/root/doris/contrib/openblas/lapack-netlib/SRC/slasq4.c
| Line | Count | Source | 
| 1 |  | #include <math.h> | 
| 2 |  | #include <stdlib.h> | 
| 3 |  | #include <string.h> | 
| 4 |  | #include <stdio.h> | 
| 5 |  | #include <complex.h> | 
| 6 |  | #ifdef complex | 
| 7 |  | #undef complex | 
| 8 |  | #endif | 
| 9 |  | #ifdef I | 
| 10 |  | #undef I | 
| 11 |  | #endif | 
| 12 |  |  | 
| 13 |  | #if defined(_WIN64) | 
| 14 |  | typedef long long BLASLONG; | 
| 15 |  | typedef unsigned long long BLASULONG; | 
| 16 |  | #else | 
| 17 |  | typedef long BLASLONG; | 
| 18 |  | typedef unsigned long BLASULONG; | 
| 19 |  | #endif | 
| 20 |  |  | 
| 21 |  | #ifdef LAPACK_ILP64 | 
| 22 |  | typedef BLASLONG blasint; | 
| 23 |  | #if defined(_WIN64) | 
| 24 |  | #define blasabs(x) llabs(x) | 
| 25 |  | #else | 
| 26 |  | #define blasabs(x) labs(x) | 
| 27 |  | #endif | 
| 28 |  | #else | 
| 29 |  | typedef int blasint; | 
| 30 |  | #define blasabs(x) abs(x) | 
| 31 |  | #endif | 
| 32 |  |  | 
| 33 |  | typedef blasint integer; | 
| 34 |  |  | 
| 35 |  | typedef unsigned int uinteger; | 
| 36 |  | typedef char *address; | 
| 37 |  | typedef short int shortint; | 
| 38 |  | typedef float real; | 
| 39 |  | typedef double doublereal; | 
| 40 |  | typedef struct { real r, i; } complex; | 
| 41 |  | typedef struct { doublereal r, i; } doublecomplex; | 
| 42 |  | #ifdef _MSC_VER | 
| 43 |  | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} | 
| 44 |  | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} | 
| 45 |  | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} | 
| 46 |  | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} | 
| 47 |  | #else | 
| 48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} | 
| 49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} | 
| 50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} | 
| 51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} | 
| 52 |  | #endif | 
| 53 |  | #define pCf(z) (*_pCf(z)) | 
| 54 |  | #define pCd(z) (*_pCd(z)) | 
| 55 |  | typedef blasint logical; | 
| 56 |  |  | 
| 57 |  | typedef char logical1; | 
| 58 |  | typedef char integer1; | 
| 59 |  |  | 
| 60 |  | #define TRUE_ (1) | 
| 61 |  | #define FALSE_ (0) | 
| 62 |  |  | 
| 63 |  | /* Extern is for use with -E */ | 
| 64 |  | #ifndef Extern | 
| 65 |  | #define Extern extern | 
| 66 |  | #endif | 
| 67 |  |  | 
| 68 |  | /* I/O stuff */ | 
| 69 |  |  | 
| 70 |  | typedef int flag; | 
| 71 |  | typedef int ftnlen; | 
| 72 |  | typedef int ftnint; | 
| 73 |  |  | 
| 74 |  | /*external read, write*/ | 
| 75 |  | typedef struct | 
| 76 |  | { flag cierr; | 
| 77 |  |   ftnint ciunit; | 
| 78 |  |   flag ciend; | 
| 79 |  |   char *cifmt; | 
| 80 |  |   ftnint cirec; | 
| 81 |  | } cilist; | 
| 82 |  |  | 
| 83 |  | /*internal read, write*/ | 
| 84 |  | typedef struct | 
| 85 |  | { flag icierr; | 
| 86 |  |   char *iciunit; | 
| 87 |  |   flag iciend; | 
| 88 |  |   char *icifmt; | 
| 89 |  |   ftnint icirlen; | 
| 90 |  |   ftnint icirnum; | 
| 91 |  | } icilist; | 
| 92 |  |  | 
| 93 |  | /*open*/ | 
| 94 |  | typedef struct | 
| 95 |  | { flag oerr; | 
| 96 |  |   ftnint ounit; | 
| 97 |  |   char *ofnm; | 
| 98 |  |   ftnlen ofnmlen; | 
| 99 |  |   char *osta; | 
| 100 |  |   char *oacc; | 
| 101 |  |   char *ofm; | 
| 102 |  |   ftnint orl; | 
| 103 |  |   char *oblnk; | 
| 104 |  | } olist; | 
| 105 |  |  | 
| 106 |  | /*close*/ | 
| 107 |  | typedef struct | 
| 108 |  | { flag cerr; | 
| 109 |  |   ftnint cunit; | 
| 110 |  |   char *csta; | 
| 111 |  | } cllist; | 
| 112 |  |  | 
| 113 |  | /*rewind, backspace, endfile*/ | 
| 114 |  | typedef struct | 
| 115 |  | { flag aerr; | 
| 116 |  |   ftnint aunit; | 
| 117 |  | } alist; | 
| 118 |  |  | 
| 119 |  | /* inquire */ | 
| 120 |  | typedef struct | 
| 121 |  | { flag inerr; | 
| 122 |  |   ftnint inunit; | 
| 123 |  |   char *infile; | 
| 124 |  |   ftnlen infilen; | 
| 125 |  |   ftnint  *inex;  /*parameters in standard's order*/ | 
| 126 |  |   ftnint  *inopen; | 
| 127 |  |   ftnint  *innum; | 
| 128 |  |   ftnint  *innamed; | 
| 129 |  |   char  *inname; | 
| 130 |  |   ftnlen  innamlen; | 
| 131 |  |   char  *inacc; | 
| 132 |  |   ftnlen  inacclen; | 
| 133 |  |   char  *inseq; | 
| 134 |  |   ftnlen  inseqlen; | 
| 135 |  |   char  *indir; | 
| 136 |  |   ftnlen  indirlen; | 
| 137 |  |   char  *infmt; | 
| 138 |  |   ftnlen  infmtlen; | 
| 139 |  |   char  *inform; | 
| 140 |  |   ftnint  informlen; | 
| 141 |  |   char  *inunf; | 
