Coverage Report

Created: 2025-09-12 18:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dlasr.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b DLASR applies a sequence of plane rotations to a general rectangular matrix. */
514
515
/*  =========== DOCUMENTATION =========== */
516
517
/* Online html documentation available at */
518
/*            http://www.netlib.org/lapack/explore-html/ */
519
520
/* > \htmlonly */
521
/* > Download DLASR + dependencies */
522
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasr.f
523
"> */
524
/* > [TGZ]</a> */
525
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasr.f
526
"> */
527
/* > [ZIP]</a> */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasr.f
529
"> */
530
/* > [TXT]</a> */
531
/* > \endhtmlonly */
532
533
/*  Definition: */
534
/*  =========== */
535
536
/*       SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) */
537
538
/*       CHARACTER          DIRECT, PIVOT, SIDE */
539
/*       INTEGER            LDA, M, N */
540
/*       DOUBLE PRECISION   A( LDA, * ), C( * ), S( * ) */
541
542
543
/* > \par Purpose: */
544
/*  ============= */
545
/* > */
546
/* > \verbatim */
547
/* > */
548
/* > DLASR applies a sequence of plane rotations to a real matrix A, */
549
/* > from either the left or the right. */
550
/* > */
551
/* > When SIDE = 'L', the transformation takes the form */
552
/* > */
553
/* >    A := P*A */
554
/* > */
555
/* > and when SIDE = 'R', the transformation takes the form */
556
/* > */
557
/* >    A := A*P**T */
558
/* > */
559
/* > where P is an orthogonal matrix consisting of a sequence of z plane */
560
/* > rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */
561
/* > and P**T is the transpose of P. */
562
/* > */
563
/* > When DIRECT = 'F' (Forward sequence), then */
564
/* > */
565
/* >    P = P(z-1) * ... * P(2) * P(1) */
566
/* > */
567
/* > and when DIRECT = 'B' (Backward sequence), then */
568
/* > */
569
/* >    P = P(1) * P(2) * ... * P(z-1) */
570
/* > */
571
/* > where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */
572
/* > */
573
/* >    R(k) = (  c(k)  s(k) ) */
574
/* >         = ( -s(k)  c(k) ). */
575
/* > */
576
/* > When PIVOT = 'V' (Variable pivot), the rotation is performed */
577
/* > for the plane (k,k+1), i.e., P(k) has the form */
578
/* > */
579
/* >    P(k) = (  1                                            ) */
580
/* >           (       ...                                     ) */
581
/* >           (              1                                ) */
582
/* >           (                   c(k)  s(k)                  ) */
583
/* >           (                  -s(k)  c(k)                  ) */
584
/* >           (                                1              ) */
585
/* >           (                                     ...       ) */
586
/* >           (                                            1  ) */
587
/* > */
588
/* > where R(k) appears as a rank-2 modification to the identity matrix in */
589
/* > rows and columns k and k+1. */
590
/* > */
591
/* > When PIVOT = 'T' (Top pivot), the rotation is performed for the */
592
/* > plane (1,k+1), so P(k) has the form */
593
/* > */
594
/* >    P(k) = (  c(k)                    s(k)                 ) */
595
/* >           (         1                                     ) */
596
/* >           (              ...                              ) */
597
/* >           (                     1                         ) */
598
/* >           ( -s(k)                    c(k)                 ) */
599
/* >           (                                 1             ) */
600
/* >           (                                      ...      ) */
601
/* >           (                                             1 ) */
602
/* > */
603
/* > where R(k) appears in rows and columns 1 and k+1. */
604
/* > */
605
/* > Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */
606
/* > performed for the plane (k,z), giving P(k) the form */
607
/* > */
608
/* >    P(k) = ( 1                                             ) */
609
/* >           (      ...                                      ) */
610
/* >           (             1                                 ) */
611
/* >           (                  c(k)                    s(k) ) */
612
/* >           (                         1                     ) */
613
/* >           (                              ...              ) */
614
