Coverage Report

Created: 2025-09-12 18:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dsteqr.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
0
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
0
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static doublereal c_b9 = 0.;
516
static doublereal c_b10 = 1.;
517
static integer c__0 = 0;
518
static integer c__1 = 1;
519
static integer c__2 = 2;
520
521
/* > \brief \b DSTEQR */
522
523
/*  =========== DOCUMENTATION =========== */
524
525
/* Online html documentation available at */
526
/*            http://www.netlib.org/lapack/explore-html/ */
527
528
/* > \htmlonly */
529
/* > Download DSTEQR + dependencies */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.
531
f"> */
532
/* > [TGZ]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.
534
f"> */
535
/* > [ZIP]</a> */
536
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.
537
f"> */
538
/* > [TXT]</a> */
539
/* > \endhtmlonly */
540
541
/*  Definition: */
542
/*  =========== */
543
544
/*       SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
545
546
/*       CHARACTER          COMPZ */
547
/*       INTEGER            INFO, LDZ, N */
548
/*       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
549
550
551
/* > \par Purpose: */
552
/*  ============= */
553
/* > */
554
/* > \verbatim */
555
/* > */
556
/* > DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
557
/* > symmetric tridiagonal matrix using the implicit QL or QR method. */
558
/* > The eigenvectors of a full or band symmetric matrix can also be found */
559
/* > if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
560
/* > tridiagonal form. */
561
/* > \endverbatim */
562
563
/*  Arguments: */
564
/*  ========== */
565
566
/* > \param[in] COMPZ */
567
/* > \verbatim */
568
/* >          COMPZ is CHARACTER*1 */
569
/* >          = 'N':  Compute eigenvalues only. */
570
/* >          = 'V':  Compute eigenvalues and eigenvectors of the original */
571
/* >                  symmetric matrix.  On entry, Z must contain the */
572
/* >                  orthogonal matrix used to reduce the original matrix */
573
/* >                  to tridiagonal form. */
574
/* >          = 'I':  Compute eigenvalues and eigenvectors of the */
575
/* >                  tridiagonal matrix.  Z is initialized to the identity */
576
/* >                  matrix. */
577
/* > \endverbatim */
578
/* > */
579
/* > \param[in] N */
580
/* > \verbatim */
581
/* >          N is INTEGER */
582
/* >          The order of the matrix.  N >= 0. */
583
/* > \endverbatim */
584
/* > */
585
/* > \param[in,out] D */
586
/* > \verbatim */
587
/* >          D is DOUBLE PRECISION array, dimension (N) */
588
/* >          On entry, the diagonal elements of the tridiagonal matrix. */
589
/* >          On exit, if INFO = 0, the eigenvalues in ascending order. */
590
/* > \endverbatim */
591
/* > */
592
/* > \param[in,out] E */
593
/* > \verbatim */
594
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
595
/* >          On entry, the (n-1) subdiagonal elements of the tridiagonal */
596
/* >          matrix. */
597
/* >          On exit, E has been destroyed. */
598
/* > \endverbatim */
599
/* > */
600
/* > \param[in,out] Z */
601
/* > \verbatim */
602
/* >          Z is DOUBLE PRECISION array, dimension (LDZ, N) */
603
/* >          On entry, if  COMPZ = 'V', then Z contains the orthogonal */
604
/* >          matrix used in the reduction to tridiagonal form. */
605
/* >          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the */
606
/* >          orthonormal eigenvectors of the original symmetric matrix, */
607
/* >          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
608
/* >          of the symmetric tridiagonal matrix. */
609
/* >          If COMPZ = 'N', then Z is not referenced. */
610
/* > \endverbatim */
611
/* > */
