/root/doris/contrib/openblas/lapack-netlib/SRC/sgebd2.c
| Line | Count | Source | 
| 1 |  | #include <math.h> | 
| 2 |  | #include <stdlib.h> | 
| 3 |  | #include <string.h> | 
| 4 |  | #include <stdio.h> | 
| 5 |  | #include <complex.h> | 
| 6 |  | #ifdef complex | 
| 7 |  | #undef complex | 
| 8 |  | #endif | 
| 9 |  | #ifdef I | 
| 10 |  | #undef I | 
| 11 |  | #endif | 
| 12 |  |  | 
| 13 |  | #if defined(_WIN64) | 
| 14 |  | typedef long long BLASLONG; | 
| 15 |  | typedef unsigned long long BLASULONG; | 
| 16 |  | #else | 
| 17 |  | typedef long BLASLONG; | 
| 18 |  | typedef unsigned long BLASULONG; | 
| 19 |  | #endif | 
| 20 |  |  | 
| 21 |  | #ifdef LAPACK_ILP64 | 
| 22 |  | typedef BLASLONG blasint; | 
| 23 |  | #if defined(_WIN64) | 
| 24 |  | #define blasabs(x) llabs(x) | 
| 25 |  | #else | 
| 26 |  | #define blasabs(x) labs(x) | 
| 27 |  | #endif | 
| 28 |  | #else | 
| 29 |  | typedef int blasint; | 
| 30 |  | #define blasabs(x) abs(x) | 
| 31 |  | #endif | 
| 32 |  |  | 
| 33 |  | typedef blasint integer; | 
| 34 |  |  | 
| 35 |  | typedef unsigned int uinteger; | 
| 36 |  | typedef char *address; | 
| 37 |  | typedef short int shortint; | 
| 38 |  | typedef float real; | 
| 39 |  | typedef double doublereal; | 
| 40 |  | typedef struct { real r, i; } complex; | 
| 41 |  | typedef struct { doublereal r, i; } doublecomplex; | 
| 42 |  | #ifdef _MSC_VER | 
| 43 |  | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} | 
| 44 |  | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} | 
| 45 |  | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} | 
| 46 |  | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} | 
| 47 |  | #else | 
| 48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} | 
| 49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} | 
| 50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} | 
| 51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} | 
| 52 |  | #endif | 
| 53 |  | #define pCf(z) (*_pCf(z)) | 
| 54 |  | #define pCd(z) (*_pCd(z)) | 
| 55 |  | typedef blasint logical; | 
| 56 |  |  | 
| 57 |  | typedef char logical1; | 
| 58 |  | typedef char integer1; | 
| 59 |  |  | 
| 60 |  | #define TRUE_ (1) | 
| 61 |  | #define FALSE_ (0) | 
| 62 |  |  | 
| 63 |  | /* Extern is for use with -E */ | 
| 64 |  | #ifndef Extern | 
| 65 |  | #define Extern extern | 
| 66 |  | #endif | 
| 67 |  |  | 
| 68 |  | /* I/O stuff */ | 
| 69 |  |  | 
| 70 |  | typedef int flag; | 
| 71 |  | typedef int ftnlen; | 
| 72 |  | typedef int ftnint; | 
| 73 |  |  | 
| 74 |  | /*external read, write*/ | 
| 75 |  | typedef struct | 
| 76 |  | { flag cierr; | 
| 77 |  |   ftnint ciunit; | 
| 78 |  |   flag ciend; | 
| 79 |  |   char *cifmt; | 
| 80 |  |   ftnint cirec; | 
| 81 |  | } cilist; | 
| 82 |  |  | 
| 83 |  | /*internal read, write*/ | 
| 84 |  | typedef struct | 
| 85 |  | { flag icierr; | 
| 86 |  |   char *iciunit; | 
| 87 |  |   flag iciend; | 
| 88 |  |   char *icifmt; | 
| 89 |  |   ftnint icirlen; | 
| 90 |  |   ftnint icirnum; | 
| 91 |  | } icilist; | 
| 92 |  |  | 
| 93 |  | /*open*/ | 
| 94 |  | typedef struct | 
| 95 |  | { flag oerr; | 
| 96 |  |   ftnint ounit; | 
| 97 |  |   char *ofnm; | 
| 98 |  |   ftnlen ofnmlen; | 
| 99 |  |   char *osta; | 
