Coverage Report

Created: 2025-09-12 18:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/sbdsqr.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
0
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
0
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
0
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static doublereal c_b15 = -.125;
516
static integer c__1 = 1;
517
static real c_b49 = 1.f;
518
static real c_b72 = -1.f;
519
520
/* > \brief \b SBDSQR */
521
522
/*  =========== DOCUMENTATION =========== */
523
524
/* Online html documentation available at */
525
/*            http://www.netlib.org/lapack/explore-html/ */
526
527
/* > \htmlonly */
528
/* > Download SBDSQR + dependencies */
529
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsqr.
530
f"> */
531
/* > [TGZ]</a> */
532
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsqr.
533
f"> */
534
/* > [ZIP]</a> */
535
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsqr.
536
f"> */
537
/* > [TXT]</a> */
538
/* > \endhtmlonly */
539
540
/*  Definition: */
541
/*  =========== */
542
543
/*       SUBROUTINE SBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
544
/*                          LDU, C, LDC, WORK, INFO ) */
545
546
/*       CHARACTER          UPLO */
547
/*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
548
/*       REAL               C( LDC, * ), D( * ), E( * ), U( LDU, * ), */
549
/*      $                   VT( LDVT, * ), WORK( * ) */
550
551
552
/* > \par Purpose: */
553
/*  ============= */
554
/* > */
555
/* > \verbatim */
556
/* > */
557
/* > SBDSQR computes the singular values and, optionally, the right and/or */
558
/* > left singular vectors from the singular value decomposition (SVD) of */
559
/* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
560
/* > zero-shift QR algorithm.  The SVD of B has the form */
561
/* > */
562
/* >    B = Q * S * P**T */
563
/* > */
564
/* > where S is the diagonal matrix of singular values, Q is an orthogonal */
565
/* > matrix of left singular vectors, and P is an orthogonal matrix of */
566
/* > right singular vectors.  If left singular vectors are requested, this */
567
/* > subroutine actually returns U*Q instead of Q, and, if right singular */
568
/* > vectors are requested, this subroutine returns P**T*VT instead of */
569
/* > P**T, for given real input matrices U and VT.  When U and VT are the */
570
/* > orthogonal matrices that reduce a general matrix A to bidiagonal */
571
/* > form:  A = U*B*VT, as computed by SGEBRD, then */
572
/* > */
573
/* >    A = (U*Q) * S * (P**T*VT) */
574
/* > */
575
/* > is the SVD of A.  Optionally, the subroutine may also compute Q**T*C */
576
/* > for a given real input matrix C. */
577
/* > */
578
/* > See "Computing  Small Singular Values of Bidiagonal Matrices With */
579
/* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
580
/* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
581
/* > no. 5, pp. 873-912, Sept 1990) and */
582
/* > "Accurate singular values and differential qd algorithms," by */
583
/* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
584
/* > Department, University of California at Berkeley, July 1992 */
585
/* > for a detailed description of the algorithm. */
586
/* > \endverbatim */
587
588
/*  Arguments: */
589
/*  ========== */
590
591
/* > \param[in] UPLO */
592
/* > \verbatim */
593
/* >          UPLO is CHARACTER*1 */
594
/* >          = 'U':  B is upper bidiagonal; */
595
/* >          = 'L':  B is lower bidiagonal. */
596
/* > \endverbatim */
597
/* > */
598
/* > \param[in] N */
599
/* > \verbatim */
600
/* >          N is INTEGER */
601
/* >          The order of the matrix B.  N >= 0. */
602
/* > \endverbatim */
603
/* > */
604
/* > \param[in] NCVT */
605
/* > \verbatim */
606
/* >          NCVT is INTEGER */
607
/* >          The number of columns of the matrix VT. NCVT >= 0. */
608
/* > \endverbatim */
609
/* > */
610
/* > \param[in] NRU */
611
/* > \verbatim */
612
/* >          NRU is INTEGER */
613
/* >          The number of rows of the matrix U. NRU >= 0. */
614
/* > \endverbatim */
615
/* > */
616
/* > \param[in] NCC */
617
/* > \verbatim */
