/root/doris/contrib/openblas/lapack-netlib/SRC/dsteqr.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | 0 | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | 0 | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | 0 | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static doublereal c_b9 = 0.; |
516 | | static doublereal c_b10 = 1.; |
517 | | static integer c__0 = 0; |
518 | | static integer c__1 = 1; |
519 | | static integer c__2 = 2; |
520 | | |
521 | | /* > \brief \b DSTEQR */ |
522 | | |
523 | | /* =========== DOCUMENTATION =========== */ |
524 | | |
525 | | /* Online html documentation available at */ |
526 | | /* http://www.netlib.org/lapack/explore-html/ */ |
527 | | |
528 | | /* > \htmlonly */ |
529 | | /* > Download DSTEQR + dependencies */ |
530 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr. |
531 | | f"> */ |
532 | | /* > [TGZ]</a> */ |
533 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr. |
534 | | f"> */ |
535 | | /* > [ZIP]</a> */ |
536 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr. |
537 | | f"> */ |
538 | | /* > [TXT]</a> */ |
539 | | /* > \endhtmlonly */ |
540 | | |
541 | | /* Definition: */ |
542 | | /* =========== */ |
543 | | |
544 | | /* SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */ |
545 | | |
546 | | /* CHARACTER COMPZ */ |
547 | | /* INTEGER INFO, LDZ, N */ |
548 | | /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */ |
549 | | |
550 | | |
551 | | /* > \par Purpose: */ |
552 | | /* ============= */ |
553 | | /* > */ |
554 | | /* > \verbatim */ |
555 | | /* > */ |
556 | | /* > DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */ |
557 | | /* > symmetric tridiagonal matrix using the implicit QL or QR method. */ |
558 | | /* > The eigenvectors of a full or band symmetric matrix can also be found */ |
559 | | /* > if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */ |
560 | | /* > tridiagonal form. */ |
561 | | /* > \endverbatim */ |
562 | | |
563 | | /* Arguments: */ |
564 | | /* ========== */ |
565 | | |
566 | | /* > \param[in] COMPZ */ |
567 | | /* > \verbatim */ |
568 | | /* > COMPZ is CHARACTER*1 */ |
569 | | /* > = 'N': Compute eigenvalues only. */ |
570 | | /* > = 'V': Compute eigenvalues and eigenvectors of the original */ |
571 | | /* > symmetric matrix. On entry, Z must contain the */ |
572 | | /* > orthogonal matrix used to reduce the original matrix */ |
573 | | /* > to tridiagonal form. */ |
574 | | /* > = 'I': Compute eigenvalues and eigenvectors of the */ |
575 | | /* > tridiagonal matrix. Z is initialized to the identity */ |
576 | | /* > matrix. */ |
577 | | /* > \endverbatim */ |
578 | | /* > */ |
579 | | /* > \param[in] N */ |
580 | | /* > \verbatim */ |
581 | | /* > N is INTEGER */ |
582 | | /* > The order of the matrix. N >= 0. */ |
583 | | /* > \endverbatim */ |
584 | | /* > */ |
585 | | /* > \param[in,out] D */ |
586 | | /* > \verbatim */ |
587 | | /* > D is DOUBLE PRECISION array, dimension (N) */ |
588 | | /* > On entry, the diagonal elements of the tridiagonal matrix. */ |