| 142 |  |   ftnlen  inunflen; | 
| 143 |  |   ftnint  *inrecl; | 
| 144 |  |   ftnint  *innrec; | 
| 145 |  |   char  *inblank; | 
| 146 |  |   ftnlen  inblanklen; | 
| 147 |  | } inlist; | 
| 148 |  |  | 
| 149 |  | #define VOID void | 
| 150 |  |  | 
| 151 |  | union Multitype { /* for multiple entry points */ | 
| 152 |  |   integer1 g; | 
| 153 |  |   shortint h; | 
| 154 |  |   integer i; | 
| 155 |  |   /* longint j; */ | 
| 156 |  |   real r; | 
| 157 |  |   doublereal d; | 
| 158 |  |   complex c; | 
| 159 |  |   doublecomplex z; | 
| 160 |  |   }; | 
| 161 |  |  | 
| 162 |  | typedef union Multitype Multitype; | 
| 163 |  |  | 
| 164 |  | struct Vardesc {  /* for Namelist */ | 
| 165 |  |   char *name; | 
| 166 |  |   char *addr; | 
| 167 |  |   ftnlen *dims; | 
| 168 |  |   int  type; | 
| 169 |  |   }; | 
| 170 |  | typedef struct Vardesc Vardesc; | 
| 171 |  |  | 
| 172 |  | struct Namelist { | 
| 173 |  |   char *name; | 
| 174 |  |   Vardesc **vars; | 
| 175 |  |   int nvars; | 
| 176 |  |   }; | 
| 177 |  | typedef struct Namelist Namelist; | 
| 178 |  |  | 
| 179 |  | #define abs(x) ((x) >= 0 ? (x) : -(x)) | 
| 180 |  | #define dabs(x) (fabs(x)) | 
| 181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) | 
| 182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) | 
| 183 |  | #define dmin(a,b) (f2cmin(a,b)) | 
| 184 |  | #define dmax(a,b) (f2cmax(a,b)) | 
| 185 |  | #define bit_test(a,b) ((a) >> (b) & 1) | 
| 186 |  | #define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b))) | 
| 187 |  | #define bit_set(a,b)  ((a) |  ((uinteger)1 << (b))) | 
| 188 |  |  | 
| 189 |  | #define abort_() { sig_die("Fortran abort routine called", 1); } | 
| 190 |  | #define c_abs(z) (cabsf(Cf(z))) | 
| 191 |  | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } | 
| 192 |  | #ifdef _MSC_VER | 
| 193 |  | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} | 
| 194 |  | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} | 
| 195 |  | #else | 
| 196 |  | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} | 
| 197 |  | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} | 
| 198 |  | #endif | 
| 199 |  | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} | 
| 200 |  | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} | 
| 201 |  | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} | 
| 202 |  | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} | 
| 203 |  | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} | 
| 204 |  | #define d_abs(x) (fabs(*(x))) | 
| 205 |  | #define d_acos(x) (acos(*(x))) | 
| 206 |  | #define d_asin(x) (asin(*(x))) | 
| 207 |  | #define d_atan(x) (atan(*(x))) | 
| 208 |  | #define d_atn2(x, y) (atan2(*(x),*(y))) | 
| 209 |  | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } | 
| 210 |  | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } | 
| 211 |  | #define d_cos(x) (cos(*(x))) | 
| 212 |  | #define d_cosh(x) (cosh(*(x))) | 
| 213 |  | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) | 
| 214 |  | #define d_exp(x) (exp(*(x))) | 
| 215 |  | #define d_imag(z) (cimag(Cd(z))) | 
| 216 |  | #define r_imag(z) (cimagf(Cf(z))) | 
| 217 |  | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) | 
| 218 |  | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) | 
| 219 |  | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) | 
| 220 |  | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) | 
| 221 |  | #define d_log(x) (log(*(x))) | 
| 222 |  | #define d_mod(x, y) (fmod(*(x), *(y))) | 
| 223 |  | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) | 
| 224 |  | #define d_nint(x) u_nint(*(x)) | 
| 225 |  | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) | 
| 226 |  | #define d_sign(a,b) u_sign(*(a),*(b)) | 
| 227 |  | #define r_sign(a,b) u_sign(*(a),*(b)) | 
| 228 |  | #define d_sin(x) (sin(*(x))) | 
| 229 |  | #define d_sinh(x) (sinh(*(x))) | 
| 230 |  | #define d_sqrt(x) (sqrt(*(x))) | 
| 231 |  | #define d_tan(x) (tan(*(x))) | 
| 232 |  | #define d_tanh(x) (tanh(*(x))) | 
| 233 |  | #define i_abs(x) abs(*(x)) | 
| 234 |  | #define i_dnnt(x) ((integer)u_nint(*(x))) | 
| 235 |  | #define i_len(s, n) (n) | 
| 236 |  | #define i_nint(x) ((integer)u_nint(*(x))) | 
| 237 |  | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) | 
| 238 |  | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) | 
| 239 |  | #define pow_si(B,E) spow_ui(*(B),*(E)) | 
| 240 |  | #define pow_ri(B,E) spow_ui(*(B),*(E)) | 
| 241 |  | #define pow_di(B,E) dpow_ui(*(B),*(E)) | 