618
/* >          NCC is INTEGER */
619
/* >          The number of columns of the matrix C. NCC >= 0. */
620
/* > \endverbatim */
621
/* > */
622
/* > \param[in,out] D */
623
/* > \verbatim */
624
/* >          D is REAL array, dimension (N) */
625
/* >          On entry, the n diagonal elements of the bidiagonal matrix B. */
626
/* >          On exit, if INFO=0, the singular values of B in decreasing */
627
/* >          order. */
628
/* > \endverbatim */
629
/* > */
630
/* > \param[in,out] E */
631
/* > \verbatim */
632
/* >          E is REAL array, dimension (N-1) */
633
/* >          On entry, the N-1 offdiagonal elements of the bidiagonal */
634
/* >          matrix B. */
635
/* >          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
636
/* >          will contain the diagonal and superdiagonal elements of a */
637
/* >          bidiagonal matrix orthogonally equivalent to the one given */
638
/* >          as input. */
639
/* > \endverbatim */
640
/* > */
641
/* > \param[in,out] VT */
642
/* > \verbatim */
643
/* >          VT is REAL array, dimension (LDVT, NCVT) */
644
/* >          On entry, an N-by-NCVT matrix VT. */
645
/* >          On exit, VT is overwritten by P**T * VT. */
646
/* >          Not referenced if NCVT = 0. */
647
/* > \endverbatim */
648
/* > */
649
/* > \param[in] LDVT */
650
/* > \verbatim */
651
/* >          LDVT is INTEGER */
652
/* >          The leading dimension of the array VT. */
653
/* >          LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
654
/* > \endverbatim */
655
/* > */
656
/* > \param[in,out] U */
657
/* > \verbatim */
658
/* >          U is REAL array, dimension (LDU, N) */
659
/* >          On entry, an NRU-by-N matrix U. */
660
/* >          On exit, U is overwritten by U * Q. */
661
/* >          Not referenced if NRU = 0. */
662
/* > \endverbatim */
663
/* > */
664
/* > \param[in] LDU */
665
/* > \verbatim */
666
/* >          LDU is INTEGER */
667
/* >          The leading dimension of the array U.  LDU >= f2cmax(1,NRU). */
668
/* > \endverbatim */
669
/* > */
670
/* > \param[in,out] C */
671
/* > \verbatim */
672
/* >          C is REAL array, dimension (LDC, NCC) */
673
/* >          On entry, an N-by-NCC matrix C. */
674
/* >          On exit, C is overwritten by Q**T * C. */
675
/* >          Not referenced if NCC = 0. */
676
/* > \endverbatim */
677
/* > */
678
/* > \param[in] LDC */
679
/* > \verbatim */
680
/* >          LDC is INTEGER */
681
/* >          The leading dimension of the array C. */
682
/* >          LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
683
/* > \endverbatim */
684
/* > */
685
/* > \param[out] WORK */
686
/* > \verbatim */
687
/* >          WORK is REAL array, dimension (4*N) */
688
/* > \endverbatim */
689
/* > */
690
/* > \param[out] INFO */
691
/* > \verbatim */
692
/* >          INFO is INTEGER */
693
/* >          = 0:  successful exit */
694
/* >          < 0:  If INFO = -i, the i-th argument had an illegal value */
695
/* >          > 0: */
696
/* >             if NCVT = NRU = NCC = 0, */
697
/* >                = 1, a split was marked by a positive value in E */
698
/* >                = 2, current block of Z not diagonalized after 30*N */
699
/* >                     iterations (in inner while loop) */
700
/* >                = 3, termination criterion of outer while loop not met */
701
/* >                     (program created more than N unreduced blocks) */
702
/* >             else NCVT = NRU = NCC = 0, */
703
/* >                   the algorithm did not converge; D and E contain the */
704
/* >                   elements of a bidiagonal matrix which is orthogonally */
705
/* >                   similar to the input matrix B;  if INFO = i, i */
706
/* >                   elements of E have not converged to zero. */
707
/* > \endverbatim */
708
709
/* > \par Internal Parameters: */
710
/*  ========================= */
711
/* > */
712
/* > \verbatim */
713
/* >  TOLMUL  REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
714
/* >          TOLMUL controls the convergence criterion of the QR loop. */
715
/* >          If it is positive, TOLMUL*EPS is the desired relative */