589 | | /* > On exit, if INFO = 0, the eigenvalues in ascending order. */ |
590 | | /* > \endverbatim */ |
591 | | /* > */ |
592 | | /* > \param[in,out] E */ |
593 | | /* > \verbatim */ |
594 | | /* > E is DOUBLE PRECISION array, dimension (N-1) */ |
595 | | /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */ |
596 | | /* > matrix. */ |
597 | | /* > On exit, E has been destroyed. */ |
598 | | /* > \endverbatim */ |
599 | | /* > */ |
600 | | /* > \param[in,out] Z */ |
601 | | /* > \verbatim */ |
602 | | /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */ |
603 | | /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */ |
604 | | /* > matrix used in the reduction to tridiagonal form. */ |
605 | | /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */ |
606 | | /* > orthonormal eigenvectors of the original symmetric matrix, */ |
607 | | /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */ |
608 | | /* > of the symmetric tridiagonal matrix. */ |
609 | | /* > If COMPZ = 'N', then Z is not referenced. */ |
610 | | /* > \endverbatim */ |
611 | | /* > */ |
612 | | /* > \param[in] LDZ */ |
613 | | /* > \verbatim */ |
614 | | /* > LDZ is INTEGER */ |
615 | | /* > The leading dimension of the array Z. LDZ >= 1, and if */ |
616 | | /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */ |
617 | | /* > \endverbatim */ |
618 | | /* > */ |
619 | | /* > \param[out] WORK */ |
620 | | /* > \verbatim */ |
621 | | /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */ |
622 | | /* > If COMPZ = 'N', then WORK is not referenced. */ |
623 | | /* > \endverbatim */ |
624 | | /* > */ |
625 | | /* > \param[out] INFO */ |
626 | | /* > \verbatim */ |
627 | | /* > INFO is INTEGER */ |
628 | | /* > = 0: successful exit */ |
629 | | /* > < 0: if INFO = -i, the i-th argument had an illegal value */ |
630 | | /* > > 0: the algorithm has failed to find all the eigenvalues in */ |
631 | | /* > a total of 30*N iterations; if INFO = i, then i */ |
632 | | /* > elements of E have not converged to zero; on exit, D */ |
633 | | /* > and E contain the elements of a symmetric tridiagonal */ |
634 | | /* > matrix which is orthogonally similar to the original */ |
635 | | /* > matrix. */ |
636 | | /* > \endverbatim */ |
637 | | |
638 | | /* Authors: */ |
639 | | /* ======== */ |
640 | | |
641 | | /* > \author Univ. of Tennessee */ |
642 | | /* > \author Univ. of California Berkeley */ |
643 | | /* > \author Univ. of Colorado Denver */ |
644 | | /* > \author NAG Ltd. */ |
645 | | |
646 | | /* > \date December 2016 */ |
647 | | |
648 | | /* > \ingroup auxOTHERcomputational */ |
649 | | |
650 | | /* ===================================================================== */ |
651 | | /* Subroutine */ void dsteqr_(char *compz, integer *n, doublereal *d__, |
652 | | doublereal *e, doublereal *z__, integer *ldz, doublereal *work, |
653 | | integer *info) |
654 | 0 | { |
655 | | /* System generated locals */ |
656 | 0 | integer z_dim1, z_offset, i__1, i__2; |
657 | 0 | doublereal d__1, d__2; |
658 | | |