| 242 |  | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} | 
| 243 |  | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} | 
| 244 |  | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} | 
| 245 |  | #define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; } | 
| 246 |  | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) | 
| 247 |  | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } | 
| 248 |  | #define sig_die(s, kill) { exit(1); } | 
| 249 |  | #define s_stop(s, n) {exit(0);} | 
| 250 |  | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; | 
| 251 |  | #define z_abs(z) (cabs(Cd(z))) | 
| 252 |  | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} | 
| 253 |  | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} | 
| 254 |  | #define myexit_() break; | 
| 255 |  | #define mycycle() continue; | 
| 256 |  | #define myceiling(w) {ceil(w)} | 
| 257 |  | #define myhuge(w) {HUGE_VAL} | 
| 258 |  | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} | 
| 259 |  | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} | 
| 260 |  |  | 
| 261 |  | /* procedure parameter types for -A and -C++ */ | 
| 262 |  |  | 
| 263 |  |  | 
| 264 |  | #ifdef __cplusplus | 
| 265 |  | typedef logical (*L_fp)(...); | 
| 266 |  | #else | 
| 267 |  | typedef logical (*L_fp)(); | 
| 268 |  | #endif | 
| 269 |  |  | 
| 270 | 0 | static float spow_ui(float x, integer n) { | 
| 271 | 0 |   float pow=1.0; unsigned long int u; | 
| 272 | 0 |   if(n != 0) { | 
| 273 | 0 |     if(n < 0) n = -n, x = 1/x; | 
| 274 | 0 |     for(u = n; ; ) { | 
| 275 | 0 |       if(u & 01) pow *= x; | 
| 276 | 0 |       if(u >>= 1) x *= x; | 
| 277 | 0 |       else break; | 
| 278 | 0 |     } | 
| 279 | 0 |   } | 
| 280 | 0 |   return pow; | 
| 281 | 0 | } | 
| 282 | 0 | static double dpow_ui(double x, integer n) { | 
| 283 | 0 |   double pow=1.0; unsigned long int u; | 
| 284 | 0 |   if(n != 0) { | 
| 285 | 0 |     if(n < 0) n = -n, x = 1/x; | 
| 286 | 0 |     for(u = n; ; ) { | 
| 287 | 0 |       if(u & 01) pow *= x; | 
| 288 | 0 |       if(u >>= 1) x *= x; | 
| 289 | 0 |       else break; | 
| 290 | 0 |     } | 
| 291 | 0 |   } | 
| 292 | 0 |   return pow; | 
| 293 | 0 | } | 
| 294 |  | #ifdef _MSC_VER | 
| 295 |  | static _Fcomplex cpow_ui(complex x, integer n) { | 
| 296 |  |   complex pow={1.0,0.0}; unsigned long int u; | 
| 297 |  |     if(n != 0) { | 
| 298 |  |     if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; | 
| 299 |  |     for(u = n; ; ) { | 
| 300 |  |       if(u & 01) pow.r *= x.r, pow.i *= x.i; | 
| 301 |  |       if(u >>= 1) x.r *= x.r, x.i *= x.i; | 
| 302 |  |       else break; | 
| 303 |  |     } | 
| 304 |  |   } | 
| 305 |  |   _Fcomplex p={pow.r, pow.i}; | 
| 306 |  |   return p; | 
| 307 |  | } | 
| 308 |  | #else | 
| 309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { | 
| 310 | 0 |   _Complex float pow=1.0; unsigned long int u; | 
| 311 | 0 |   if(n != 0) { | 
| 312 | 0 |     if(n < 0) n = -n, x = 1/x; | 
| 313 | 0 |     for(u = n; ; ) { | 
| 314 | 0 |       if(u & 01) pow *= x; | 
| 315 | 0 |       if(u >>= 1) x *= x; | 
| 316 | 0 |       else break; | 
| 317 | 0 |     } | 
| 318 | 0 |   } | 
| 319 | 0 |   return pow; | 
| 320 | 0 | } | 
| 321 |  | #endif | 
| 322 |  | #ifdef _MSC_VER | 
| 323 |  | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { | 
| 324 |  |   _Dcomplex pow={1.0,0.0}; unsigned long int u; | 
| 325 |  |   if(n != 0) { | 
| 326 |  |     if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; | 
| 327 |  |     for(u = n; ; ) { | 
| 328 |  |       if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; | 
| 329 |  |       if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; | 
| 330 |  |       else break; | 
| 331 |  |     } | 
| 332 |  |   } | 
| 333 |  |   _Dcomplex p = {pow._Val[0], pow._Val[1]}; | 
| 334 |  |   return p; | 
| 335 |  | } | 
| 336 |  | #else | 
| 337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { | 
| 338 | 0 |   _Complex double pow=1.0; unsigned long int u; | 
| 339 | 0 |   if(n != 0) { | 
| 340 | 0 |     if(n < 0) n = -n, x = 1/x; | 
| 341 | 0 |     for(u = n; ; ) { | 
| 342 | 0 |       if(u & 01) pow *= x; | 
| 343 | 0 |       if(u >>= 1) x *= x; | 
| 344 | 0 |       else break; | 
| 345 | 0 |     } | 
| 346 | 0 |   } | 
| 347 | 0 |   return pow; | 
| 348 | 0 | } | 
| 349 |  | #endif | 
| 350 | 0 | static integer pow_ii(integer x, integer n) { | 
| 351 | 0 |   integer pow; unsigned long int u; | 
| 352 | 0 |   if (n <= 0) { | 