716
/* >             precision in the computed singular values. */
717
/* >          If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
718
/* >             desired absolute accuracy in the computed singular */
719
/* >             values (corresponds to relative accuracy */
720
/* >             abs(TOLMUL*EPS) in the largest singular value. */
721
/* >          abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
722
/* >             between 10 (for fast convergence) and .1/EPS */
723
/* >             (for there to be some accuracy in the results). */
724
/* >          Default is to lose at either one eighth or 2 of the */
725
/* >             available decimal digits in each computed singular value */
726
/* >             (whichever is smaller). */
727
/* > */
728
/* >  MAXITR  INTEGER, default = 6 */
729
/* >          MAXITR controls the maximum number of passes of the */
730
/* >          algorithm through its inner loop. The algorithms stops */
731
/* >          (and so fails to converge) if the number of passes */
732
/* >          through the inner loop exceeds MAXITR*N**2. */
733
/* > \endverbatim */
734
735
/* > \par Note: */
736
/*  =========== */
737
/* > */
738
/* > \verbatim */
739
/* >  Bug report from Cezary Dendek. */
740
/* >  On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is */
741
/* >  removed since it can overflow pretty easily (for N larger or equal */
742
/* >  than 18,919). We instead use MAXITDIVN = MAXITR*N. */
743
/* > \endverbatim */
744
745
/*  Authors: */
746
/*  ======== */
747
748
/* > \author Univ. of Tennessee */
749
/* > \author Univ. of California Berkeley */
750
/* > \author Univ. of Colorado Denver */
751
/* > \author NAG Ltd. */
752
753
/* > \date June 2017 */
754
755
/* > \ingroup auxOTHERcomputational */
756
757
/*  ===================================================================== */
758
/* Subroutine */ void sbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
759
  nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *
760
  u, integer *ldu, real *c__, integer *ldc, real *work, integer *info)
761
0
{
762
    /* System generated locals */
763
0
    integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
764
0
      i__2;
765
0
    real r__1, r__2, r__3, r__4;
766
0
    doublereal d__1;
767
768
    /* Local variables */
769
0
    real abse;
770
0
    integer idir;
771
0
    real abss;
772
0
    integer oldm;
773
0
    real cosl;
774
0
    integer isub, iter;
775
0
    real unfl, sinl, cosr, smin, smax, sinr;
776
0
    extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
777
0
      integer *, real *, real *);
778
0
    integer iterdivn;
779
0
    extern /* Subroutine */ void slas2_(real *, real *, real *, real *, real *)
780
0
      ;
781
0
    real f, g, h__;
782
0
    integer i__, j, m;
783
0
    real r__;
784
0
    extern logical lsame_(char *, char *);
785
0
    real oldcs;
786
0
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
787
0
    integer oldll;
788
0
    real shift, sigmn, oldsn, sminl;
789
0
    extern /* Subroutine */ void slasr_(char *, char *, char *, integer *, 
790
0
      integer *, real *, real *, real *, integer *);
791
0
    real sigmx;
792
0
    logical lower;
793
0
    extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
794
0
      integer *);
795
0
    integer maxitdivn;
796
0
    extern /* Subroutine */ void slasq1_(integer *, real *, real *, real *, 
797
0
      integer *), slasv2_(real *, real *, real *, real *, real *, real *
798
0
      , real *, real *, real *);
799
0
    real cs;
800
0
    integer ll;
801
0
    real sn, mu;
802
0
    extern real slamch_(char *);
803
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
804
0
    real sminoa;
805
0
    extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
806
0
      );
807
0
    real thresh;
808
0
    logical rotate;
809
0
    integer nm1;
810
0
    real tolmul;
811
0
    integer nm12, nm13, lll;
812
0
    real eps, sll, tol;
813
814
815
/*  -- LAPACK computational routine (version 3.7.1) -- */
816
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
817
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