| 100 |  |   char *oacc; | 
| 101 |  |   char *ofm; | 
| 102 |  |   ftnint orl; | 
| 103 |  |   char *oblnk; | 
| 104 |  | } olist; | 
| 105 |  |  | 
| 106 |  | /*close*/ | 
| 107 |  | typedef struct | 
| 108 |  | { flag cerr; | 
| 109 |  |   ftnint cunit; | 
| 110 |  |   char *csta; | 
| 111 |  | } cllist; | 
| 112 |  |  | 
| 113 |  | /*rewind, backspace, endfile*/ | 
| 114 |  | typedef struct | 
| 115 |  | { flag aerr; | 
| 116 |  |   ftnint aunit; | 
| 117 |  | } alist; | 
| 118 |  |  | 
| 119 |  | /* inquire */ | 
| 120 |  | typedef struct | 
| 121 |  | { flag inerr; | 
| 122 |  |   ftnint inunit; | 
| 123 |  |   char *infile; | 
| 124 |  |   ftnlen infilen; | 
| 125 |  |   ftnint  *inex;  /*parameters in standard's order*/ | 
| 126 |  |   ftnint  *inopen; | 
| 127 |  |   ftnint  *innum; | 
| 128 |  |   ftnint  *innamed; | 
| 129 |  |   char  *inname; | 
| 130 |  |   ftnlen  innamlen; | 
| 131 |  |   char  *inacc; | 
| 132 |  |   ftnlen  inacclen; | 
| 133 |  |   char  *inseq; | 
| 134 |  |   ftnlen  inseqlen; | 
| 135 |  |   char  *indir; | 
| 136 |  |   ftnlen  indirlen; | 
| 137 |  |   char  *infmt; | 
| 138 |  |   ftnlen  infmtlen; | 
| 139 |  |   char  *inform; | 
| 140 |  |   ftnint  informlen; | 
| 141 |  |   char  *inunf; | 
| 142 |  |   ftnlen  inunflen; | 
| 143 |  |   ftnint  *inrecl; | 
| 144 |  |   ftnint  *innrec; | 
| 145 |  |   char  *inblank; | 
| 146 |  |   ftnlen  inblanklen; | 
| 147 |  | } inlist; | 
| 148 |  |  | 
| 149 |  | #define VOID void | 
| 150 |  |  | 
| 151 |  | union Multitype { /* for multiple entry points */ | 
| 152 |  |   integer1 g; | 
| 153 |  |   shortint h; | 
| 154 |  |   integer i; | 
| 155 |  |   /* longint j; */ | 
| 156 |  |   real r; | 
| 157 |  |   doublereal d; | 
| 158 |  |   complex c; | 
| 159 |  |   doublecomplex z; | 
| 160 |  |   }; | 
| 161 |  |  | 
| 162 |  | typedef union Multitype Multitype; | 
| 163 |  |  | 
| 164 |  | struct Vardesc {  /* for Namelist */ | 
| 165 |  |   char *name; | 
| 166 |  |   char *addr; | 
| 167 |  |   ftnlen *dims; | 
| 168 |  |   int  type; | 
| 169 |  |   }; | 
| 170 |  | typedef struct Vardesc Vardesc; | 
| 171 |  |  | 
| 172 |  | struct Namelist { | 
| 173 |  |   char *name; | 
| 174 |  |   Vardesc **vars; | 
| 175 |  |   int nvars; | 
| 176 |  |   }; | 
| 177 |  | typedef struct Namelist Namelist; | 
| 178 |  |  | 
| 179 |  | #define abs(x) ((x) >= 0 ? (x) : -(x)) | 
| 180 |  | #define dabs(x) (fabs(x)) | 
| 181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) | 
| 182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) | 
| 183 |  | #define dmin(a,b) (f2cmin(a,b)) | 
| 184 |  | #define dmax(a,b) (f2cmax(a,b)) | 
| 185 |  | #define bit_test(a,b) ((a) >> (b) & 1) | 
| 186 |  | #define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b))) | 
| 187 |  | #define bit_set(a,b)  ((a) |  ((uinteger)1 << (b))) | 
| 188 |  |  | 
| 189 |  | #define abort_() { sig_die("Fortran abort routine called", 1); } | 
| 190 |  | #define c_abs(z) (cabsf(Cf(z))) | 
| 191 |  | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } | 
| 192 |  | #ifdef _MSC_VER | 
| 193 |  | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} | 
| 194 |  | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} | 
