \param[in,out] DN2 */
662
/* > \verbatim */
663
/* >          DN2 is DOUBLE PRECISION */
664
/* > \endverbatim */
665
/* > */
666
/* > \param[in,out] G */
667
/* > \verbatim */
668
/* >          G is DOUBLE PRECISION */
669
/* > \endverbatim */
670
/* > */
671
/* > \param[in,out] TAU */
672
/* > \verbatim */
673
/* >          TAU is DOUBLE PRECISION */
674
/* > */
675
/* >         These are passed as arguments in order to save their values */
676
/* >         between calls to DLASQ3. */
677
/* > \endverbatim */
678
679
/*  Authors: */
680
/*  ======== */
681
682
/* > \author Univ. of Tennessee */
683
/* > \author Univ. of California Berkeley */
684
/* > \author Univ. of Colorado Denver */
685
/* > \author NAG Ltd. */
686
687
/* > \date June 2016 */
688
689
/* > \ingroup auxOTHERcomputational */
690
691
/*  ===================================================================== */
692
/* Subroutine */ void dlasq3_(integer *i0, integer *n0, doublereal *z__, 
693
  integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig,
694
   doublereal *qmax, integer *nfail, integer *iter, integer *ndiv, 
695
  logical *ieee, integer *ttype, doublereal *dmin1, doublereal *dmin2, 
696
  doublereal *dn, doublereal *dn1, doublereal *dn2, doublereal *g, 
697
  doublereal *tau)
698
0
{
699
    /* System generated locals */
700
0
    integer i__1;
701
0
    doublereal d__1, d__2;
702
703
    /* Local variables */
704
0
    doublereal temp, s, t;
705
0
    integer j4;
706
0
    extern /* Subroutine */ void dlasq4_(integer *, integer *, doublereal *, 
707
0
      integer *, integer *, doublereal *, doublereal *, doublereal *, 
708
0
      doublereal *, doublereal *, doublereal *, doublereal *, integer *,
709
0
       doublereal *), dlasq5_(integer *, integer *, doublereal *, 
710
0
      integer *, doublereal *, doublereal *, doublereal *, doublereal *,
711
0
       doublereal *, doublereal *, doublereal *, doublereal *, logical *
712
0
      , doublereal *), dlasq6_(integer *, integer *, doublereal *, 
713
0
      integer *, doublereal *, doublereal *, doublereal *, doublereal *,
714
0
       doublereal *, doublereal *);
715
0
    extern doublereal dlamch_(char *);
716
0
    integer nn;
717
0
    extern logical disnan_(doublereal *);
718
0
    doublereal eps, tol;
719
0
    integer n0in, ipn4;
720
0
    doublereal tol2;
721
722
723
/*  -- LAPACK computational routine (version 3.7.0) -- */
724
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
725
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
726
/*     June 2016 */
727
728
729
/*  ===================================================================== */
730
731
732
    /* Parameter adjustments */
733
0
    --z__;
734
735
    /* Function Body */
736
0
    n0in = *n0;
737
0
    eps = dlamch_("Precision");
738
0
    tol = eps * 100.;
739
/* Computing 2nd power */
740
0
    d__1 = tol;
741
0
    tol2 = d__1 * d__1;
742
743
/*     Check for deflation. */
744
745
0
L10:
746
747
0
    if (*n0 < *i0) {
748
0
  return;
749
0
    }
750
0
    if (*n0 == *i0) {
751
0
  goto L20;
752
0
    }
753
0
    nn = (*n0 << 2) + *pp;
754
0
    if (*n0 == *i0 + 1) {
755
0
  goto L40;
756
0
    }
757
758
/*     Check whether E(N0-1) is negligible, 1 eigenvalue. */
759
760
0
    if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) - 
761
0
      4] > tol2 * z__[nn - 7]) {
762
0
  goto L30;
763
0
    }
764
765
0
L20:
766
767
0
    z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma;
768
0
    --(*n0);
769
0
    goto L10;
770
771
/*     Check  whether E(N0-2) is negligible, 2 eigenvalues. */
772
773
0
L30:
774
775
0
    if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[
776
0
      nn - 11]) {
777
0
  goto L50;
778
0
    }
779
780
0
L40:
781
782
0
    if (z__[nn - 3] > z__[nn - 7]) {
783
0
  s = z__[nn - 3];
784
0
  z__[nn - 3] = z__[nn - 7];
785
0
  z__[nn - 7] = s;
786
0
    }
787
0
    t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5;
788
0
    if (z__[nn - 5] > z__[nn - 3] * tol2 && t != 0.) {
789
0
  s = z__[nn - 3] * (z__[nn - 5] / t);
790
0
  if (s <= t) {
791
0
      s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.)));
792
0
  } else {
793
0
      s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));
794
0
  }
795
0
  t = z__[nn - 7] + (s + z__[nn - 5]);
796
0
  z__[nn - 3] *= z__[nn - 7] / t;