818
/*     June 2017 */
819
820
821
/*  ===================================================================== */
822
823
824
/*     Test the input parameters. */
825
826
    /* Parameter adjustments */
827
0
    --d__;
828
0
    --e;
829
0
    vt_dim1 = *ldvt;
830
0
    vt_offset = 1 + vt_dim1 * 1;
831
0
    vt -= vt_offset;
832
0
    u_dim1 = *ldu;
833
0
    u_offset = 1 + u_dim1 * 1;
834
0
    u -= u_offset;
835
0
    c_dim1 = *ldc;
836
0
    c_offset = 1 + c_dim1 * 1;
837
0
    c__ -= c_offset;
838
0
    --work;
839
840
    /* Function Body */
841
0
    *info = 0;
842
0
    lower = lsame_(uplo, "L");
843
0
    if (! lsame_(uplo, "U") && ! lower) {
844
0
  *info = -1;
845
0
    } else if (*n < 0) {
846
0
  *info = -2;
847
0
    } else if (*ncvt < 0) {
848
0
  *info = -3;
849
0
    } else if (*nru < 0) {
850
0
  *info = -4;
851
0
    } else if (*ncc < 0) {
852
0
  *info = -5;
853
0
    } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
854
0
  *info = -9;
855
0
    } else if (*ldu < f2cmax(1,*nru)) {
856
0
  *info = -11;
857
0
    } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
858
0
  *info = -13;
859
0
    }
860
0
    if (*info != 0) {
861
0
  i__1 = -(*info);
862
0
  xerbla_("SBDSQR", &i__1, (ftnlen)6);
863
0
  return;
864
0
    }
865
0
    if (*n == 0) {
866
0
  return;
867
0
    }
868
0
    if (*n == 1) {
869
0
  goto L160;
870
0
    }
871
872
/*     ROTATE is true if any singular vectors desired, false otherwise */
873
874
0
    rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
875
876
/*     If no singular vectors desired, use qd algorithm */
877
878
0
    if (! rotate) {
879
0
  slasq1_(n, &d__[1], &e[1], &work[1], info);
880
881
/*     If INFO equals 2, dqds didn't finish, try to finish */
882
883
0
  if (*info != 2) {
884
0
      return;
885
0
  }
886
0
  *info = 0;
887
0
    }
888
889
0
    nm1 = *n - 1;
890
0
    nm12 = nm1 + nm1;
891
0
    nm13 = nm12 + nm1;
892
0
    idir = 0;
893
894
/*     Get machine constants */
895
896
0
    eps = slamch_("Epsilon");
897
0
    unfl = slamch_("Safe minimum");
898
899
/*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
900
/*     by applying Givens rotations on the left */
901
902
0
    if (lower) {
903
0
  i__1 = *n - 1;
904
0
  for (i__ = 1; i__ <= i__1; ++i__) {
905
0
      slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
906
0
      d__[i__] = r__;
907
0
      e[i__] = sn * d__[i__ + 1];
908
0
      d__[i__ + 1] = cs * d__[i__ + 1];
909
0
      work[i__] = cs;
910
0
      work[nm1 + i__] = sn;
911
/* L10: */
912
0
  }
913
914
/*        Update singular vectors if desired */
915
916
0
  if (*nru > 0) {
917
0
      slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset], 
918
0
        ldu);
919
0
  }
920
0
  if (*ncc > 0) {
921
0
      slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
922
0
         ldc);
923
0
  }
924
0
    }
925
926
/*     Compute singular values to relative accuracy TOL */
927
/*     (By setting TOL to be negative, algorithm will compute */
928
/*     singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
929
930
/* Computing MAX */
931
/* Computing MIN */
932
0
    d__1 = (doublereal) eps;
933
0
    r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
934
0
    r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
935
0
    tolmul = f2cmax(r__1,r__2);
936
0
    tol = tolmul * eps;
937
938
/*     Compute approximate maximum, minimum singular values */
939
940
0
    smax = 0.f;
941
0
    i__1 = *n;
942
0
    for (i__ = 1; i__ <= i__1; ++i__) {
943
/* Computing MAX */
944
0
  r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
945
0
  smax = f2cmax(r__2,r__3);
946
/* L20: */
947
0
    }
948
0
    i__1 = *n - 1;
949
0
    for (i__ = 1; i__ <= i__1; ++i__) {
950
/* Computing MAX */
951
0
  r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
952
0
  smax = f2cmax(r__2,r__3);
953
/* L30: */
954
0
    }
955
0
    sminl = 0.f;
956
0
    if (tol >= 0.f) {
957
958
/*        Relative accuracy desired */
959
960
0
  sminoa = abs(d__[1]);
961
0
  if (sminoa == 0.f) {
962
0
      goto L50;
963
0
  }
964
0
  mu = sminoa;
965
0
  i__1 = *n;
966
0