| 195 |  | #else | 
| 196 |  | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} | 
| 197 |  | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} | 
| 198 |  | #endif | 
| 199 |  | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} | 
| 200 |  | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} | 
| 201 |  | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} | 
| 202 |  | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} | 
| 203 |  | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} | 
| 204 |  | #define d_abs(x) (fabs(*(x))) | 
| 205 |  | #define d_acos(x) (acos(*(x))) | 
| 206 |  | #define d_asin(x) (asin(*(x))) | 
| 207 |  | #define d_atan(x) (atan(*(x))) | 
| 208 |  | #define d_atn2(x, y) (atan2(*(x),*(y))) | 
| 209 |  | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } | 
| 210 |  | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } | 
| 211 |  | #define d_cos(x) (cos(*(x))) | 
| 212 |  | #define d_cosh(x) (cosh(*(x))) | 
| 213 |  | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) | 
| 214 |  | #define d_exp(x) (exp(*(x))) | 
| 215 |  | #define d_imag(z) (cimag(Cd(z))) | 
| 216 |  | #define r_imag(z) (cimagf(Cf(z))) | 
| 217 |  | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) | 
| 218 |  | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) | 
| 219 |  | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) | 
| 220 |  | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) | 
| 221 |  | #define d_log(x) (log(*(x))) | 
| 222 |  | #define d_mod(x, y) (fmod(*(x), *(y))) | 
| 223 |  | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) | 
| 224 |  | #define d_nint(x) u_nint(*(x)) | 
| 225 |  | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) | 
| 226 |  | #define d_sign(a,b) u_sign(*(a),*(b)) | 
| 227 |  | #define r_sign(a,b) u_sign(*(a),*(b)) | 
| 228 |  | #define d_sin(x) (sin(*(x))) | 
| 229 |  | #define d_sinh(x) (sinh(*(x))) | 
| 230 |  | #define d_sqrt(x) (sqrt(*(x))) | 
| 231 |  | #define d_tan(x) (tan(*(x))) | 
| 232 |  | #define d_tanh(x) (tanh(*(x))) | 
| 233 |  | #define i_abs(x) abs(*(x)) | 
| 234 |  | #define i_dnnt(x) ((integer)u_nint(*(x))) | 
| 235 |  | #define i_len(s, n) (n) | 
| 236 |  | #define i_nint(x) ((integer)u_nint(*(x))) | 
| 237 |  | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) | 
| 238 |  | #define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; } | 
| 239 |  | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) | 
| 240 |  | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } | 
| 241 |  | #define sig_die(s, kill) { exit(1); } | 
| 242 |  | #define s_stop(s, n) {exit(0);} | 
| 243 |  | #define z_abs(z) (cabs(Cd(z))) | 
| 244 |  | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} | 
| 245 |  | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} | 
| 246 |  | #define myexit_() break; | 
| 247 |  | #define mycycle() continue; | 
| 248 |  | #define myceiling(w) {ceil(w)} | 
| 249 |  | #define myhuge(w) {HUGE_VAL} | 
| 250 |  | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} | 
| 251 |  | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} | 
| 252 |  |  | 
| 253 |  | /*  -- translated by f2c (version 20000121). | 
| 254 |  |    You must link the resulting object file with the libraries: | 