/* >           (                                     1         ) */
615
/* >           (                 -s(k)                    c(k) ) */
616
/* > */
617
/* > where R(k) appears in rows and columns k and z.  The rotations are */
618
/* > performed without ever forming P(k) explicitly. */
619
/* > \endverbatim */
620
621
/*  Arguments: */
622
/*  ========== */
623
624
/* > \param[in] SIDE */
625
/* > \verbatim */
626
/* >          SIDE is CHARACTER*1 */
627
/* >          Specifies whether the plane rotation matrix P is applied to */
628
/* >          A on the left or the right. */
629
/* >          = 'L':  Left, compute A := P*A */
630
/* >          = 'R':  Right, compute A:= A*P**T */
631
/* > \endverbatim */
632
/* > */
633
/* > \param[in] PIVOT */
634
/* > \verbatim */
635
/* >          PIVOT is CHARACTER*1 */
636
/* >          Specifies the plane for which P(k) is a plane rotation */
637
/* >          matrix. */
638
/* >          = 'V':  Variable pivot, the plane (k,k+1) */
639
/* >          = 'T':  Top pivot, the plane (1,k+1) */
640
/* >          = 'B':  Bottom pivot, the plane (k,z) */
641
/* > \endverbatim */
642
/* > */
643
/* > \param[in] DIRECT */
644
/* > \verbatim */
645
/* >          DIRECT is CHARACTER*1 */
646
/* >          Specifies whether P is a forward or backward sequence of */
647
/* >          plane rotations. */
648
/* >          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1) */
649
/* >          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1) */
650
/* > \endverbatim */
651
/* > */
652
/* > \param[in] M */
653
/* > \verbatim */
654
/* >          M is INTEGER */
655
/* >          The number of rows of the matrix A.  If m <= 1, an immediate */
656
/* >          return is effected. */
657
/* > \endverbatim */
658
/* > */
659
/* > \param[in] N */
660
/* > \verbatim */
661
/* >          N is INTEGER */
662
/* >          The number of columns of the matrix A.  If n <= 1, an */
663
/* >          immediate return is effected. */
664
/* > \endverbatim */
665
/* > */
666
/* > \param[in] C */
667
/* > \verbatim */
668
/* >          C is DOUBLE PRECISION array, dimension */
669
/* >                  (M-1) if SIDE = 'L' */
670
/* >                  (N-1) if SIDE = 'R' */
671
/* >          The cosines c(k) of the plane rotations. */
672
/* > \endverbatim */
673
/* > */
674
/* > \param[in] S */
675
/* > \verbatim */
676
/* >          S is DOUBLE PRECISION array, dimension */
677
/* >                  (M-1) if SIDE = 'L' */
678
/* >                  (N-1) if SIDE = 'R' */
679
/* >          The sines s(k) of the plane rotations.  The 2-by-2 plane */
680
/* >          rotation part of the matrix P(k), R(k), has the form */
681
/* >          R(k) = (  c(k)  s(k) ) */
682
/* >                 ( -s(k)  c(k) ). */
683
/* > \endverbatim */
684
/* > */
685
/* > \param[in,out] A */
686
/* > \verbatim */
687
/* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
688
/* >          The M-by-N matrix A.  On exit, A is overwritten by P*A if */
689
/* >          SIDE = 'L' or by A*P**T if SIDE = 'R'. */
690
/* > \endverbatim */
691
/* > */
692
/* > \param[in] LDA */
693
/* > \verbatim */
694
/* >          LDA is INTEGER */
695
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
696
/* > \endverbatim */
697
698
/*  Authors: */
699
/*  ======== */
700
701
/* > \author Univ. of Tennessee */
702
/* > \author Univ. of California Berkeley */
703
/* > \author Univ. of Colorado Denver */
704
/* > \author NAG Ltd. */
705
706
/* > \date December 2016 */
707
708
/* > \ingroup OTHERauxiliary */
709
710
/*  ===================================================================== */
711
/* Subroutine */ void dlasr_(char *side, char *pivot, char *direct, integer *m,
712
   integer *n, doublereal *c__, doublereal *s, doublereal *a, integer *
713
  lda)
714
0
{
715
    /* System generated locals */
716
0
    integer a_dim1, a_offset, i__1, i__2;
717
718
    /* Local variables */
719
0
    integer info;
720
0
    doublereal temp;
721
0
    integer i__, j;
722
0
    extern logical lsame_(char *, char *);
723
0
    doublereal ctemp, stemp;
724
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
725
726
727
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
728
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
729
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
730
/*     December 2016 */
731
732
733
/*  ===================================================================== */