  for (i__ = 2; i__ <= i__1; ++i__) {
967
0
      mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
968
0
        , abs(r__1))));
969
0
      sminoa = f2cmin(sminoa,mu);
970
0
      if (sminoa == 0.f) {
971
0
    goto L50;
972
0
      }
973
/* L40: */
974
0
  }
975
0
L50:
976
0
  sminoa /= sqrt((real) (*n));
977
/* Computing MAX */
978
0
  r__1 = tol * sminoa, r__2 = *n * (*n * unfl) * 6;
979
0
  thresh = f2cmax(r__1,r__2);
980
0
    } else {
981
982
/*        Absolute accuracy desired */
983
984
/* Computing MAX */
985
0
  r__1 = abs(tol) * smax, r__2 = *n * (*n * unfl) * 6;
986
0
  thresh = f2cmax(r__1,r__2);
987
0
    }
988
989
/*     Prepare for main iteration loop for the singular values */
990
/*     (MAXIT is the maximum number of passes through the inner */
991
/*     loop permitted before nonconvergence signalled.) */
992
993
0
    maxitdivn = *n * 6;
994
0
    iterdivn = 0;
995
0
    iter = -1;
996
0
    oldll = -1;
997
0
    oldm = -1;
998
999
/*     M points to last element of unconverged part of matrix */
1000
1001
0
    m = *n;
1002
1003
/*     Begin main iteration loop */
1004
1005
0
L60:
1006
1007
/*     Check for convergence or exceeding iteration count */
1008
1009
0
    if (m <= 1) {
1010
0
  goto L160;
1011
0
    }
1012
1013
0
    if (iter >= *n) {
1014
0
  iter -= *n;
1015
0
  ++iterdivn;
1016
0
  if (iterdivn >= maxitdivn) {
1017
0
      goto L200;
1018
0
  }
1019
0
    }
1020
1021
/*     Find diagonal block of matrix to work on */
1022
1023
0
    if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
1024
0
  d__[m] = 0.f;
1025
0
    }
1026
0
    smax = (r__1 = d__[m], abs(r__1));
1027
0
    smin = smax;
1028
0
    i__1 = m - 1;
1029
0
    for (lll = 1; lll <= i__1; ++lll) {
1030
0
  ll = m - lll;
1031
0
  abss = (r__1 = d__[ll], abs(r__1));
1032
0
  abse = (r__1 = e[ll], abs(r__1));
1033
0
  if (tol < 0.f && abss <= thresh) {
1034
0
      d__[ll] = 0.f;
1035
0
  }
1036
0
  if (abse <= thresh) {
1037
0
      goto L80;
1038
0
  }
1039
0
  smin = f2cmin(smin,abss);
1040
/* Computing MAX */
1041
0
  r__1 = f2cmax(smax,abss);
1042
0
  smax = f2cmax(r__1,abse);
1043
/* L70: */
1044
0
    }
1045
0
    ll = 0;
1046
0
    goto L90;
1047
0
L80:
1048
0
    e[ll] = 0.f;
1049
1050
/*     Matrix splits since E(LL) = 0 */
1051
1052
0
    if (ll == m - 1) {
1053
1054
/*        Convergence of bottom singular value, return to top of loop */
1055
1056
0
  --m;
1057
0
  goto L60;
1058
0
    }
1059
0
L90:
1060
0
    ++ll;
1061
1062
/*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
1063
1064
0
    if (ll == m - 1) {
1065
1066
/*        2 by 2 block, handle separately */
1067
1068
0
  slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
1069
0
     &sinl, &cosl);
1070
0
  d__[m - 1] = sigmx;
1071
0
  e[m - 1] = 0.f;
1072
0
  d__[m] = sigmn;
1073
1074
/*        Compute singular vectors, if desired */
1075
1076
0
  if (*ncvt > 0) {
1077
0
      srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
1078
0
        cosr, &sinr);
1079
0
  }
1080
0
  if (*nru > 0) {
1081
0
      srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
1082
0
        c__1, &cosl, &sinl);
1083
0
  }
1084
0
  if (*ncc > 0) {
1085
0
      srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
1086
0
        cosl, &sinl);
1087
0
  }
1088
0
  m += -2;
1089
0
  goto L60;
1090
0
    }
1091
1092
/*     If working on new submatrix, choose shift direction */
1093
/*     (from larger end diagonal element towards smaller) */
1094
1095
0
    if (ll > oldm || m < oldll) {
1096
0
  if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
1097
1098
/*           Chase bulge from top (big end) to bottom (small end) */
1099
1100
0
      idir = 1;
1101
0
  } else {
1102
1103
/*           Chase bulge from bottom (big end) to top (small end) */
1104
1105
0
      idir = 2;
1106
0
  }
1107
0
    }
1108
1109
/*     Apply convergence tests */
1110
1111
0
    if (idir == 1) {
1112
1113
/*        Run convergence test in forward direction */
1114
/*        First apply standard test to bottom of matrix */
1115
1116
0
  if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
1117
0
    r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