612
/* > \param[in] LDZ */
613
/* > \verbatim */
614
/* >          LDZ is INTEGER */
615
/* >          The leading dimension of the array Z.  LDZ >= 1, and if */
616
/* >          eigenvectors are desired, then  LDZ >= f2cmax(1,N). */
617
/* > \endverbatim */
618
/* > */
619
/* > \param[out] WORK */
620
/* > \verbatim */
621
/* >          WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */
622
/* >          If COMPZ = 'N', then WORK is not referenced. */
623
/* > \endverbatim */
624
/* > */
625
/* > \param[out] INFO */
626
/* > \verbatim */
627
/* >          INFO is INTEGER */
628
/* >          = 0:  successful exit */
629
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
630
/* >          > 0:  the algorithm has failed to find all the eigenvalues in */
631
/* >                a total of 30*N iterations; if INFO = i, then i */
632
/* >                elements of E have not converged to zero; on exit, D */
633
/* >                and E contain the elements of a symmetric tridiagonal */
634
/* >                matrix which is orthogonally similar to the original */
635
/* >                matrix. */
636
/* > \endverbatim */
637
638
/*  Authors: */
639
/*  ======== */
640
641
/* > \author Univ. of Tennessee */
642
/* > \author Univ. of California Berkeley */
643
/* > \author Univ. of Colorado Denver */
644
/* > \author NAG Ltd. */
645
646
/* > \date December 2016 */
647
648
/* > \ingroup auxOTHERcomputational */
649
650
/*  ===================================================================== */
651
/* Subroutine */ void dsteqr_(char *compz, integer *n, doublereal *d__, 
652
  doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
653
  integer *info)
654
0
{
655
    /* System generated locals */
656
0
    integer z_dim1, z_offset, i__1, i__2;
657
0
    doublereal d__1, d__2;
658
659
    /* Local variables */
660
0
    integer lend, jtot;
661
0
    extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal 
662
0
      *, doublereal *, doublereal *);
663
0
    doublereal b, c__, f, g;
664
0
    integer i__, j, k, l, m;
665
0
    doublereal p, r__, s;
666
0
    extern logical lsame_(char *, char *);
667
0
    extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *, 
668
0
      integer *, doublereal *, doublereal *, doublereal *, integer *);
669
0
    doublereal anorm;
670
0
    extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *, 
671
0
      doublereal *, integer *);
672
0
    integer l1;
673
0
    extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *, 
674
0
      doublereal *, doublereal *, doublereal *, doublereal *, 
675
0
      doublereal *);
676
0
    integer lendm1, lendp1;
677
0
    extern doublereal dlapy2_(doublereal *, doublereal *);
678
0
    integer ii;
679
0
    extern doublereal dlamch_(char *);
680
0
    integer mm, iscale;
681
0
    extern /* Subroutine */ void dlascl_(char *, integer *, integer *, 
682
0
      doublereal *, doublereal *, integer *, integer *, doublereal *, 
683
0
      integer *, integer *), dlaset_(char *, integer *, integer 
684
0
      *, doublereal *, doublereal *, doublereal *, integer *);
685
0
    doublereal safmin;
686
0
    extern /* Subroutine */ void dlartg_(doublereal *, doublereal *, 
687
0
      doublereal *, doublereal *, doublereal *);
688
0
    doublereal safmax;
689
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
690
0
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
691
0
    extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *, 
692
0
      integer *);
693
0
    integer lendsv;
694
0
    doublereal ssfmin;
695
0
    integer nmaxit, icompz;
696
0
    doublereal ssfmax;
697
0
    integer lm1, mm1, nm1;
698
0
    doublereal rt1, rt2, eps;
699
0
    integer lsv;
700
0
    doublereal tst, eps2;
701
702
703
/*  -- LAPACK computational routine (version 3.7.0) -- */
704
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