| 353 | 0 |     if (n == 0 || x == 1) pow = 1; | 
| 354 | 0 |     else if (x != -1) pow = x == 0 ? 1/x : 0; | 
| 355 | 0 |     else n = -n; | 
| 356 | 0 |   } | 
| 357 | 0 |   if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { | 
| 358 | 0 |     u = n; | 
| 359 | 0 |     for(pow = 1; ; ) { | 
| 360 | 0 |       if(u & 01) pow *= x; | 
| 361 | 0 |       if(u >>= 1) x *= x; | 
| 362 | 0 |       else break; | 
| 363 | 0 |     } | 
| 364 | 0 |   } | 
| 365 | 0 |   return pow; | 
| 366 | 0 | } | 
| 367 |  | static integer dmaxloc_(double *w, integer s, integer e, integer *n) | 
| 368 | 0 | { | 
| 369 | 0 |   double m; integer i, mi; | 
| 370 | 0 |   for(m=w[s-1], mi=s, i=s+1; i<=e; i++) | 
| 371 | 0 |     if (w[i-1]>m) mi=i ,m=w[i-1]; | 
| 372 | 0 |   return mi-s+1; | 
| 373 | 0 | } | 
| 374 |  | static integer smaxloc_(float *w, integer s, integer e, integer *n) | 
| 375 | 0 | { | 
| 376 | 0 |   float m; integer i, mi; | 
| 377 | 0 |   for(m=w[s-1], mi=s, i=s+1; i<=e; i++) | 
| 378 | 0 |     if (w[i-1]>m) mi=i ,m=w[i-1]; | 
| 379 | 0 |   return mi-s+1; | 
| 380 | 0 | } | 
| 381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { | 
| 382 | 0 |   integer n = *n_, incx = *incx_, incy = *incy_, i; | 
| 383 | 0 | #ifdef _MSC_VER | 
| 384 | 0 |   _Fcomplex zdotc = {0.0, 0.0}; | 
| 385 | 0 |   if (incx == 1 && incy == 1) { | 
| 386 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 387 | 0 |       zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; | 
| 388 | 0 |       zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; | 
| 389 | 0 |     } | 
| 390 | 0 |   } else { | 
| 391 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 392 | 0 |       zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; | 
| 393 | 0 |       zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; | 
| 394 | 0 |     } | 
| 395 | 0 |   } | 
| 396 | 0 |   pCf(z) = zdotc; | 
| 397 | 0 | } | 
| 398 | 0 | #else | 
| 399 | 0 |   _Complex float zdotc = 0.0; | 
| 400 | 0 |   if (incx == 1 && incy == 1) { | 
| 401 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 402 | 0 |       zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); | 
| 403 | 0 |     } | 
| 404 | 0 |   } else { | 
| 405 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 406 | 0 |       zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); | 
| 407 | 0 |     } | 
| 408 | 0 |   } | 
| 409 | 0 |   pCf(z) = zdotc; | 
| 410 | 0 | } | 
| 411 |  | #endif | 
| 412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { | 
| 413 | 0 |   integer n = *n_, incx = *incx_, incy = *incy_, i; | 
| 414 | 0 | #ifdef _MSC_VER | 
| 415 | 0 |   _Dcomplex zdotc = {0.0, 0.0}; | 
| 416 | 0 |   if (incx == 1 && incy == 1) { | 
| 417 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 418 | 0 |       zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; | 
| 419 | 0 |       zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; | 
| 420 | 0 |     } | 
| 421 | 0 |   } else { | 
| 422 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 423 | 0 |       zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; | 
| 424 | 0 |       zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; | 
| 425 | 0 |     } | 
| 426 | 0 |   } | 
| 427 | 0 |   pCd(z) = zdotc; | 
| 428 | 0 | } | 
| 429 | 0 | #else | 
| 430 | 0 |   _Complex double zdotc = 0.0; | 
| 431 | 0 |   if (incx == 1 && incy == 1) { | 
| 432 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 433 | 0 |       zdotc += conj(Cd(&x[i])) * Cd(&y[i]); | 
| 434 | 0 |     } | 
| 435 | 0 |   } else { | 
| 436 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 437 | 0 |       zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); | 
| 438 | 0 |     } | 
| 439 | 0 |   } | 
| 440 | 0 |   pCd(z) = zdotc; | 
| 441 | 0 | } | 
| 442 |  | #endif   | 
| 443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { | 
| 444 | 0 |   integer n = *n_, incx = *incx_, incy = *incy_, i; | 
| 445 | 0 | #ifdef _MSC_VER | 
| 446 | 0 |   _Fcomplex zdotc = {0.0, 0.0}; | 
| 447 | 0 |   if (incx == 1 && incy == 1) { | 
| 448 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 449 | 0 |       zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; | 
| 450 | 0 |       zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; | 
| 451 | 0 |     } | 
| 452 | 0 |   } else { | 
| 453 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 454 | 0 |       zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; | 
| 455 | 0 |       zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; | 