1118
0
     {
1119
0
      e[m - 1] = 0.f;
1120
0
      goto L60;
1121
0
  }
1122
1123
0
  if (tol >= 0.f) {
1124
1125
/*           If relative accuracy desired, */
1126
/*           apply convergence criterion forward */
1127
1128
0
      mu = (r__1 = d__[ll], abs(r__1));
1129
0
      sminl = mu;
1130
0
      i__1 = m - 1;
1131
0
      for (lll = ll; lll <= i__1; ++lll) {
1132
0
    if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
1133
0
        e[lll] = 0.f;
1134
0
        goto L60;
1135
0
    }
1136
0
    mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
1137
0
      lll], abs(r__1))));
1138
0
    sminl = f2cmin(sminl,mu);
1139
/* L100: */
1140
0
      }
1141
0
  }
1142
1143
0
    } else {
1144
1145
/*        Run convergence test in backward direction */
1146
/*        First apply standard test to top of matrix */
1147
1148
0
  if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
1149
0
    ) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
1150
0
      e[ll] = 0.f;
1151
0
      goto L60;
1152
0
  }
1153
1154
0
  if (tol >= 0.f) {
1155
1156
/*           If relative accuracy desired, */
1157
/*           apply convergence criterion backward */
1158
1159
0
      mu = (r__1 = d__[m], abs(r__1));
1160
0
      sminl = mu;
1161
0
      i__1 = ll;
1162
0
      for (lll = m - 1; lll >= i__1; --lll) {
1163
0
    if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
1164
0
        e[lll] = 0.f;
1165
0
        goto L60;
1166
0
    }
1167
0
    mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
1168
0
      , abs(r__1))));
1169
0
    sminl = f2cmin(sminl,mu);
1170
/* L110: */
1171
0
      }
1172
0
  }
1173
0
    }
1174
0
    oldll = ll;
1175
0
    oldm = m;
1176
1177
/*     Compute shift.  First, test if shifting would ruin relative */
1178
/*     accuracy, and if so set the shift to zero. */
1179
1180
/* Computing MAX */
1181
0
    r__1 = eps, r__2 = tol * .01f;
1182
0
    if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
1183
1184
/*        Use a zero shift to avoid loss of relative accuracy */
1185
1186
0
  shift = 0.f;
1187
0
    } else {
1188
1189
/*        Compute the shift from 2-by-2 block at end of matrix */
1190
1191
0
  if (idir == 1) {
1192
0
      sll = (r__1 = d__[ll], abs(r__1));
1193
0
      slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
1194
0
  } else {
1195
0
      sll = (r__1 = d__[m], abs(r__1));
1196
0
      slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
1197
0
  }
1198
1199
/*        Test if shift negligible, and if so set to zero */
1200
1201
0
  if (sll > 0.f) {
1202
/* Computing 2nd power */
1203
0
      r__1 = shift / sll;
1204
0
      if (r__1 * r__1 < eps) {
1205
0
    shift = 0.f;
1206
0
      }
1207
0
  }
1208
0
    }
1209
1210
/*     Increment iteration count */
1211
1212
0
    iter = iter + m - ll;
1213
1214
/*     If SHIFT = 0, do simplified QR iteration */
1215
1216
0
    if (shift == 0.f) {
1217
0
  if (idir == 1) {
1218
1219
/*           Chase bulge from top to bottom */
1220
/*           Save cosines and sines for later singular vector updates */
1221
1222
0
      cs = 1.f;
1223
0
      oldcs = 1.f;
1224
0
      i__1 = m - 1;
1225
0
      for (i__ = ll; i__ <= i__1; ++i__) {
1226
0
    r__1 = d__[i__] * cs;
1227
0
    slartg_(&r__1, &e[i__], &cs, &sn, &r__);
1228
0
    if (i__ > ll) {
1229
0
        e[i__ - 1] = oldsn * r__;
1230
0
    }
1231
0
    r__1 = oldcs * r__;
1232
0
    r__2 = d__[i__ + 1] * sn;
1233
0
    slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
1234
0
    work[i__ - ll + 1] = cs;
1235
0
    work[i__ - ll + 1 + nm1] = sn;
1236
0
    work[i__ - ll + 1 + nm12] = oldcs;
1237
0
    work[i__ - ll + 1 + nm13] = oldsn;
1238
/* L120: */
1239
0
      }
1240
0
      h__ = d__[m] * cs;
1241
0
      d__[m] = h__ * oldcs;
1242
0
      e[m - 1] = h__ * oldsn;
1243
1244
/*           Update singular vectors */
1245
1246
0
      if (*ncvt > 0) {
1247
0
    i__1 = m - ll + 1;
1248
0
    slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
1249
0
      ll + vt_dim1], ldvt);
1250
0
      }
1251
0
      if (*nru > 0) {
1252
0
    i__1 = m - ll + 1;
1253
0
    slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 
1254
0
      + 1], &u[ll * u_dim1 + 1], ldu);
1255
0
      }
1256
0
      if (*ncc > 0) {
1257
0
    i__1 = m - ll + 1;
1258
0
    slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 
1259
0
      + 1], &c__[ll + c_dim1], ldc);
1260
0
      }
1261
1262
/*           Test convergence */
1263
1264
0
      if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
1265
0
    e[m - 1] = 0.f;
1266
0
      }
1267
1268
0
  } else {
1269
1270
/*           Chase bulge from bottom to top */
1271
/*           Save cosines and sines for later singular vector updates */
1272
1273
0
      cs = 1.f;
1274
0
      oldcs = 1.f;
1275
0
      i__1 = ll + 1;
1276
0
      for (i__ = m; i__ >= i__1; --i__) {
1277
0
    r__1 = d__[i__] * cs;
1278
0
    slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
1279
0
    if (i__ < m) {
1280
0
        e[i__] = oldsn * r__;
1281
0
    }
1282
0
    r__1 = oldcs * r__;
1283
0
    r__2 = d__[i__ - 1] * sn;
1284
0
    slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
1285
0
    work[i__ - ll] = cs;
1286
0
    work[i__ - ll + nm1] = -sn;
1287
0
    work[i__ - ll + nm12] = oldcs;
1288
0
    work[i__ - ll + nm13] = -oldsn;
1289
/* L130: */
1290
0
      }
1291
0
      h__ = d__[ll] * cs;
1292
0
      d__[ll] = h__ * oldcs;
1293
0
      e[ll] = h__ * oldsn;
1294
1295
/*           Update singular vectors */
1296
1297
0
      if (*ncvt > 0) {
1298
0
    i__1 = m - ll + 1;
1299
0
    slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
1300
0
      nm13 + 1], &vt[ll + vt_dim1], ldvt);
1301
0
      }
1302
0
      if (*nru > 0) {
1303
0
    i__1 = m - ll + 1;
1304
0
    slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
1305
0
       u_dim1 + 1], ldu);
1306
0
      }
1307
0
      if (*ncc > 0) {
1308
0
    i__1 = m - ll + 1;
1309
0
    slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
1310
0
      ll + c_dim1], ldc);
1311
0
      }
1312
1313
/*           Test convergence */
1314
1315
0
      if ((r__1 = e[ll], abs(r__1)) <= thresh) {
1316
0
    e[ll] = 0.f;
1317
0
      }
1318
0
  }
1319
0
    } else {
1320
1321
/*        Use nonzero shift */
1322
1323
0
  if (idir == 1) {
1324
1325
/*           Chase bulge from top to bottom */
1326
/*           Save cosines and sines for later singular vector updates */
1327
1328
0
      f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
1329
0
        ll]) + shift / d__[ll]);
1330
0
      g = e[ll];
1331
0
      i__1 = m - 1;
1332
0
      for (i__ = ll; i__ <= i__1; ++i__) {
1333
0
    slartg_(&f, &g, &cosr, &sinr, &r__);
1334
0
    if (i__ > ll) {
1335
0
        e[i__ - 1] = r__;
1336
0
    }
1337
0
    f = cosr * d__[i__] + sinr * e[i__];
1338
0
    e[i__] = cosr * e[i__] - sinr * d__[i__];
1339
0
    g = sinr * d__[i__ + 1];
1340
0
    d__[i__ + 1] = cosr * d__[i__ + 1];
1341
0
    slartg_(&f, &g, &cosl, &sinl, &r__);
1342
0
    d__[i__] = r__;
1343
0
    f = cosl * e[i__] + sinl * d__[i__ + 1];
1344
0
    d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
1345
0
    if (i__ < m - 1) {
1346
0
        g = sinl * e[i__ + 1];
1347
0
        e[i__ + 1] = cosl * e[i__ + 1];
1348
0
    }
1349
0
    work[i__ - ll + 1] = cosr;
1350
0
    work[i__ - ll + 1 + nm1] = sinr;
1351
0
    work[i__ - ll + 1 + nm12] = cosl;
1352
0
    work[i__ - ll + 1 + nm13] = sinl;
1353
/* L140: */
1354
0
      }
1355
0
      e[m - 1] = f;
1356
1357
/*           Update singular vectors */
1358
1359
0
      if (*ncvt > 0) {
1360
0
    i__1 = m - ll + 1;
1361
0
    slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
1362
0
      ll + vt_dim1], ldvt);
1363
0
      }
1364
0
      if (*nru > 0) {
1365
0
    i__1 = m - ll + 1;
1366
0
    slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 
1367
0
      + 1], &u[ll * u_dim1 + 1], ldu);
1368
0
      }
1369
0
      if (*ncc > 0) {
1370
0
    i__1 = m - ll + 1;
1371
0
    slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 
1372
0
      + 1], &c__[ll + c_dim1], ldc);
1373
0
      }
1374
1375
/*           Test convergence */
1376
1377
0
      if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
1378
0
    e[m - 1] = 0.f;
1379
0
      }
1380