797
0
  z__[nn - 7] = t;
798
0
    }
799
0
    z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma;
800
0
    z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma;
801
0
    *n0 += -2;
802
0
    goto L10;
803
804
0
L50:
805
0
    if (*pp == 2) {
806
0
  *pp = 0;
807
0
    }
808
809
/*     Reverse the qd-array, if warranted. */
810
811
0
    if (*dmin__ <= 0. || *n0 < n0in) {
812
0
  if (z__[(*i0 << 2) + *pp - 3] * 1.5 < z__[(*n0 << 2) + *pp - 3]) {
813
0
      ipn4 = *i0 + *n0 << 2;
814
0
      i__1 = *i0 + *n0 - 1 << 1;
815
0
      for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) {
816
0
    temp = z__[j4 - 3];
817
0
    z__[j4 - 3] = z__[ipn4 - j4 - 3];
818
0
    z__[ipn4 - j4 - 3] = temp;
819
0
    temp = z__[j4 - 2];
820
0
    z__[j4 - 2] = z__[ipn4 - j4 - 2];
821
0
    z__[ipn4 - j4 - 2] = temp;
822
0
    temp = z__[j4 - 1];
823
0
    z__[j4 - 1] = z__[ipn4 - j4 - 5];
824
0
    z__[ipn4 - j4 - 5] = temp;
825
0
    temp = z__[j4];
826
0
    z__[j4] = z__[ipn4 - j4 - 4];
827
0
    z__[ipn4 - j4 - 4] = temp;
828
/* L60: */
829
0
      }
830
0
      if (*n0 - *i0 <= 4) {
831
0
    z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1];
832
0
    z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp];
833
0
      }
834
/* Computing MIN */
835
0
      d__1 = *dmin2, d__2 = z__[(*n0 << 2) + *pp - 1];
836
0
      *dmin2 = f2cmin(d__1,d__2);
837
/* Computing MIN */
838
0
      d__1 = z__[(*n0 << 2) + *pp - 1], d__2 = z__[(*i0 << 2) + *pp - 1]
839
0
        , d__1 = f2cmin(d__1,d__2), d__2 = z__[(*i0 << 2) + *pp + 3];
840
0
      z__[(*n0 << 2) + *pp - 1] = f2cmin(d__1,d__2);
841
/* Computing MIN */
842
0
      d__1 = z__[(*n0 << 2) - *pp], d__2 = z__[(*i0 << 2) - *pp], d__1 =
843
0
         f2cmin(d__1,d__2), d__2 = z__[(*i0 << 2) - *pp + 4];
844
0
      z__[(*n0 << 2) - *pp] = f2cmin(d__1,d__2);
845
/* Computing MAX */
846
0
      d__1 = *qmax, d__2 = z__[(*i0 << 2) + *pp - 3], d__1 = f2cmax(d__1,
847
0
        d__2), d__2 = z__[(*i0 << 2) + *pp + 1];
848
0
      *qmax = f2cmax(d__1,d__2);
849
0
      *dmin__ = 0.;
850
0
  }
851
0
    }
852
853
/*     Choose a shift. */
854
855
0
    dlasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2, 
856
0
      tau, ttype, g);
857
858
/*     Call dqds until DMIN > 0. */
859
860
0
L70:
861
862
0
    dlasq5_(i0, n0, &z__[1], pp, tau, sigma, dmin__, dmin1, dmin2, dn, dn1, 
863
0
      dn2, ieee, &eps);
864
865
0
    *ndiv += *n0 - *i0 + 2;
866
0
    ++(*iter);
867
868
/*     Check status. */
869
870
0
    if (*dmin__ >= 0. && *dmin1 >= 0.) {
871
872
/*        Success. */
873
874
0
  goto L90;
875
876
0
    } else if (*dmin__ < 0. && *dmin1 > 0. && z__[(*n0 - 1 << 2) - *pp] < tol 
877
0
      * (*sigma + *dn1) && abs(*dn) < tol * *sigma) {
878
879
/*        Convergence hidden by negative DN. */
880
881
0
  z__[(*n0 - 1 << 2) - *pp + 2] = 0.;
882
0
  *dmin__ = 0.;
883
0
  goto L90;
884
0
    } else if (*dmin__ < 0.) {
885
886
/*        TAU too big. Select new TAU and try again. */
887
888
0
  ++(*nfail);
889
0
  if (*ttype < -22) {
890
891
/*           Failed twice. Play it safe. */
892
893
0
      *tau = 0.;
894
0
  } else if (*dmin1 > 0.) {
895
896
/*           Late failure. Gives excellent shift. */
897
898
0
      *tau = (*tau + *dmin__) * (1. - eps * 2.);
899
0
      *ttype += -11;
900
0
  } else {
901
902
/*           Early failure. Divide by 4. */
903
904
0
      *tau *= .25;
905
0
      *ttype += -12;
906
0
  }
907
0
  goto L70;
908
0
    } else if (disnan_(dmin__)) {
909
910
/*        NaN. */
911
912
0
  if (*tau == 0.) {
913
0
      goto L80;
914
0
  } else {
915
0
      *tau = 0.;
916
0
      goto L70;
917
0
  }
918
0
    } else {
919
920
/*        Possible underflow. Play it safe. */
921
922
0
  goto L80;
923
0
    }
924
925
/*     Risk of underflow. */
926
927
0
L80:
928
0
    dlasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2);
929
0
    *ndiv += *n0 - *i0 + 2;
930
0
    ++(*iter);
931
0
    *tau = 0.;
932
933
0
L90:
934
0
    if (*tau < *sigma) {
935
0
  *desig += *tau;
936
0
  t = *sigma + *desig;
937
0
  *desig -= t - *sigma;
938
0
    } else {
939
0
  t = *sigma + *tau;
940
0
  *desig = *sigma - (t - *tau) + *desig;
941
0
    }
942
0
    *sigma = t;
943
944
0
    return;
945
946
/*     End of DLASQ3 */
947
948
0
} /* dlasq3_ */
949