734
735
736
/*     Test the input parameters */
737
738
    /* Parameter adjustments */
739
0
    --c__;
740
0
    --s;
741
0
    a_dim1 = *lda;
742
0
    a_offset = 1 + a_dim1 * 1;
743
0
    a -= a_offset;
744
745
    /* Function Body */
746
0
    info = 0;
747
0
    if (! (lsame_(side, "L") || lsame_(side, "R"))) {
748
0
  info = 1;
749
0
    } else if (! (lsame_(pivot, "V") || lsame_(pivot, 
750
0
      "T") || lsame_(pivot, "B"))) {
751
0
  info = 2;
752
0
    } else if (! (lsame_(direct, "F") || lsame_(direct, 
753
0
      "B"))) {
754
0
  info = 3;
755
0
    } else if (*m < 0) {
756
0
  info = 4;
757
0
    } else if (*n < 0) {
758
0
  info = 5;
759
0
    } else if (*lda < f2cmax(1,*m)) {
760
0
  info = 9;
761
0
    }
762
0
    if (info != 0) {
763
0
  xerbla_("DLASR ", &info, (ftnlen)6);
764
0
  return;
765
0
    }
766
767
/*     Quick return if possible */
768
769
0
    if (*m == 0 || *n == 0) {
770
0
  return;
771
0
    }
772
0
    if (lsame_(side, "L")) {
773
774
/*        Form  P * A */
775
776
0
  if (lsame_(pivot, "V")) {
777
0
      if (lsame_(direct, "F")) {
778
0
    i__1 = *m - 1;
779
0
    for (j = 1; j <= i__1; ++j) {
780
0
        ctemp = c__[j];
781
0
        stemp = s[j];
782
0
        if (ctemp != 1. || stemp != 0.) {
783
0
      i__2 = *n;
784
0
      for (i__ = 1; i__ <= i__2; ++i__) {
785
0
          temp = a[j + 1 + i__ * a_dim1];
786
0
          a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
787
0
            a[j + i__ * a_dim1];
788
0
          a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
789
0
            + i__ * a_dim1];
790
/* L10: */
791
0
      }
792
0
        }
793
/* L20: */
794
0
    }
795
0
      } else if (lsame_(direct, "B")) {
796
0
    for (j = *m - 1; j >= 1; --j) {
797
0
        ctemp = c__[j];
798
0
        stemp = s[j];
799
0
        if (ctemp != 1. || stemp != 0.) {
800
0
      i__1 = *n;
801
0
      for (i__ = 1; i__ <= i__1; ++i__) {
802
0
          temp = a[j + 1 + i__ * a_dim1];
803
0
          a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
804
0
            a[j + i__ * a_dim1];
805
0
          a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
806
0
            + i__ * a_dim1];
807
/* L30: */
808
0
      }
809
0
        }
810
/* L40: */
811
0
    }
812
0
      }
813
0
  } else if (lsame_(pivot, "T")) {
814
0
      if (lsame_(direct, "F")) {
815
0
    i__1 = *m;
816
0
    for (j = 2; j <= i__1; ++j) {
817
0
        ctemp = c__[j - 1];
818
0
        stemp = s[j - 1];
819
0
        if (ctemp != 1. || stemp != 0.) {
820
0
      i__2 = *n;
821
0
      for (i__ = 1; i__ <= i__2; ++i__) {
822
0
          temp = a[j + i__ * a_dim1];
823
0
          a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
824
0
            i__ * a_dim1 + 1];
825
0
          a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
826
0
            i__ * a_dim1 + 1];
827
/* L50: */
828
0
      }
829
0
        }
830
/* L60: */
831
0
    }
832
0
      } else if (lsame_(direct, "B")) {
833
0
    for (j = *m; j >= 2; --j) {
834
0
        ctemp = c__[j - 1];
835
0
        stemp = s[j - 1];
836
0
        if (ctemp != 1. || stemp != 0.) {
837
0
      i__1 = *n;
838
0
      for (i__ = 1; i__ <= i__1; ++i__) {
839
0
          temp = a[j + i__ * a_dim1];
840
0
          a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
841
0
            i__ * a_dim1 + 1];
842
0
          a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
843
0
            i__ * a_dim1 + 1];
844
/* L70: */
845
0
      }
846
0
        }
847
/* L80: */
848
0
    }
849
0
      }
850
0
  } else if (lsame_(pivot, "B")) {
851
0
      if (lsame_(direct, "F")) {
852
0
    i__1 = *m - 1;
853
0
    for (j = 1; j <= i__1; ++j) {
854
0
        ctemp = c__[j];
855
0
        stemp = s[j];
856
0
        if (ctemp != 1. || stemp != 0.) {
857
0
      i__2 = *n;
858
0
      for (i__ = 1; i__ <= i__2; ++i__) {
859
0
          temp = a[j + i__ * a_dim1];
860
0
          a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
861
0
             + ctemp * temp;
862
0
          a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
863
0
            a_dim1] - stemp * temp;
864
/* L90: */
865
0
      }
866
0
        }
867
/* L100: */
868
0
    }
869
0
      } else if (lsame_(direct, "B")) {
870
0
    for (j = *m - 1; j >= 1; --j) {
871
0
        ctemp = c__[j];
872
0
        stemp = s[j];
873
0
        if (ctemp != 1. || stemp != 0.) {
874