659 | | /* Local variables */ |
660 | 0 | integer lend, jtot; |
661 | 0 | extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal |
662 | 0 | *, doublereal *, doublereal *); |
663 | 0 | doublereal b, c__, f, g; |
664 | 0 | integer i__, j, k, l, m; |
665 | 0 | doublereal p, r__, s; |
666 | 0 | extern logical lsame_(char *, char *); |
667 | 0 | extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *, |
668 | 0 | integer *, doublereal *, doublereal *, doublereal *, integer *); |
669 | 0 | doublereal anorm; |
670 | 0 | extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *, |
671 | 0 | doublereal *, integer *); |
672 | 0 | integer l1; |
673 | 0 | extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *, |
674 | 0 | doublereal *, doublereal *, doublereal *, doublereal *, |
675 | 0 | doublereal *); |
676 | 0 | integer lendm1, lendp1; |
677 | 0 | extern doublereal dlapy2_(doublereal *, doublereal *); |
678 | 0 | integer ii; |
679 | 0 | extern doublereal dlamch_(char *); |
680 | 0 | integer mm, iscale; |
681 | 0 | extern /* Subroutine */ void dlascl_(char *, integer *, integer *, |
682 | 0 | doublereal *, doublereal *, integer *, integer *, doublereal *, |
683 | 0 | integer *, integer *), dlaset_(char *, integer *, integer |
684 | 0 | *, doublereal *, doublereal *, doublereal *, integer *); |
685 | 0 | doublereal safmin; |
686 | 0 | extern /* Subroutine */ void dlartg_(doublereal *, doublereal *, |
687 | 0 | doublereal *, doublereal *, doublereal *); |
688 | 0 | doublereal safmax; |
689 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
690 | 0 | extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); |
691 | 0 | extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *, |
692 | 0 | integer *); |
693 | 0 | integer lendsv; |
694 | 0 | doublereal ssfmin; |
695 | 0 | integer nmaxit, icompz; |
696 | 0 | doublereal ssfmax; |
697 | 0 | integer lm1, mm1, nm1; |
698 | 0 | doublereal rt1, rt2, eps; |
699 | 0 | integer lsv; |
700 | 0 | doublereal tst, eps2; |
701 | | |
702 | | |
703 | | /* -- LAPACK computational routine (version 3.7.0) -- */ |
704 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
705 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
706 | | /* December 2016 */ |
707 | | |
708 | | |
709 | | /* ===================================================================== */ |
710 | | |
711 | | |
712 | | /* Test the input parameters. */ |
713 | | |
714 | | /* Parameter adjustments */ |
715 | 0 | --d__; |
716 | 0 | --e; |
717 | 0 | z_dim1 = *ldz; |
718 | 0 | z_offset = 1 + z_dim1 * 1; |
719 | 0 | z__ -= z_offset; |
720 | 0 | --work; |
721 | | |
722 | | /* Function Body */ |
723 | 0 | *info = 0; |
724 | |
|
725 | 0 | if (lsame_(compz, "N")) { |
726 | 0 | icompz = 0; |
727 | 0 | } else if (lsame_(compz, "V")) { |
728 | 0 | icompz = 1; |
729 | 0 | } else if (lsame_(compz, "I")) { |
730 | 0 | icompz = 2; |
731 | 0 | } else { |
732 | 0 | icompz = -1; |
733 | 0 | } |
734 | 0 | if (icompz < 0) { |
735 | 0 | *info = -1; |
736 | 0 | } else if (*n < 0) { |
737 | 0 | *info = -2; |