| 255 |  |   -lf2c -lm   (in that order) | 
| 256 |  | */ | 
| 257 |  |  | 
| 258 |  |  | 
| 259 |  |  | 
| 260 |  |  | 
| 261 |  | /* Table of constant values */ | 
| 262 |  |  | 
| 263 |  | static integer c__1 = 1; | 
| 264 |  |  | 
| 265 |  | /* > \brief \b SGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm. */ | 
| 266 |  |  | 
| 267 |  | /*  =========== DOCUMENTATION =========== */ | 
| 268 |  |  | 
| 269 |  | /* Online html documentation available at */ | 
| 270 |  | /*            http://www.netlib.org/lapack/explore-html/ */ | 
| 271 |  |  | 
| 272 |  | /* > \htmlonly */ | 
| 273 |  | /* > Download SGEBD2 + dependencies */ | 
| 274 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebd2. | 
| 275 |  | f"> */ | 
| 276 |  | /* > [TGZ]</a> */ | 
| 277 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebd2. | 
| 278 |  | f"> */ | 
| 279 |  | /* > [ZIP]</a> */ | 
| 280 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebd2. | 
| 281 |  | f"> */ | 
| 282 |  | /* > [TXT]</a> */ | 
| 283 |  | /* > \endhtmlonly */ | 
| 284 |  |  | 
| 285 |  | /*  Definition: */ | 
| 286 |  | /*  =========== */ | 
| 287 |  |  | 
| 288 |  | /*       SUBROUTINE SGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO ) */ | 
| 289 |  |  | 
| 290 |  | /*       INTEGER            INFO, LDA, M, N */ | 
| 291 |  | /*       REAL               A( LDA, * ), D( * ), E( * ), TAUP( * ), */ | 
| 292 |  | /*      $                   TAUQ( * ), WORK( * ) */ | 
| 293 |  |  | 
| 294 |  |  | 
| 295 |  | /* > \par Purpose: */ | 
| 296 |  | /*  ============= */ | 
| 297 |  | /* > */ | 
| 298 |  | /* > \verbatim */ | 
| 299 |  | /* > */ | 
| 300 |  | /* > SGEBD2 reduces a real general m by n matrix A to upper or lower */ | 
| 301 |  | /* > bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */ | 
| 302 |  | /* > */ | 
| 303 |  | /* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ | 
| 304 |  | /* > \endverbatim */ | 
| 305 |  |  | 
| 306 |  | /*  Arguments: */ | 
| 307 |  | /*  ========== */ | 
| 308 |  |  | 
| 309 |  | /* > \param[in] M */ | 
| 310 |  | /* > \verbatim */ | 
| 311 |  | /* >          M is INTEGER */ | 
| 312 |  | /* >          The number of rows in the matrix A.  M >= 0. */ | 
| 313 |  | /* > \endverbatim */ | 
| 314 |  | /* > */ | 
| 315 |  | /* > \param[in] N */ | 
| 316 |  | /* > \verbatim */ | 
| 317 |  | /* >          N is INTEGER */ | 
| 318 |  | /* >          The number of columns in the matrix A.  N >= 0. */ | 
| 319 |  | /* > \endverbatim */ | 
| 320 |  | /* > */ | 
| 321 |  | /* > \param[in,out] A */ | 
| 322 |  | /* > \verbatim */ | 
| 323 |  | /* >          A is REAL array, dimension (LDA,N) */ | 
| 324 |  | /* >          On entry, the m by n general matrix to be reduced. */ | 
| 325 |  | /* >          On exit, */ | 
| 326 |  | /* >          if m >= n, the diagonal and the first superdiagonal are */ | 
| 327 |  | /* >            overwritten with the upper bidiagonal matrix B; the */ | 
| 328 |  | /* >            elements below the diagonal, with the array TAUQ, represent */ | 
| 329 |  | /* >            the orthogonal matrix Q as a product of elementary */ | 
| 330 |  | /* >            reflectors, and the elements above the first superdiagonal, */ | 