| 456 | 0 |     } | 
| 457 | 0 |   } | 
| 458 | 0 |   pCf(z) = zdotc; | 
| 459 | 0 | } | 
| 460 | 0 | #else | 
| 461 | 0 |   _Complex float zdotc = 0.0; | 
| 462 | 0 |   if (incx == 1 && incy == 1) { | 
| 463 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 464 | 0 |       zdotc += Cf(&x[i]) * Cf(&y[i]); | 
| 465 | 0 |     } | 
| 466 | 0 |   } else { | 
| 467 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 468 | 0 |       zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); | 
| 469 | 0 |     } | 
| 470 | 0 |   } | 
| 471 | 0 |   pCf(z) = zdotc; | 
| 472 | 0 | } | 
| 473 |  | #endif | 
| 474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { | 
| 475 | 0 |   integer n = *n_, incx = *incx_, incy = *incy_, i; | 
| 476 | 0 | #ifdef _MSC_VER | 
| 477 | 0 |   _Dcomplex zdotc = {0.0, 0.0}; | 
| 478 | 0 |   if (incx == 1 && incy == 1) { | 
| 479 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 480 | 0 |       zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; | 
| 481 | 0 |       zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; | 
| 482 | 0 |     } | 
| 483 | 0 |   } else { | 
| 484 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 485 | 0 |       zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; | 
| 486 | 0 |       zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; | 
| 487 | 0 |     } | 
| 488 | 0 |   } | 
| 489 | 0 |   pCd(z) = zdotc; | 
| 490 | 0 | } | 
| 491 | 0 | #else | 
| 492 | 0 |   _Complex double zdotc = 0.0; | 
| 493 | 0 |   if (incx == 1 && incy == 1) { | 
| 494 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 495 | 0 |       zdotc += Cd(&x[i]) * Cd(&y[i]); | 
| 496 | 0 |     } | 
| 497 | 0 |   } else { | 
| 498 | 0 |     for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ | 
| 499 | 0 |       zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); | 
| 500 | 0 |     } | 
| 501 | 0 |   } | 
| 502 | 0 |   pCd(z) = zdotc; | 
| 503 | 0 | } | 
| 504 |  | #endif | 
| 505 |  | /*  -- translated by f2c (version 20000121). | 
| 506 |  |    You must link the resulting object file with the libraries: | 
| 507 |  |   -lf2c -lm   (in that order) | 
| 508 |  | */ | 
| 509 |  |  | 
| 510 |  |  | 
| 511 |  |  | 
| 512 |  |  | 
| 513 |  | /* > \brief \b SLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous | 
| 514 |  |  transform. Used by sbdsqr. */ | 
| 515 |  |  | 
| 516 |  | /*  =========== DOCUMENTATION =========== */ | 
| 517 |  |  | 
| 518 |  | /* Online html documentation available at */ | 
| 519 |  | /*            http://www.netlib.org/lapack/explore-html/ */ | 
| 520 |  |  | 
| 521 |  | /* > \htmlonly */ | 
| 522 |  | /* > Download SLASQ4 + dependencies */ | 
| 523 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq4. | 
| 524 |  | f"> */ | 
| 525 |  | /* > [TGZ]</a> */ | 
| 526 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq4. | 
| 527 |  | f"> */ | 
| 528 |  | /* > [ZIP]</a> */ | 
| 529 |  | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq4. | 
| 530 |  | f"> */ | 
| 531 |  | /* > [TXT]</a> */ | 
| 532 |  | /* > \endhtmlonly */ | 
| 533 |  |  | 
| 534 |  | /*  Definition: */ | 
| 535 |  | /*  =========== */ | 
| 536 |  |  | 
| 537 |  | /*       SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, */ | 
| 538 |  | /*                          DN1, DN2, TAU, TTYPE, G ) */ | 
| 539 |  |  | 
| 540 |  | /*       INTEGER            I0, N0, N0IN, PP, TTYPE */ | 
| 541 |  | /*       REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU */ | 
| 542 |  | /*       REAL               Z( * ) */ | 
| 543 |  |  | 
| 544 |  |  | 
| 545 |  | /* > \par Purpose: */ | 
| 546 |  | /*  ============= */ | 
| 547 |  | /* > */ | 
| 548 |  | /* > \verbatim */ | 
| 549 |  | /* > */ | 
| 550 |  | /* > SLASQ4 computes an approximation TAU to the smallest eigenvalue */ | 
| 551 |  | /* > using values of d from the previous transform. */ | 
| 552 |  | /* > \endverbatim */ | 
| 553 |  |  | 
| 554 |  | /*  Arguments: */ | 
| 555 |  | /*  ========== */ | 
| 556 |  |  | 
| 557 |  | /* > \param[in] I0 */ | 
| 558 |  | /* > \verbatim */ | 
| 559 |  | /* >          I0 is INTEGER */ | 
| 560 |  | /* >        First index. */ | 
| 561 |  | /* > \endverbatim */ | 
| 562 |  | /* > */ | 
| 563 |  | /* > \param[in] N0 */ | 
| 564 |  | /* > \verbatim */ | 
| 565 |  | /* >          N0 is INTEGER */ | 
| 566 |  | /* >        Last index. */ | 
| 567 |  | /* > \endverbatim */ | 
| 568 |  | /* > */ | 
| 569 |  | /* > \param[in] Z */ | 
| 570 |  | /* > \verbatim */ | 