738 | 0 | } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) { |
739 | 0 | *info = -6; |
740 | 0 | } |
741 | 0 | if (*info != 0) { |
742 | 0 | i__1 = -(*info); |
743 | 0 | xerbla_("DSTEQR", &i__1, (ftnlen)6); |
744 | 0 | return; |
745 | 0 | } |
746 | | |
747 | | /* Quick return if possible */ |
748 | | |
749 | 0 | if (*n == 0) { |
750 | 0 | return; |
751 | 0 | } |
752 | | |
753 | 0 | if (*n == 1) { |
754 | 0 | if (icompz == 2) { |
755 | 0 | z__[z_dim1 + 1] = 1.; |
756 | 0 | } |
757 | 0 | return; |
758 | 0 | } |
759 | | |
760 | | /* Determine the unit roundoff and over/underflow thresholds. */ |
761 | | |
762 | 0 | eps = dlamch_("E"); |
763 | | /* Computing 2nd power */ |
764 | 0 | d__1 = eps; |
765 | 0 | eps2 = d__1 * d__1; |
766 | 0 | safmin = dlamch_("S"); |
767 | 0 | safmax = 1. / safmin; |
768 | 0 | ssfmax = sqrt(safmax) / 3.; |
769 | 0 | ssfmin = sqrt(safmin) / eps2; |
770 | | |
771 | | /* Compute the eigenvalues and eigenvectors of the tridiagonal */ |
772 | | /* matrix. */ |
773 | |
|
774 | 0 | if (icompz == 2) { |
775 | 0 | dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz); |
776 | 0 | } |
777 | |
|
778 | 0 | nmaxit = *n * 30; |
779 | 0 | jtot = 0; |
780 | | |
781 | | /* Determine where the matrix splits and choose QL or QR iteration */ |
782 | | /* for each block, according to whether top or bottom diagonal */ |
783 | | /* element is smaller. */ |
784 | |
|
785 | 0 | l1 = 1; |
786 | 0 | nm1 = *n - 1; |
787 | |
|
788 | 0 | L10: |
789 | 0 | if (l1 > *n) { |
790 | 0 | goto L160; |
791 | 0 | } |
792 | 0 | if (l1 > 1) { |
793 | 0 | e[l1 - 1] = 0.; |
794 | 0 | } |
795 | 0 | if (l1 <= nm1) { |
796 | 0 | i__1 = nm1; |
797 | 0 | for (m = l1; m <= i__1; ++m) { |
798 | 0 | tst = (d__1 = e[m], abs(d__1)); |
799 | 0 | if (tst == 0.) { |
800 | 0 | goto L30; |
801 | 0 | } |
802 | 0 | if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m |
803 | 0 | + 1], abs(d__2))) * eps) { |
804 | 0 | e[m] = 0.; |
805 | 0 | goto L30; |
806 | 0 | } |
807 | | /* L20: */ |
808 | 0 | } |
809 | 0 | } |
810 | 0 | m = *n; |
811 | |
|
812 | 0 | L30: |
813 | 0 | l = l1; |
814 | 0 | lsv = l; |
815 | 0 | lend = m; |
816 | 0 | lendsv = lend; |
817 | 0 | l1 = m + 1; |
818 | 0 | if (lend == l) { |
819 | 0 | goto L10; |
820 | 0 | } |
821 | | |
822 | | /* Scale submatrix in rows and columns L to LEND */ |
823 | | |
824 | 0 | i__1 = lend - l + 1; |
825 | 0 | anorm = dlanst_("M", &i__1, &d__[l], &e[l]); |
826 | 0 | iscale = 0; |
827 | 0 | if (anorm == 0.) { |
828 | 0 | goto L10; |
829 | 0 | } |
830 | 0 | if (anorm > ssfmax) { |
831 | 0 | iscale = 1; |
832 | 0 | i__1 = lend - l + 1; |
833 | 0 | dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, |
834 | 0 | info); |
835 | 0 | i__1 = lend - l; |
836 | 0 | dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, |
837 | 0 | info); |
838 | 0 | } else if (anorm < ssfmin) { |
839 | 0 | iscale = 2; |
840 | 0 | i__1 = lend - l + 1; |
841 | 0 | dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, |
842 | 0 | info); |
843 | 0 | i__1 = lend - l; |