| 331 |  | /* >            with the array TAUP, represent the orthogonal matrix P as */ | 
| 332 |  | /* >            a product of elementary reflectors; */ | 
| 333 |  | /* >          if m < n, the diagonal and the first subdiagonal are */ | 
| 334 |  | /* >            overwritten with the lower bidiagonal matrix B; the */ | 
| 335 |  | /* >            elements below the first subdiagonal, with the array TAUQ, */ | 
| 336 |  | /* >            represent the orthogonal matrix Q as a product of */ | 
| 337 |  | /* >            elementary reflectors, and the elements above the diagonal, */ | 
| 338 |  | /* >            with the array TAUP, represent the orthogonal matrix P as */ | 
| 339 |  | /* >            a product of elementary reflectors. */ | 
| 340 |  | /* >          See Further Details. */ | 
| 341 |  | /* > \endverbatim */ | 
| 342 |  | /* > */ | 
| 343 |  | /* > \param[in] LDA */ | 
| 344 |  | /* > \verbatim */ | 
| 345 |  | /* >          LDA is INTEGER */ | 
| 346 |  | /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */ | 
| 347 |  | /* > \endverbatim */ | 
| 348 |  | /* > */ | 
| 349 |  | /* > \param[out] D */ | 
| 350 |  | /* > \verbatim */ | 
| 351 |  | /* >          D is REAL array, dimension (f2cmin(M,N)) */ | 
| 352 |  | /* >          The diagonal elements of the bidiagonal matrix B: */ | 
| 353 |  | /* >          D(i) = A(i,i). */ | 
| 354 |  | /* > \endverbatim */ | 
| 355 |  | /* > */ | 
| 356 |  | /* > \param[out] E */ | 
| 357 |  | /* > \verbatim */ | 
| 358 |  | /* >          E is REAL array, dimension (f2cmin(M,N)-1) */ | 
| 359 |  | /* >          The off-diagonal elements of the bidiagonal matrix B: */ | 
| 360 |  | /* >          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ | 
| 361 |  | /* >          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ | 
| 362 |  | /* > \endverbatim */ | 
| 363 |  | /* > */ | 
| 364 |  | /* > \param[out] TAUQ */ | 
| 365 |  | /* > \verbatim */ | 
| 366 |  | /* >          TAUQ is REAL array, dimension (f2cmin(M,N)) */ | 
| 367 |  | /* >          The scalar factors of the elementary reflectors which */ | 
| 368 |  | /* >          represent the orthogonal matrix Q. See Further Details. */ | 
| 369 |  | /* > \endverbatim */ | 
| 370 |  | /* > */ | 
| 371 |  | /* > \param[out] TAUP */ | 
| 372 |  | /* > \verbatim */ | 
| 373 |  | /* >          TAUP is REAL array, dimension (f2cmin(M,N)) */ | 
| 374 |  | /* >          The scalar factors of the elementary reflectors which */ | 
| 375 |  | /* >          represent the orthogonal matrix P. See Further Details. */ | 
| 376 |  | /* > \endverbatim */ | 
| 377 |  | /* > */ | 
| 378 |  | /* > \param[out] WORK */ | 
| 379 |  | /* > \verbatim */ | 
| 380 |  | /* >          WORK is REAL array, dimension (f2cmax(M,N)) */ | 
| 381 |  | /* > \endverbatim */ | 
| 382 |  | /* > */ | 
| 383 |  | /* > \param[out] INFO */ | 
| 384 |  | /* > \verbatim */ | 
| 385 |  | /* >          INFO is INTEGER */ | 
| 386 |  | /* >          = 0: successful exit. */ | 
| 387 |  | /* >          < 0: if INFO = -i, the i-th argument had an illegal value. */ | 
| 388 |  | /* > \endverbatim */ | 
| 389 |  |  | 
| 390 |  | /*  Authors: */ | 
| 391 |  | /*  ======== */ | 
| 392 |  |  | 