705
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
706
/*     December 2016 */
707
708
709
/*  ===================================================================== */
710
711
712
/*     Test the input parameters. */
713
714
    /* Parameter adjustments */
715
0
    --d__;
716
0
    --e;
717
0
    z_dim1 = *ldz;
718
0
    z_offset = 1 + z_dim1 * 1;
719
0
    z__ -= z_offset;
720
0
    --work;
721
722
    /* Function Body */
723
0
    *info = 0;
724
725
0
    if (lsame_(compz, "N")) {
726
0
  icompz = 0;
727
0
    } else if (lsame_(compz, "V")) {
728
0
  icompz = 1;
729
0
    } else if (lsame_(compz, "I")) {
730
0
  icompz = 2;
731
0
    } else {
732
0
  icompz = -1;
733
0
    }
734
0
    if (icompz < 0) {
735
0
  *info = -1;
736
0
    } else if (*n < 0) {
737
0
  *info = -2;
738
0
    } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
739
0
  *info = -6;
740
0
    }
741
0
    if (*info != 0) {
742
0
  i__1 = -(*info);
743
0
  xerbla_("DSTEQR", &i__1, (ftnlen)6);
744
0
  return;
745
0
    }
746
747
/*     Quick return if possible */
748
749
0
    if (*n == 0) {
750
0
  return;
751
0
    }
752
753
0
    if (*n == 1) {
754
0
  if (icompz == 2) {
755
0
      z__[z_dim1 + 1] = 1.;
756
0
  }
757
0
  return;
758
0
    }
759
760
/*     Determine the unit roundoff and over/underflow thresholds. */
761
762
0
    eps = dlamch_("E");
763
/* Computing 2nd power */
764
0
    d__1 = eps;
765
0
    eps2 = d__1 * d__1;
766
0
    safmin = dlamch_("S");
767
0
    safmax = 1. / safmin;
768
0
    ssfmax = sqrt(safmax) / 3.;
769
0
    ssfmin = sqrt(safmin) / eps2;
770
771
/*     Compute the eigenvalues and eigenvectors of the tridiagonal */
772
/*     matrix. */
773
774
0
    if (icompz == 2) {
775
0
  dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
776
0
    }
777
778
0
    nmaxit = *n * 30;
779
0
    jtot = 0;
780
781
/*     Determine where the matrix splits and choose QL or QR iteration */
782
/*     for each block, according to whether top or bottom diagonal */
783
/*     element is smaller. */
784
785
0
    l1 = 1;
786
0
    nm1 = *n - 1;
787
788
0
L10:
789
0
    if (l1 > *n) {
790
0
  goto L160;
791
0
    }
792
0
    if (l1 > 1) {
793
0
  e[l1 - 1] = 0.;
794
0
    }
795
0
    if (l1 <= nm1) {
796
0
  i__1 = nm1;
797
0
  for (m = l1; m <= i__1; ++m) {
798
0
      tst = (d__1 = e[m], abs(d__1));
799
0
      if (tst == 0.) {
800
0
    goto L30;
801
0
      }
802
0
      if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 
803
0
        + 1], abs(d__2))) * eps) {
804
0
    e[m] = 0.;
805
0
    goto L30;
806
0
      }
807
/* L20: */
808
0
  }
809
0
    }
810
0
    m = *n;
811
812
0
L30:
813
0
    l = l1;
814
0
    lsv = l;
815
0
    lend = m;
816
0
    lendsv = lend;
817
0
    l1 = m + 1;
818
0
    if (lend == l) {
819
0
  goto L10;
820
0
    }
821
822
/*     Scale submatrix in rows and columns L to LEND */
823
824
0
    i__1 = lend - l + 1;
825
0
    anorm = dlanst_("M", &i__1, &d__[l], &e[l]);
826
0
    iscale = 0;
827
0
    if (anorm == 0.) {
828
0
  goto L10;
829
0
    }
830
0
    if (anorm > ssfmax) {
831
0
  iscale = 1;
832
0
  i__1 = lend - l + 1;
833
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
834
0
    info);
835
0
  i__1 = lend - l;
836
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
837
0
    info);
838
0
    } else if (anorm < ssfmin) {
839
0
  iscale = 2;
840
0
  i__1 = lend - l + 1;
841
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
842
0
    info);
843
0
  i__1 = lend - l;
844
0
  dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
845
0
    info);
846
0
    }
847
848
/*     Choose between QL and QR iteration */
849
850
0
    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
851
0
  lend = lsv;
852
0
  l = lendsv;
853
0
    }
854
855
0
    if (lend > l) {
856
857
/*        QL Iteration */
858
859
/*        Look for small subdiagonal element. */