844 | 0 | dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, |
845 | 0 | info); |
846 | 0 | } |
847 | | |
848 | | /* Choose between QL and QR iteration */ |
849 | |
|
850 | 0 | if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) { |
851 | 0 | lend = lsv; |
852 | 0 | l = lendsv; |
853 | 0 | } |
854 | |
|
855 | 0 | if (lend > l) { |
856 | | |
857 | | /* QL Iteration */ |
858 | | |
859 | | /* Look for small subdiagonal element. */ |
860 | |
|
861 | 0 | L40: |
862 | 0 | if (l != lend) { |
863 | 0 | lendm1 = lend - 1; |
864 | 0 | i__1 = lendm1; |
865 | 0 | for (m = l; m <= i__1; ++m) { |
866 | | /* Computing 2nd power */ |
867 | 0 | d__2 = (d__1 = e[m], abs(d__1)); |
868 | 0 | tst = d__2 * d__2; |
869 | 0 | if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m |
870 | 0 | + 1], abs(d__2)) + safmin) { |
871 | 0 | goto L60; |
872 | 0 | } |
873 | | /* L50: */ |
874 | 0 | } |
875 | 0 | } |
876 | | |
877 | 0 | m = lend; |
878 | |
|
879 | 0 | L60: |
880 | 0 | if (m < lend) { |
881 | 0 | e[m] = 0.; |
882 | 0 | } |
883 | 0 | p = d__[l]; |
884 | 0 | if (m == l) { |
885 | 0 | goto L80; |
886 | 0 | } |
887 | | |
888 | | /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */ |
889 | | /* to compute its eigensystem. */ |
890 | | |
891 | 0 | if (m == l + 1) { |
892 | 0 | if (icompz > 0) { |
893 | 0 | dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s); |
894 | 0 | work[l] = c__; |
895 | 0 | work[*n - 1 + l] = s; |
896 | 0 | dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], & |
897 | 0 | z__[l * z_dim1 + 1], ldz); |
898 | 0 | } else { |
899 | 0 | dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2); |
900 | 0 | } |
901 | 0 | d__[l] = rt1; |
902 | 0 | d__[l + 1] = rt2; |
903 | 0 | e[l] = 0.; |
904 | 0 | l += 2; |
905 | 0 | if (l <= lend) { |
906 | 0 | goto L40; |
907 | 0 | } |
908 | 0 | goto L140; |
909 | 0 | } |
910 | | |
911 | 0 | if (jtot == nmaxit) { |
912 | 0 | goto L140; |
913 | 0 | } |
914 | 0 | ++jtot; |
915 | | |
916 | | /* Form shift. */ |
917 | |
|
918 | 0 | g = (d__[l + 1] - p) / (e[l] * 2.); |
919 | 0 | r__ = dlapy2_(&g, &c_b10); |
920 | 0 | g = d__[m] - p + e[l] / (g + d_sign(&r__, &g)); |
921 | |
|
922 | 0 | s = 1.; |
923 | 0 | c__ = 1.; |
924 | 0 | p = 0.; |
925 | | |
926 | | /* Inner loop */ |
927 | |
|
928 | 0 | mm1 = m - 1; |
929 | 0 | i__1 = l; |
930 | 0 | for (i__ = mm1; i__ >= i__1; --i__) { |
931 | 0 | f = s * e[i__]; |
932 | 0 | b = c__ * e[i__]; |
933 | 0 | dlartg_(&g, &f, &c__, &s, &r__); |
934 | 0 | if (i__ != m - 1) { |
935 | 0 | e[i__ + 1] = r__; |
936 | 0 | } |
937 | 0 | g = d__[i__ + 1] - p; |
938 | 0 | r__ = (d__[i__] - g) * s + c__ * 2. * b; |
939 | 0 | p = s * r__; |
940 | 0 | d__[i__ + 1] = g + p; |
941 | 0 | g = c__ * r__ - b; |
942 | | |
943 | | /* If eigenvectors are desired, then save rotations. */ |
944 | |
|
945 | 0 | if (icompz > 0) { |
946 | 0 | work[i__] = c__; |
947 | 0 | work[*n - 1 + i__] = -s; |
948 | 0 | } |
949 | | |
950 | | /* L70: */ |
951 | 0 | } |
952 | | |
953 | | /* If eigenvectors are desired, then apply saved rotations. */ |