| 393 |  | /* > \author Univ. of Tennessee */ | 
| 394 |  | /* > \author Univ. of California Berkeley */ | 
| 395 |  | /* > \author Univ. of Colorado Denver */ | 
| 396 |  | /* > \author NAG Ltd. */ | 
| 397 |  |  | 
| 398 |  | /* > \date June 2017 */ | 
| 399 |  |  | 
| 400 |  | /* > \ingroup realGEcomputational */ | 
| 401 |  |  | 
| 402 |  | /* > \par Further Details: */ | 
| 403 |  | /*  ===================== */ | 
| 404 |  | /* > */ | 
| 405 |  | /* > \verbatim */ | 
| 406 |  | /* > */ | 
| 407 |  | /* >  The matrices Q and P are represented as products of elementary */ | 
| 408 |  | /* >  reflectors: */ | 
| 409 |  | /* > */ | 
| 410 |  | /* >  If m >= n, */ | 
| 411 |  | /* > */ | 
| 412 |  | /* >     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) */ | 
| 413 |  | /* > */ | 
| 414 |  | /* >  Each H(i) and G(i) has the form: */ | 
| 415 |  | /* > */ | 
| 416 |  | /* >     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T */ | 
| 417 |  | /* > */ | 
| 418 |  | /* >  where tauq and taup are real scalars, and v and u are real vectors; */ | 
| 419 |  | /* >  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */ | 
| 420 |  | /* >  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */ | 
| 421 |  | /* >  tauq is stored in TAUQ(i) and taup in TAUP(i). */ | 
| 422 |  | /* > */ | 
| 423 |  | /* >  If m < n, */ | 
| 424 |  | /* > */ | 
| 425 |  | /* >     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) */ | 
| 426 |  | /* > */ | 
| 427 |  | /* >  Each H(i) and G(i) has the form: */ | 
| 428 |  | /* > */ | 
| 429 |  | /* >     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T */ | 
| 430 |  | /* > */ | 
| 431 |  | /* >  where tauq and taup are real scalars, and v and u are real vectors; */ | 
| 432 |  | /* >  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ | 
| 433 |  | /* >  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ | 
| 434 |  | /* >  tauq is stored in TAUQ(i) and taup in TAUP(i). */ | 
| 435 |  | /* > */ | 
| 436 |  | /* >  The contents of A on exit are illustrated by the following examples: */ | 
| 437 |  | /* > */ | 
| 438 |  | /* >  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */ | 
| 439 |  | /* > */ | 
| 440 |  | /* >    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) */ | 
| 441 |  | /* >    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) */ | 
| 442 |  | /* >    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) */ | 
| 443 |  | /* >    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) */ | 
| 444 |  | /* >    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) */ | 
| 445 |  | /* >    (  v1  v2  v3  v4  v5 ) */ | 
| 446 |  | /* > */ | 
| 447 |  | /* >  where d and e denote diagonal and off-diagonal elements of B, vi */ | 
| 448 |  | /* >  denotes an element of the vector defining H(i), and ui an element of */ | 
| 449 |  | /* >  the vector defining G(i). */ | 
| 450 |  | /* > \endverbatim */ | 
| 451 |  | /* > */ | 
| 452 |  | /*  ===================================================================== */ | 
| 453 |  | /* Subroutine */ void sgebd2_(integer *m, integer *n, real *a, integer *lda,  | 
| 454 |  |   real *d__, real *e, real *tauq, real *taup, real *work, integer *info) | 
| 455 | 0 | { | 