860
861
0
L40:
862
0
  if (l != lend) {
863
0
      lendm1 = lend - 1;
864
0
      i__1 = lendm1;
865
0
      for (m = l; m <= i__1; ++m) {
866
/* Computing 2nd power */
867
0
    d__2 = (d__1 = e[m], abs(d__1));
868
0
    tst = d__2 * d__2;
869
0
    if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
870
0
      + 1], abs(d__2)) + safmin) {
871
0
        goto L60;
872
0
    }
873
/* L50: */
874
0
      }
875
0
  }
876
877
0
  m = lend;
878
879
0
L60:
880
0
  if (m < lend) {
881
0
      e[m] = 0.;
882
0
  }
883
0
  p = d__[l];
884
0
  if (m == l) {
885
0
      goto L80;
886
0
  }
887
888
/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
889
/*        to compute its eigensystem. */
890
891
0
  if (m == l + 1) {
892
0
      if (icompz > 0) {
893
0
    dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
894
0
    work[l] = c__;
895
0
    work[*n - 1 + l] = s;
896
0
    dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
897
0
      z__[l * z_dim1 + 1], ldz);
898
0
      } else {
899
0
    dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
900
0
      }
901
0
      d__[l] = rt1;
902
0
      d__[l + 1] = rt2;
903
0
      e[l] = 0.;
904
0
      l += 2;
905
0
      if (l <= lend) {
906
0
    goto L40;
907
0
      }
908
0
      goto L140;
909
0
  }
910
911
0
  if (jtot == nmaxit) {
912
0
      goto L140;
913
0
  }
914
0
  ++jtot;
915
916
/*        Form shift. */
917
918
0
  g = (d__[l + 1] - p) / (e[l] * 2.);
919
0
  r__ = dlapy2_(&g, &c_b10);
920
0
  g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
921
922
0
  s = 1.;
923
0
  c__ = 1.;
924
0
  p = 0.;
925
926
/*        Inner loop */
927
928
0
  mm1 = m - 1;
929
0
  i__1 = l;
930
0
  for (i__ = mm1; i__ >= i__1; --i__) {
931
0
      f = s * e[i__];
932
0
      b = c__ * e[i__];
933
0
      dlartg_(&g, &f, &c__, &s, &r__);
934
0
      if (i__ != m - 1) {
935
0
    e[i__ + 1] = r__;
936
0
      }
937
0
      g = d__[i__ + 1] - p;
938
0
      r__ = (d__[i__] - g) * s + c__ * 2. * b;
939
0
      p = s * r__;
940
0
      d__[i__ + 1] = g + p;
941
0
      g = c__ * r__ - b;
942
943
/*           If eigenvectors are desired, then save rotations. */
944
945
0
      if (icompz > 0) {
946
0
    work[i__] = c__;
947
0
    work[*n - 1 + i__] = -s;
948
0
      }
949
950
/* L70: */
951
0
  }
952
953
/*        If eigenvectors are desired, then apply saved rotations. */
954
955
0
  if (icompz > 0) {
956
0
      mm = m - l + 1;
957
0
      dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l 
958
0
        * z_dim1 + 1], ldz);
959
0
  }
960
961
0
  d__[l] -= p;
962
0
  e[l] = g;
963
0
  goto L40;
964
965
/*        Eigenvalue found. */
966
967
0
L80:
968
0
  d__[l] = p;
969
970
0
  ++l;
971
0
  if (l <= lend) {
972
0
      goto L40;
973
0
  }
974
0
  goto L140;
975
976
0
    } else {
977
978
/*        QR Iteration */
979
980
/*        Look for small superdiagonal element. */
981
982
0
L90:
983
0
  if (l != lend) {
984
0
      lendp1 = lend + 1;
985
0
      i__1 = lendp1;
986
0
      for (m = l; m >= i__1; --m) {
987
/* Computing 2nd power */
988
0
    d__2 = (d__1 = e[m - 1], abs(d__1));
989
0
    tst = d__2 * d__2;
990
0
    if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
991
0
      - 1], abs(d__2)) + safmin) {
992
0
        goto L110;
993
0
    }
994
/* L100: */
995
0
      }
996
0
  }
997
998
0
  m = lend;
999
1000
0
L110:
1001
0
  if (m > lend) {
1002
0
      e[m - 1] = 0.;
1003
0
  }
1004
0
  p = d__[l];
1005
0
  if (m == l) {
1006
0
      goto L130;
1007
0
  }
1008
1009
/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
1010
/*        to compute its eigensystem. */
1011
1012
0
  if (m == l - 1) {
1013
0
      if (icompz > 0) {
1014
0
    dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
1015
0
      ;
1016
0
    work[m] = c__;
1017
0
    work[*n - 1 + m] = s;
1018
0
    dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