0
      i__1 = *n;
875
0
      for (i__ = 1; i__ <= i__1; ++i__) {
876
0
          temp = a[j + i__ * a_dim1];
877
0
          a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
878
0
             + ctemp * temp;
879
0
          a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
880
0
            a_dim1] - stemp * temp;
881
/* L110: */
882
0
      }
883
0
        }
884
/* L120: */
885
0
    }
886
0
      }
887
0
  }
888
0
    } else if (lsame_(side, "R")) {
889
890
/*        Form A * P**T */
891
892
0
  if (lsame_(pivot, "V")) {
893
0
      if (lsame_(direct, "F")) {
894
0
    i__1 = *n - 1;
895
0
    for (j = 1; j <= i__1; ++j) {
896
0
        ctemp = c__[j];
897
0
        stemp = s[j];
898
0
        if (ctemp != 1. || stemp != 0.) {
899
0
      i__2 = *m;
900
0
      for (i__ = 1; i__ <= i__2; ++i__) {
901
0
          temp = a[i__ + (j + 1) * a_dim1];
902
0
          a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
903
0
             a[i__ + j * a_dim1];
904
0
          a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
905
0
            i__ + j * a_dim1];
906
/* L130: */
907
0
      }
908
0
        }
909
/* L140: */
910
0
    }
911
0
      } else if (lsame_(direct, "B")) {
912
0
    for (j = *n - 1; j >= 1; --j) {
913
0
        ctemp = c__[j];
914
0
        stemp = s[j];
915
0
        if (ctemp != 1. || stemp != 0.) {
916
0
      i__1 = *m;
917
0
      for (i__ = 1; i__ <= i__1; ++i__) {
918
0
          temp = a[i__ + (j + 1) * a_dim1];
919
0
          a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
920
0
             a[i__ + j * a_dim1];
921
0
          a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
922
0
            i__ + j * a_dim1];
923
/* L150: */
924
0
      }
925
0
        }
926
/* L160: */
927
0
    }
928
0
      }
929
0
  } else if (lsame_(pivot, "T")) {
930
0
      if (lsame_(direct, "F")) {
931
0
    i__1 = *n;
932
0
    for (j = 2; j <= i__1; ++j) {
933
0
        ctemp = c__[j - 1];
934
0
        stemp = s[j - 1];
935
0
        if (ctemp != 1. || stemp != 0.) {
936
0
      i__2 = *m;
937
0
      for (i__ = 1; i__ <= i__2; ++i__) {
938
0
          temp = a[i__ + j * a_dim1];
939
0
          a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
940
0
            i__ + a_dim1];
941
0
          a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
942
0
            a_dim1];
943
/* L170: */
944
0
      }
945
0
        }
946
/* L180: */
947
0
    }
948
0
      } else if (lsame_(direct, "B")) {
949
0
    for (j = *n; j >= 2; --j) {
950
0
        ctemp = c__[j - 1];
951
0
        stemp = s[j - 1];
952
0
        if (ctemp != 1. || stemp != 0.) {
953
0
      i__1 = *m;
954
0
      for (i__ = 1; i__ <= i__1; ++i__) {
955
0
          temp = a[i__ + j * a_dim1];
956
0
          a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
957
0
            i__ + a_dim1];
958
0
          a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
959
0
            a_dim1];
960
/* L190: */
961
0
      }
962
0
        }
963
/* L200: */
964
0
    }
965
0
      }
966
0
  } else if (lsame_(pivot, "B")) {
967
0
      if (lsame_(direct, "F")) {
968
0
    i__1 = *n - 1;
969
0
    for (j = 1; j <= i__1; ++j) {
970
0
        ctemp = c__[j];
971
0
        stemp = s[j];
972
0
        if (ctemp != 1. || stemp != 0.) {
973
0
      i__2 = *m;
974
0
      for (i__ = 1; i__ <= i__2; ++i__) {
975
0
          temp = a[i__ + j * a_dim1];
976
0
          a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
977
0
             + ctemp * temp;
978
0
          a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
979
0
            a_dim1] - stemp * temp;
980
/* L210: */
981
0
      }
982
0
        }
983
/* L220: */
984
0
    }
985
0
      } else if (lsame_(direct, "B")) {
986
0
    for (j = *n - 1; j >= 1; --j) {
987
0
        ctemp = c__[j];
988
0
        stemp = s[j];
989
0
        if (ctemp != 1. || stemp != 0.) {
990
0
      i__1 = *m;
991
0
      for (i__ = 1; i__ <= i__1; ++i__) {
992
0
          temp = a[i__ + j * a_dim1];
993
0
          a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
994
0
             + ctemp * temp;
995
0
          a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
996
0
            a_dim1] - stemp * temp;
997
/* L230: */
998
0
      }
999
0
        }
1000
/* L240: */
1001
0
    }
1002
0
      }
1003
0
  }
1004
0
    }
1005
1006
0
    return;
1007
1008
/*     End of DLASR */
1009
1010
0
} /* dlasr_ */
1011