| 571 |  | /* >          Z is REAL array, dimension ( 4*N0 ) */ | 
| 572 |  | /* >        Z holds the qd array. */ | 
| 573 |  | /* > \endverbatim */ | 
| 574 |  | /* > */ | 
| 575 |  | /* > \param[in] PP */ | 
| 576 |  | /* > \verbatim */ | 
| 577 |  | /* >          PP is INTEGER */ | 
| 578 |  | /* >        PP=0 for ping, PP=1 for pong. */ | 
| 579 |  | /* > \endverbatim */ | 
| 580 |  | /* > */ | 
| 581 |  | /* > \param[in] N0IN */ | 
| 582 |  | /* > \verbatim */ | 
| 583 |  | /* >          N0IN is INTEGER */ | 
| 584 |  | /* >        The value of N0 at start of EIGTEST. */ | 
| 585 |  | /* > \endverbatim */ | 
| 586 |  | /* > */ | 
| 587 |  | /* > \param[in] DMIN */ | 
| 588 |  | /* > \verbatim */ | 
| 589 |  | /* >          DMIN is REAL */ | 
| 590 |  | /* >        Minimum value of d. */ | 
| 591 |  | /* > \endverbatim */ | 
| 592 |  | /* > */ | 
| 593 |  | /* > \param[in] DMIN1 */ | 
| 594 |  | /* > \verbatim */ | 
| 595 |  | /* >          DMIN1 is REAL */ | 
| 596 |  | /* >        Minimum value of d, excluding D( N0 ). */ | 
| 597 |  | /* > \endverbatim */ | 
| 598 |  | /* > */ | 
| 599 |  | /* > \param[in] DMIN2 */ | 
| 600 |  | /* > \verbatim */ | 
| 601 |  | /* >          DMIN2 is REAL */ | 
| 602 |  | /* >        Minimum value of d, excluding D( N0 ) and D( N0-1 ). */ | 
| 603 |  | /* > \endverbatim */ | 
| 604 |  | /* > */ | 
| 605 |  | /* > \param[in] DN */ | 
| 606 |  | /* > \verbatim */ | 
| 607 |  | /* >          DN is REAL */ | 
| 608 |  | /* >        d(N) */ | 
| 609 |  | /* > \endverbatim */ | 
| 610 |  | /* > */ | 
| 611 |  | /* > \param[in] DN1 */ | 
| 612 |  | /* > \verbatim */ | 
| 613 |  | /* >          DN1 is REAL */ | 
| 614 |  | /* >        d(N-1) */ | 
| 615 |  | /* > \endverbatim */ | 
| 616 |  | /* > */ | 
| 617 |  | /* > \param[in] DN2 */ | 
| 618 |  | /* > \verbatim */ | 
| 619 |  | /* >          DN2 is REAL */ | 
| 620 |  | /* >        d(N-2) */ | 
| 621 |  | /* > \endverbatim */ | 
| 622 |  | /* > */ | 
| 623 |  | /* > \param[out] TAU */ | 
| 624 |  | /* > \verbatim */ | 
| 625 |  | /* >          TAU is REAL */ | 
| 626 |  | /* >        This is the shift. */ | 
| 627 |  | /* > \endverbatim */ | 
| 628 |  | /* > */ | 
| 629 |  | /* > \param[out] TTYPE */ | 
| 630 |  | /* > \verbatim */ | 
| 631 |  | /* >          TTYPE is INTEGER */ | 
| 632 |  | /* >        Shift type. */ | 
| 633 |  | /* > \endverbatim */ | 
| 634 |  | /* > */ | 
| 635 |  | /* > \param[in,out] G */ | 
| 636 |  | /* > \verbatim */ | 
| 637 |  | /* >          G is REAL */ | 
| 638 |  | /* >        G is passed as an argument in order to save its value between */ | 
| 639 |  | /* >        calls to SLASQ4. */ | 
| 640 |  | /* > \endverbatim */ | 
| 641 |  |  | 
| 642 |  | /*  Authors: */ | 
| 643 |  | /*  ======== */ | 
| 644 |  |  | 
| 645 |  | /* > \author Univ. of Tennessee */ | 
| 646 |  | /* > \author Univ. of California Berkeley */ | 
| 647 |  | /* > \author Univ. of Colorado Denver */ | 
| 648 |  | /* > \author NAG Ltd. */ | 
| 649 |  |  | 
| 650 |  | /* > \date June 2016 */ | 
| 651 |  |  | 
| 652 |  | /* > \ingroup auxOTHERcomputational */ | 
| 653 |  |  | 
| 654 |  | /* > \par Further Details: */ | 
| 655 |  | /*  ===================== */ | 
| 656 |  | /* > */ | 
| 657 |  | /* > \verbatim */ | 
| 658 |  | /* > */ | 
| 659 |  | /* >  CNST1 = 9/16 */ | 
| 660 |  | /* > \endverbatim */ | 
| 661 |  | /* > */ | 
| 662 |  | /*  ===================================================================== */ | 
| 663 |  | /* Subroutine */ void slasq4_(integer *i0, integer *n0, real *z__, integer *pp, | 
| 664 |  |    integer *n0in, real *dmin__, real *dmin1, real *dmin2, real *dn,  | 
| 665 |  |   real *dn1, real *dn2, real *tau, integer *ttype, real *g) | 
| 666 | 0 | { | 
| 667 |  |     /* System generated locals */ | 
| 668 | 0 |     integer i__1; | 
| 669 | 0 |     real r__1, r__2; | 
| 670 |  |  | 
| 671 |  |     /* Local variables */ | 
| 672 | 0 |     real s, a2, b1, b2; | 
| 673 | 0 |     integer i4, nn, np; | 
| 674 | 0 |     real gam, gap1, gap2; | 
| 675 |  |  | 
| 676 |  |  | 
| 677 |  | /*  -- LAPACK computational routine (version 3.7.1) -- */ | 
| 678 |  | /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */ | 
| 679 |  | /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ | 
| 680 |  | /*     June 2016 */ | 
| 681 |  |  | 
| 682 |  |  | 
| 683 |  | /*  ===================================================================== */ | 
| 684 |  |  | 
| 685 |  |  | 
| 686 |  | /*     A negative DMIN forces the shift to take that absolute value */ | 