954 | |
|
955 | 0 | if (icompz > 0) { |
956 | 0 | mm = m - l + 1; |
957 | 0 | dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l |
958 | 0 | * z_dim1 + 1], ldz); |
959 | 0 | } |
960 | |
|
961 | 0 | d__[l] -= p; |
962 | 0 | e[l] = g; |
963 | 0 | goto L40; |
964 | | |
965 | | /* Eigenvalue found. */ |
966 | | |
967 | 0 | L80: |
968 | 0 | d__[l] = p; |
969 | |
|
970 | 0 | ++l; |
971 | 0 | if (l <= lend) { |
972 | 0 | goto L40; |
973 | 0 | } |
974 | 0 | goto L140; |
975 | |
|
976 | 0 | } else { |
977 | | |
978 | | /* QR Iteration */ |
979 | | |
980 | | /* Look for small superdiagonal element. */ |
981 | |
|
982 | 0 | L90: |
983 | 0 | if (l != lend) { |
984 | 0 | lendp1 = lend + 1; |
985 | 0 | i__1 = lendp1; |
986 | 0 | for (m = l; m >= i__1; --m) { |
987 | | /* Computing 2nd power */ |
988 | 0 | d__2 = (d__1 = e[m - 1], abs(d__1)); |
989 | 0 | tst = d__2 * d__2; |
990 | 0 | if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m |
991 | 0 | - 1], abs(d__2)) + safmin) { |
992 | 0 | goto L110; |
993 | 0 | } |
994 | | /* L100: */ |
995 | 0 | } |
996 | 0 | } |
997 | | |
998 | 0 | m = lend; |
999 | |
|
1000 | 0 | L110: |
1001 | 0 | if (m > lend) { |
1002 | 0 | e[m - 1] = 0.; |
1003 | 0 | } |
1004 | 0 | p = d__[l]; |
1005 | 0 | if (m == l) { |
1006 | 0 | goto L130; |
1007 | 0 | } |
1008 | | |
1009 | | /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */ |
1010 | | /* to compute its eigensystem. */ |
1011 | | |
1012 | 0 | if (m == l - 1) { |
1013 | 0 | if (icompz > 0) { |
1014 | 0 | dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s) |
1015 | 0 | ; |
1016 | 0 | work[m] = c__; |
1017 | 0 | work[*n - 1 + m] = s; |
1018 | 0 | dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], & |
1019 | 0 | z__[(l - 1) * z_dim1 + 1], ldz); |
1020 | 0 | } else { |
1021 | 0 | dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2); |
1022 | 0 | } |
1023 | 0 | d__[l - 1] = rt1; |
1024 | 0 | d__[l] = rt2; |
1025 | 0 | e[l - 1] = 0.; |
1026 | 0 | l += -2; |
1027 | 0 | if (l >= lend) { |
1028 | 0 | goto L90; |
1029 | 0 | } |
1030 | 0 | goto L140; |
1031 | 0 | } |
1032 | | |
1033 | 0 | if (jtot == nmaxit) { |
1034 | 0 | goto L140; |
1035 | 0 | } |
1036 | 0 | ++jtot; |
1037 | | |
1038 | | /* Form shift. */ |
1039 | |
|
1040 | 0 | g = (d__[l - 1] - p) / (e[l - 1] * 2.); |
1041 | 0 | r__ = dlapy2_(&g, &c_b10); |
1042 | 0 | g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g)); |
1043 | |
|
1044 | 0 | s = 1.; |
1045 | 0 | c__ = 1.; |
1046 | 0 | p = 0.; |
1047 | | |
1048 | | /* Inner loop */ |
1049 | |
|
1050 | 0 | lm1 = l - 1; |
1051 | 0 | i__1 = lm1; |
1052 | 0 | for (i__ = m; i__ <= i__1; ++i__) { |
1053 | 0 | f = s * e[i__]; |
1054 | 0 | b = c__ * e[i__]; |
1055 | 0 | dlartg_(&g, &f, &c__, &s, &r__); |
1056 | 0 | if (i__ != m) { |
1057 | 0 | e[i__ - 1] = r__; |
1058 | 0 | } |
1059 | 0 | g = d__[i__] - p; |
1060 | 0 | r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b; |
1061 | 0 | p = s * r__; |
1062 | 0 | d__[i__] = g + p; |
1063 | 0 | g = c__ * r__ - b; |
1064 | | |