| 456 |  |     /* System generated locals */ | 
| 457 | 0 |     integer a_dim1, a_offset, i__1, i__2, i__3; | 
| 458 |  |  | 
| 459 |  |     /* Local variables */ | 
| 460 | 0 |     integer i__; | 
| 461 | 0 |     extern /* Subroutine */ void slarf_(char *, integer *, integer *, real *,  | 
| 462 | 0 |       integer *, real *, real *, integer *, real *); | 
| 463 | 0 |     extern int xerbla_(char *, integer *, ftnlen); | 
| 464 | 0 |     extern void slarfg_(integer *, real *, real *,  | 
| 465 | 0 |       integer *, real *); | 
| 466 |  |  | 
| 467 |  |  | 
| 468 |  | /*  -- LAPACK computational routine (version 3.7.1) -- */ | 
| 469 |  | /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */ | 
| 470 |  | /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ | 
| 471 |  | /*     June 2017 */ | 
| 472 |  |  | 
| 473 |  |  | 
| 474 |  | /*  ===================================================================== */ | 
| 475 |  |  | 
| 476 |  |  | 
| 477 |  | /*     Test the input parameters */ | 
| 478 |  |  | 
| 479 |  |     /* Parameter adjustments */ | 
| 480 | 0 |     a_dim1 = *lda; | 
| 481 | 0 |     a_offset = 1 + a_dim1 * 1; | 
| 482 | 0 |     a -= a_offset; | 
| 483 | 0 |     --d__; | 
| 484 | 0 |     --e; | 
| 485 | 0 |     --tauq; | 
| 486 | 0 |     --taup; | 
| 487 | 0 |     --work; | 
| 488 |  |  | 
| 489 |  |     /* Function Body */ | 
| 490 | 0 |     *info = 0; | 
| 491 | 0 |     if (*m < 0) { | 
| 492 | 0 |   *info = -1; | 
| 493 | 0 |     } else if (*n < 0) { | 
| 494 | 0 |   *info = -2; | 
| 495 | 0 |     } else if (*lda < f2cmax(1,*m)) { | 
| 496 | 0 |   *info = -4; | 
| 497 | 0 |     } | 
| 498 | 0 |     if (*info < 0) { | 
| 499 | 0 |   i__1 = -(*info); | 
| 500 | 0 |   xerbla_("SGEBD2", &i__1, (ftnlen)6); | 
| 501 | 0 |   return; | 
| 502 | 0 |     } | 
| 503 |  |  | 
| 504 | 0 |     if (*m >= *n) { | 
| 505 |  |  | 
| 506 |  | /*        Reduce to upper bidiagonal form */ | 
| 507 |  | 
 | 
| 508 | 0 |   i__1 = *n; | 
| 509 | 0 |   for (i__ = 1; i__ <= i__1; ++i__) { | 
| 510 |  |  | 
| 511 |  | /*           Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ | 
| 512 |  | 
 | 
| 513 | 0 |       i__2 = *m - i__ + 1; | 
| 514 |  | /* Computing MIN */ | 
| 515 | 0 |       i__3 = i__ + 1; | 
| 516 | 0 |       slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ *  | 
| 517 | 0 |         a_dim1], &c__1, &tauq[i__]); | 
| 518 | 0 |       d__[i__] = a[i__ + i__ * a_dim1]; | 
| 519 | 0 |       a[i__ + i__ * a_dim1] = 1.f; | 
| 520 |  |  | 
| 521 |  | /*           Apply H(i) to A(i:m,i+1:n) from the left */ | 
| 522 |  | 
 | 
| 523 | 0 |       if (i__ < *n) { | 
| 524 | 0 |     i__2 = *m - i__ + 1; | 
| 525 | 0 |     i__3 = *n - i__; | 
| 526 | 0 |     slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & | 
| 527 | 0 |       tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1] | 
| 528 | 0 |       ); | 
| 529 | 0 |       } | 
| 530 | 0 |       a[i__ + i__ * a_dim1] = d__[i__]; | 
| 531 |  | 
 | 
| 532 | 0 |       if (i__ < *n) { | 
| 533 |  |  | 
| 534 |  | /*              Generate elementary reflector G(i) to annihilate */ | 
| 535 |  | /*              A(i,i+2:n) */ | 
| 536 |  | 
 | 
| 537 | 0 |     i__2 = *n - i__; | 
| 538 |  | /* Computing MIN */ | 
| 539 | 0 |     i__3 = i__ + 2; | 