| 687 |  | /*     TTYPE records the type of shift. */ | 
| 688 |  |  | 
| 689 |  |     /* Parameter adjustments */ | 
| 690 | 0 |     --z__; | 
| 691 |  |  | 
| 692 |  |     /* Function Body */ | 
| 693 | 0 |     if (*dmin__ <= 0.f) { | 
| 694 | 0 |   *tau = -(*dmin__); | 
| 695 | 0 |   *ttype = -1; | 
| 696 | 0 |   return; | 
| 697 | 0 |     } | 
| 698 |  |  | 
| 699 | 0 |     nn = (*n0 << 2) + *pp; | 
| 700 | 0 |     if (*n0in == *n0) { | 
| 701 |  |  | 
| 702 |  | /*        No eigenvalues deflated. */ | 
| 703 |  | 
 | 
| 704 | 0 |   if (*dmin__ == *dn || *dmin__ == *dn1) { | 
| 705 |  | 
 | 
| 706 | 0 |       b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]); | 
| 707 | 0 |       b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]); | 
| 708 | 0 |       a2 = z__[nn - 7] + z__[nn - 5]; | 
| 709 |  |  | 
| 710 |  | /*           Cases 2 and 3. */ | 
| 711 |  | 
 | 
| 712 | 0 |       if (*dmin__ == *dn && *dmin1 == *dn1) { | 
| 713 | 0 |     gap2 = *dmin2 - a2 - *dmin2 * .25f; | 
| 714 | 0 |     if (gap2 > 0.f && gap2 > b2) { | 
| 715 | 0 |         gap1 = a2 - *dn - b2 / gap2 * b2; | 
| 716 | 0 |     } else { | 
| 717 | 0 |         gap1 = a2 - *dn - (b1 + b2); | 
| 718 | 0 |     } | 
| 719 | 0 |     if (gap1 > 0.f && gap1 > b1) { | 
| 720 |  | /* Computing MAX */ | 
| 721 | 0 |         r__1 = *dn - b1 / gap1 * b1, r__2 = *dmin__ * .5f; | 
| 722 | 0 |         s = f2cmax(r__1,r__2); | 
| 723 | 0 |         *ttype = -2; | 
| 724 | 0 |     } else { | 
| 725 | 0 |         s = 0.f; | 
| 726 | 0 |         if (*dn > b1) { | 
| 727 | 0 |       s = *dn - b1; | 
| 728 | 0 |         } | 
| 729 | 0 |         if (a2 > b1 + b2) { | 
| 730 |  | /* Computing MIN */ | 
| 731 | 0 |       r__1 = s, r__2 = a2 - (b1 + b2); | 
| 732 | 0 |       s = f2cmin(r__1,r__2); | 
| 733 | 0 |         } | 
| 734 |  | /* Computing MAX */ | 
| 735 | 0 |         r__1 = s, r__2 = *dmin__ * .333f; | 
| 736 | 0 |         s = f2cmax(r__1,r__2); | 
| 737 | 0 |         *ttype = -3; | 
| 738 | 0 |     } | 
| 739 | 0 |       } else { | 
| 740 |  |  | 
| 741 |  | /*              Case 4. */ | 
| 742 |  | 
 | 
| 743 | 0 |     *ttype = -4; | 
| 744 | 0 |     s = *dmin__ * .25f; | 
| 745 | 0 |     if (*dmin__ == *dn) { | 
| 746 | 0 |         gam = *dn; | 
| 747 | 0 |         a2 = 0.f; | 
| 748 | 0 |         if (z__[nn - 5] > z__[nn - 7]) { | 
| 749 | 0 |       return; | 
| 750 | 0 |         } | 
| 751 | 0 |         b2 = z__[nn - 5] / z__[nn - 7]; | 
| 752 | 0 |         np = nn - 9; | 
| 753 | 0 |     } else { | 
| 754 | 0 |         np = nn - (*pp << 1); | 
| 755 | 0 |         gam = *dn1; | 
| 756 | 0 |         if (z__[np - 4] > z__[np - 2]) { | 
| 757 | 0 |       return; | 
| 758 | 0 |         } | 
| 759 | 0 |         a2 = z__[np - 4] / z__[np - 2]; | 
| 760 | 0 |         if (z__[nn - 9] > z__[nn - 11]) { | 
| 761 | 0 |       return; | 
| 762 | 0 |         } | 
| 763 | 0 |         b2 = z__[nn - 9] / z__[nn - 11]; | 
| 764 | 0 |         np = nn - 13; | 
| 765 | 0 |     } | 
| 766 |  |  | 
| 767 |  | /*              Approximate contribution to norm squared from I < NN-1. */ | 
| 768 |  |  | 
| 769 | 0 |     a2 += b2; | 
| 770 | 0 |     i__1 = (*i0 << 2) - 1 + *pp; | 
| 771 | 0 |     for (i4 = np; i4 >= i__1; i4 += -4) { | 
| 772 | 0 |         if (b2 == 0.f) { | 
| 773 | 0 |       goto L20; | 
| 774 | 0 |         } | 
| 775 | 0 |         b1 = b2; | 
| 776 | 0 |         if (z__[i4] > z__[i4 - 2]) { | 
| 777 | 0 |       return; | 
| 778 | 0 |         } | 
| 779 | 0 |         b2 *= z__[i4] / z__[i4 - 2]; | 
| 780 | 0 |         a2 += b2; | 
| 781 | 0 |         if (f2cmax(b2,b1) * 100.f < a2 || .563f < a2) { | 
| 782 | 0 |       goto L20; | 
| 783 | 0 |         } | 
| 784 |  | /* L10: */ | 
| 785 | 0 |     } | 
| 786 | 0 | L20: | 
| 787 | 0 |     a2 *= 1.05f; | 
| 788 |  |  | 
| 789 |  | /*              Rayleigh quotient residual bound. */ | 
| 790 |  | 
 | 
| 791 | 0 |     if (a2 < .563f) { | 
| 792 | 0 |         s = gam * (1.f - sqrt(a2)) / (a2 + 1.f); | 
| 793 | 0 |     } | 
| 794 | 0 |       } | 
| 795 | 0 |   } else if (*dmin__ == *dn2) { | 
| 796 |  |  | 
| 797 |  | /*           Case 5. */ | 
| 798 |  | 
 | 
| 799 | 0 |       *ttype = -5; | 
| 800 | 0 |       s = *dmin__ * .25f; | 
| 801 |  |  | 
| 802 |  | /*           Compute contribution to norm squared from I > NN-2. */ | 
| 803 |  | 
 | 
| 804 | 0 |       np = nn - (*pp << 1); | 
| 805 | 0 |       b1 = z__[np - 2]; | 
| 806 | 0 |       b2 = z__[np - 6]; | 
| 807 | 0 |       gam = *dn2; | 