1381
0
  } else {
1382
1383
/*           Chase bulge from bottom to top */
1384
/*           Save cosines and sines for later singular vector updates */
1385
1386
0
      f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
1387
0
        ) + shift / d__[m]);
1388
0
      g = e[m - 1];
1389
0
      i__1 = ll + 1;
1390
0
      for (i__ = m; i__ >= i__1; --i__) {
1391
0
    slartg_(&f, &g, &cosr, &sinr, &r__);
1392
0
    if (i__ < m) {
1393
0
        e[i__] = r__;
1394
0
    }
1395
0
    f = cosr * d__[i__] + sinr * e[i__ - 1];
1396
0
    e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
1397
0
    g = sinr * d__[i__ - 1];
1398
0
    d__[i__ - 1] = cosr * d__[i__ - 1];
1399
0
    slartg_(&f, &g, &cosl, &sinl, &r__);
1400
0
    d__[i__] = r__;
1401
0
    f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
1402
0
    d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
1403
0
    if (i__ > ll + 1) {
1404
0
        g = sinl * e[i__ - 2];
1405
0
        e[i__ - 2] = cosl * e[i__ - 2];
1406
0
    }
1407
0
    work[i__ - ll] = cosr;
1408
0
    work[i__ - ll + nm1] = -sinr;
1409
0
    work[i__ - ll + nm12] = cosl;
1410
0
    work[i__ - ll + nm13] = -sinl;
1411
/* L150: */
1412
0
      }
1413
0
      e[ll] = f;
1414
1415
/*           Test convergence */
1416
1417
0
      if ((r__1 = e[ll], abs(r__1)) <= thresh) {
1418
0
    e[ll] = 0.f;
1419
0
      }
1420
1421
/*           Update singular vectors if desired */
1422
1423
0
      if (*ncvt > 0) {
1424
0
    i__1 = m - ll + 1;
1425
0
    slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
1426
0
      nm13 + 1], &vt[ll + vt_dim1], ldvt);
1427
0
      }
1428
0
      if (*nru > 0) {
1429
0
    i__1 = m - ll + 1;
1430
0
    slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
1431
0
       u_dim1 + 1], ldu);
1432
0
      }
1433
0
      if (*ncc > 0) {
1434
0
    i__1 = m - ll + 1;
1435
0
    slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
1436
0
      ll + c_dim1], ldc);
1437
0
      }
1438
0
  }
1439
0
    }
1440
1441
/*     QR iteration finished, go back and check convergence */
1442
1443
0
    goto L60;
1444
1445
/*     All singular values converged, so make them positive */
1446
1447
0
L160:
1448
0
    i__1 = *n;
1449
0
    for (i__ = 1; i__ <= i__1; ++i__) {
1450
0
  if (d__[i__] < 0.f) {
1451
0
      d__[i__] = -d__[i__];
1452
1453
/*           Change sign of singular vectors, if desired */
1454
1455
0
      if (*ncvt > 0) {
1456
0
    sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
1457
0
      }
1458
0
  }
1459
/* L170: */
1460
0
    }
1461
1462
/*     Sort the singular values into decreasing order (insertion sort on */
1463
/*     singular values, but only one transposition per singular vector) */
1464
1465
0
    i__1 = *n - 1;
1466
0
    for (i__ = 1; i__ <= i__1; ++i__) {
1467
1468
/*        Scan for smallest D(I) */
1469
1470
0
  isub = 1;
1471
0
  smin = d__[1];
1472
0
  i__2 = *n + 1 - i__;
1473
0
  for (j = 2; j <= i__2; ++j) {
1474
0
      if (d__[j] <= smin) {
1475
0
    isub = j;
1476
0
    smin = d__[j];
1477
0
      }
1478
/* L180: */
1479
0
  }
1480
0
  if (isub != *n + 1 - i__) {
1481
1482
/*           Swap singular values and vectors */
1483
1484
0
      d__[isub] = d__[*n + 1 - i__];
1485
0
      d__[*n + 1 - i__] = smin;
1486
0
      if (*ncvt > 0) {
1487
0
    sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ + 
1488
0
      vt_dim1], ldvt);
1489
0
      }
1490
0
      if (*nru > 0) {
1491
0
    sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) * 
1492
0
      u_dim1 + 1], &c__1);
1493
0
      }
1494
0
      if (*ncc > 0) {
1495
0
    sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ + 
1496
0
      c_dim1], ldc);
1497
0
      }
1498
0
  }
1499
/* L190: */
1500
0
    }
1501
0
    goto L220;
1502
1503
/*     Maximum number of iterations exceeded, failure to converge */
1504
1505
0
L200:
1506
0
    *info = 0;
1507
0
    i__1 = *n - 1;
1508
0
    for (i__ = 1; i__ <= i__1; ++i__) {
1509
0
  if (e[i__] != 0.f) {
1510
0
      ++(*info);
1511
0
  }
1512
/* L210: */
1513
0
    }
1514
0
L220:
1515
0
    return;
1516
1517
/*     End of SBDSQR */
1518
1519
0
} /* sbdsqr_ */
1520