| 540 | 0 |     slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + f2cmin( | 
| 541 | 0 |       i__3,*n) * a_dim1], lda, &taup[i__]); | 
| 542 | 0 |     e[i__] = a[i__ + (i__ + 1) * a_dim1]; | 
| 543 | 0 |     a[i__ + (i__ + 1) * a_dim1] = 1.f; | 
| 544 |  |  | 
| 545 |  | /*              Apply G(i) to A(i+1:m,i+1:n) from the right */ | 
| 546 |  | 
 | 
| 547 | 0 |     i__2 = *m - i__; | 
| 548 | 0 |     i__3 = *n - i__; | 
| 549 | 0 |     slarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],  | 
| 550 | 0 |       lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],  | 
| 551 | 0 |       lda, &work[1]); | 
| 552 | 0 |     a[i__ + (i__ + 1) * a_dim1] = e[i__]; | 
| 553 | 0 |       } else { | 
| 554 | 0 |     taup[i__] = 0.f; | 
| 555 | 0 |       } | 
| 556 |  | /* L10: */ | 
| 557 | 0 |   } | 
| 558 | 0 |     } else { | 
| 559 |  |  | 
| 560 |  | /*        Reduce to lower bidiagonal form */ | 
| 561 |  | 
 | 
| 562 | 0 |   i__1 = *m; | 
| 563 | 0 |   for (i__ = 1; i__ <= i__1; ++i__) { | 
| 564 |  |  | 
| 565 |  | /*           Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ | 
| 566 |  | 
 | 
| 567 | 0 |       i__2 = *n - i__ + 1; | 
| 568 |  | /* Computing MIN */ | 
| 569 | 0 |       i__3 = i__ + 1; | 
| 570 | 0 |       slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + f2cmin(i__3,*n) *  | 
| 571 | 0 |         a_dim1], lda, &taup[i__]); | 
| 572 | 0 |       d__[i__] = a[i__ + i__ * a_dim1]; | 
| 573 | 0 |       a[i__ + i__ * a_dim1] = 1.f; | 
| 574 |  |  | 
| 575 |  | /*           Apply G(i) to A(i+1:m,i:n) from the right */ | 
| 576 |  | 
 | 
| 577 | 0 |       if (i__ < *m) { | 
| 578 | 0 |     i__2 = *m - i__; | 
| 579 | 0 |     i__3 = *n - i__ + 1; | 
| 580 | 0 |     slarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, & | 
| 581 | 0 |       taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); | 
| 582 | 0 |       } | 
| 583 | 0 |       a[i__ + i__ * a_dim1] = d__[i__]; | 
| 584 |  | 
 | 
| 585 | 0 |       if (i__ < *m) { | 
| 586 |  |  | 
| 587 |  | /*              Generate elementary reflector H(i) to annihilate */ | 
| 588 |  | /*              A(i+2:m,i) */ | 
| 589 |  | 
 | 
| 590 | 0 |     i__2 = *m - i__; | 
| 591 |  | /* Computing MIN */ | 
| 592 | 0 |     i__3 = i__ + 2; | 
| 593 | 0 |     slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*m) +  | 
| 594 | 0 |       i__ * a_dim1], &c__1, &tauq[i__]); | 
| 595 | 0 |     e[i__] = a[i__ + 1 + i__ * a_dim1]; | 
| 596 | 0 |     a[i__ + 1 + i__ * a_dim1] = 1.f; | 
| 597 |  |  | 
| 598 |  | /*              Apply H(i) to A(i+1:m,i+1:n) from the left */ | 
| 599 |  | 
 | 
| 600 | 0 |     i__2 = *m - i__; | 
| 601 | 0 |     i__3 = *n - i__; | 
| 602 | 0 |     slarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & | 
| 603 | 0 |       c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],  | 
| 604 | 0 |       lda, &work[1]); | 
| 605 | 0 |     a[i__ + 1 + i__ * a_dim1] = e[i__]; | 
| 606 | 0 |       } else { | 
| 607 | 0 |     tauq[i__] = 0.f; | 
| 608 | 0 |       } | 
| 609 |  | /* L20: */ | 
| 610 | 0 |   } | 
| 611 | 0 |     } | 
| 612 | 0 |     return; | 
| 613 |  |  | 
| 614 |  | /*     End of SGEBD2 */ | 
| 615 |  | 
 | 
| 616 | 0 | } /* sgebd2_ */ | 
| 617 |  |  |