1019
0
      z__[(l - 1) * z_dim1 + 1], ldz);
1020
0
      } else {
1021
0
    dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
1022
0
      }
1023
0
      d__[l - 1] = rt1;
1024
0
      d__[l] = rt2;
1025
0
      e[l - 1] = 0.;
1026
0
      l += -2;
1027
0
      if (l >= lend) {
1028
0
    goto L90;
1029
0
      }
1030
0
      goto L140;
1031
0
  }
1032
1033
0
  if (jtot == nmaxit) {
1034
0
      goto L140;
1035
0
  }
1036
0
  ++jtot;
1037
1038
/*        Form shift. */
1039
1040
0
  g = (d__[l - 1] - p) / (e[l - 1] * 2.);
1041
0
  r__ = dlapy2_(&g, &c_b10);
1042
0
  g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
1043
1044
0
  s = 1.;
1045
0
  c__ = 1.;
1046
0
  p = 0.;
1047
1048
/*        Inner loop */
1049
1050
0
  lm1 = l - 1;
1051
0
  i__1 = lm1;
1052
0
  for (i__ = m; i__ <= i__1; ++i__) {
1053
0
      f = s * e[i__];
1054
0
      b = c__ * e[i__];
1055
0
      dlartg_(&g, &f, &c__, &s, &r__);
1056
0
      if (i__ != m) {
1057
0
    e[i__ - 1] = r__;
1058
0
      }
1059
0
      g = d__[i__] - p;
1060
0
      r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
1061
0
      p = s * r__;
1062
0
      d__[i__] = g + p;
1063
0
      g = c__ * r__ - b;
1064
1065
/*           If eigenvectors are desired, then save rotations. */
1066
1067
0
      if (icompz > 0) {
1068
0
    work[i__] = c__;
1069
0
    work[*n - 1 + i__] = s;
1070
0
      }
1071
1072
/* L120: */
1073
0
  }
1074
1075
/*        If eigenvectors are desired, then apply saved rotations. */
1076
1077
0
  if (icompz > 0) {
1078
0
      mm = l - m + 1;
1079
0
      dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m 
1080
0
        * z_dim1 + 1], ldz);
1081
0
  }
1082
1083
0
  d__[l] -= p;
1084
0
  e[lm1] = g;
1085
0
  goto L90;
1086
1087
/*        Eigenvalue found. */
1088
1089
0
L130:
1090
0
  d__[l] = p;
1091
1092
0
  --l;
1093
0
  if (l >= lend) {
1094
0
      goto L90;
1095
0
  }
1096
0
  goto L140;
1097
1098
0
    }
1099
1100
/*     Undo scaling if necessary */
1101
1102
0
L140:
1103
0
    if (iscale == 1) {
1104
0
  i__1 = lendsv - lsv + 1;
1105
0
  dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
1106
0
    n, info);
1107
0
  i__1 = lendsv - lsv;
1108
0
  dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, 
1109
0
    info);
1110
0
    } else if (iscale == 2) {
1111
0
  i__1 = lendsv - lsv + 1;
1112
0
  dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
1113
0
    n, info);
1114
0
  i__1 = lendsv - lsv;
1115
0
  dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, 
1116
0
    info);
1117
0
    }
1118
1119
/*     Check for no convergence to an eigenvalue after a total */
1120
/*     of N*MAXIT iterations. */
1121
1122
0
    if (jtot < nmaxit) {
1123
0
  goto L10;
1124
0
    }
1125
0
    i__1 = *n - 1;
1126
0
    for (i__ = 1; i__ <= i__1; ++i__) {
1127
0
  if (e[i__] != 0.) {
1128
0
      ++(*info);
1129
0
  }
1130
/* L150: */
1131
0
    }
1132
0
    goto L190;
1133
1134
/*     Order eigenvalues and eigenvectors. */
1135
1136
0
L160:
1137
0
    if (icompz == 0) {
1138
1139
/*        Use Quick Sort */
1140
1141
0
  dlasrt_("I", n, &d__[1], info);
1142
1143
0
    } else {
1144
1145
/*        Use Selection Sort to minimize swaps of eigenvectors */
1146
1147
0
  i__1 = *n;
1148
0
  for (ii = 2; ii <= i__1; ++ii) {
1149
0
      i__ = ii - 1;
1150
0
      k = i__;
1151
0
      p = d__[i__];
1152
0
      i__2 = *n;
1153
0
      for (j = ii; j <= i__2; ++j) {
1154
0
    if (d__[j] < p) {
1155
0
        k = j;
1156
0
        p = d__[j];
1157
0
    }
1158
/* L170: */
1159
0
      }
1160
0
      if (k != i__) {
1161
0
    d__[k] = d__[i__];
1162
0
    d__[i__] = p;
1163
0
    dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
1164
0
       &c__1);
1165
0
      }
1166
/* L180: */
1167
0
  }
1168
0
    }
1169
1170
0
L190:
1171
0
    return;
1172
1173
/*     End of DSTEQR */
1174
1175
0
} /* dsteqr_ */
1176