1065 | | /* If eigenvectors are desired, then save rotations. */ |
1066 | |
|
1067 | 0 | if (icompz > 0) { |
1068 | 0 | work[i__] = c__; |
1069 | 0 | work[*n - 1 + i__] = s; |
1070 | 0 | } |
1071 | | |
1072 | | /* L120: */ |
1073 | 0 | } |
1074 | | |
1075 | | /* If eigenvectors are desired, then apply saved rotations. */ |
1076 | |
|
1077 | 0 | if (icompz > 0) { |
1078 | 0 | mm = l - m + 1; |
1079 | 0 | dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m |
1080 | 0 | * z_dim1 + 1], ldz); |
1081 | 0 | } |
1082 | |
|
1083 | 0 | d__[l] -= p; |
1084 | 0 | e[lm1] = g; |
1085 | 0 | goto L90; |
1086 | | |
1087 | | /* Eigenvalue found. */ |
1088 | | |
1089 | 0 | L130: |
1090 | 0 | d__[l] = p; |
1091 | |
|
1092 | 0 | --l; |
1093 | 0 | if (l >= lend) { |
1094 | 0 | goto L90; |
1095 | 0 | } |
1096 | 0 | goto L140; |
1097 | |
|
1098 | 0 | } |
1099 | | |
1100 | | /* Undo scaling if necessary */ |
1101 | | |
1102 | 0 | L140: |
1103 | 0 | if (iscale == 1) { |
1104 | 0 | i__1 = lendsv - lsv + 1; |
1105 | 0 | dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], |
1106 | 0 | n, info); |
1107 | 0 | i__1 = lendsv - lsv; |
1108 | 0 | dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, |
1109 | 0 | info); |
1110 | 0 | } else if (iscale == 2) { |
1111 | 0 | i__1 = lendsv - lsv + 1; |
1112 | 0 | dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], |
1113 | 0 | n, info); |
1114 | 0 | i__1 = lendsv - lsv; |
1115 | 0 | dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, |
1116 | 0 | info); |
1117 | 0 | } |
1118 | | |
1119 | | /* Check for no convergence to an eigenvalue after a total */ |
1120 | | /* of N*MAXIT iterations. */ |
1121 | |
|
1122 | 0 | if (jtot < nmaxit) { |
1123 | 0 | goto L10; |
1124 | 0 | } |
1125 | 0 | i__1 = *n - 1; |
1126 | 0 | for (i__ = 1; i__ <= i__1; ++i__) { |
1127 | 0 | if (e[i__] != 0.) { |
1128 | 0 | ++(*info); |
1129 | 0 | } |
1130 | | /* L150: */ |
1131 | 0 | } |
1132 | 0 | goto L190; |
1133 | | |
1134 | | /* Order eigenvalues and eigenvectors. */ |
1135 | | |
1136 | 0 | L160: |
1137 | 0 | if (icompz == 0) { |
1138 | | |
1139 | | /* Use Quick Sort */ |
1140 | |
|
1141 | 0 | dlasrt_("I", n, &d__[1], info); |
1142 | |
|
1143 | 0 | } else { |
1144 | | |
1145 | | /* Use Selection Sort to minimize swaps of eigenvectors */ |
1146 | |
|
1147 | 0 | i__1 = *n; |
1148 | 0 | for (ii = 2; ii <= i__1; ++ii) { |
1149 | 0 | i__ = ii - 1; |
1150 | 0 | k = i__; |
1151 | 0 | p = d__[i__]; |
1152 | 0 | i__2 = *n; |
1153 | 0 | for (j = ii; j <= i__2; ++j) { |
1154 | 0 | if (d__[j] < p) { |
1155 | 0 | k = j; |
1156 | 0 | p = d__[j]; |
1157 | 0 | } |
1158 | | /* L170: */ |
1159 | 0 | } |
1160 | 0 | if (k != i__) { |
1161 | 0 | d__[k] = d__[i__]; |
1162 | 0 | d__[i__] = p; |
1163 | 0 | dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], |
1164 | 0 | &c__1); |
1165 | 0 | } |
1166 | | /* L180: */ |
1167 | 0 | } |
1168 | 0 | } |
1169 | |
|
1170 | 0 | L190: |
1171 | 0 | return; |
1172 | | |
1173 | | /* End of DSTEQR */ |
1174 | |
|
1175 | 0 | } /* dsteqr_ */ |
1176 | | |