| 808 | 0 |       if (z__[np - 8] > b2 || z__[np - 4] > b1) { | 
| 809 | 0 |     return; | 
| 810 | 0 |       } | 
| 811 | 0 |       a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.f); | 
| 812 |  |  | 
| 813 |  | /*           Approximate contribution to norm squared from I < NN-2. */ | 
| 814 |  | 
 | 
| 815 | 0 |       if (*n0 - *i0 > 2) { | 
| 816 | 0 |     b2 = z__[nn - 13] / z__[nn - 15]; | 
| 817 | 0 |     a2 += b2; | 
| 818 | 0 |     i__1 = (*i0 << 2) - 1 + *pp; | 
| 819 | 0 |     for (i4 = nn - 17; i4 >= i__1; i4 += -4) { | 
| 820 | 0 |         if (b2 == 0.f) { | 
| 821 | 0 |       goto L40; | 
| 822 | 0 |         } | 
| 823 | 0 |         b1 = b2; | 
| 824 | 0 |         if (z__[i4] > z__[i4 - 2]) { | 
| 825 | 0 |       return; | 
| 826 | 0 |         } | 
| 827 | 0 |         b2 *= z__[i4] / z__[i4 - 2]; | 
| 828 | 0 |         a2 += b2; | 
| 829 | 0 |         if (f2cmax(b2,b1) * 100.f < a2 || .563f < a2) { | 
| 830 | 0 |       goto L40; | 
| 831 | 0 |         } | 
| 832 |  | /* L30: */ | 
| 833 | 0 |     } | 
| 834 | 0 | L40: | 
| 835 | 0 |     a2 *= 1.05f; | 
| 836 | 0 |       } | 
| 837 |  |  | 
| 838 | 0 |       if (a2 < .563f) { | 
| 839 | 0 |     s = gam * (1.f - sqrt(a2)) / (a2 + 1.f); | 
| 840 | 0 |       } | 
| 841 | 0 |   } else { | 
| 842 |  |  | 
| 843 |  | /*           Case 6, no information to guide us. */ | 
| 844 |  | 
 | 
| 845 | 0 |       if (*ttype == -6) { | 
| 846 | 0 |     *g += (1.f - *g) * .333f; | 
| 847 | 0 |       } else if (*ttype == -18) { | 
| 848 | 0 |     *g = .083250000000000005f; | 
| 849 | 0 |       } else { | 
| 850 | 0 |     *g = .25f; | 
| 851 | 0 |       } | 
| 852 | 0 |       s = *g * *dmin__; | 
| 853 | 0 |       *ttype = -6; | 
| 854 | 0 |   } | 
| 855 |  | 
 | 
| 856 | 0 |     } else if (*n0in == *n0 + 1) { | 
| 857 |  |  | 
| 858 |  | /*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */ | 
| 859 |  | 
 | 
| 860 | 0 |   if (*dmin1 == *dn1 && *dmin2 == *dn2) { | 
| 861 |  |  | 
| 862 |  | /*           Cases 7 and 8. */ | 
| 863 |  | 
 | 
| 864 | 0 |       *ttype = -7; | 
| 865 | 0 |       s = *dmin1 * .333f; | 
| 866 | 0 |       if (z__[nn - 5] > z__[nn - 7]) { | 
| 867 | 0 |     return; | 
| 868 | 0 |       } | 
| 869 | 0 |       b1 = z__[nn - 5] / z__[nn - 7]; | 
| 870 | 0 |       b2 = b1; | 
| 871 | 0 |       if (b2 == 0.f) { | 
| 872 | 0 |     goto L60; | 
| 873 | 0 |       } | 
| 874 | 0 |       i__1 = (*i0 << 2) - 1 + *pp; | 
| 875 | 0 |       for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) { | 
| 876 | 0 |     a2 = b1; | 
| 877 | 0 |     if (z__[i4] > z__[i4 - 2]) { | 
| 878 | 0 |         return; | 
| 879 | 0 |     } | 
| 880 | 0 |     b1 *= z__[i4] / z__[i4 - 2]; | 
| 881 | 0 |     b2 += b1; | 
| 882 | 0 |     if (f2cmax(b1,a2) * 100.f < b2) { | 
| 883 | 0 |         goto L60; | 
| 884 | 0 |     } | 
| 885 |  | /* L50: */ | 
| 886 | 0 |       } | 
| 887 | 0 | L60: | 
| 888 | 0 |       b2 = sqrt(b2 * 1.05f); | 
| 889 |  | /* Computing 2nd power */ | 
| 890 | 0 |       r__1 = b2; | 
| 891 | 0 |       a2 = *dmin1 / (r__1 * r__1 + 1.f); | 
| 892 | 0 |       gap2 = *dmin2 * .5f - a2; | 
| 893 | 0 |       if (gap2 > 0.f && gap2 > b2 * a2) { | 
| 894 |  | /* Computing MAX */ | 
| 895 | 0 |     r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2); | 
| 896 | 0 |     s = f2cmax(r__1,r__2); | 
| 897 | 0 |       } else { | 
| 898 |  | /* Computing MAX */ | 
| 899 | 0 |     r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f); | 
| 900 | 0 |     s = f2cmax(r__1,r__2); | 
| 901 | 0 |     *ttype = -8; | 
| 902 | 0 |       } | 
| 903 | 0 |   } else { | 
| 904 |  |  | 
| 905 |  | /*           Case 9. */ | 
| 906 |  | 
 | 
| 907 | 0 |       s = *dmin1 * .25f; | 
| 908 | 0 |       if (*dmin1 == *dn1) { | 
| 909 | 0 |     s = *dmin1 * .5f; | 
| 910 | 0 |       } | 
| 911 | 0 |       *ttype = -9; | 
| 912 | 0 |   } | 
| 913 |  | 
 | 
| 914 | 0 |     } else if (*n0in == *n0 + 2) { | 
| 915 |  |  | 
| 916 |  | /*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */ | 
| 917 |  |  | 
| 918 |  | /*        Cases 10 and 11. */ | 
| 919 |  | 
 | 
| 920 | 0 |   if (*dmin2 == *dn2 && z__[nn - 5] * 2.f < z__[nn - 7]) { | 
| 921 | 0 |       *ttype = -10; | 
| 922 | 0 |       s = *dmin2 * .333f; | 
| 923 | 0 |       if (z__[nn - 5] > z__[nn - 7]) { | 
| 924 | 0 |     return; | 
| 925 | 0 |       } | 
| 926 | 0 |       b1 = z__[nn - 5] / z__[nn - 7]; | 
| 927 | 0 |       b2 = b1; | 
| 928 | 0 |       if (b2 == 0.f) { | 
| 929 | 0 |     goto L80; | 
| 930 | 0 |       } | 
| 931 | 0 |       i__1 = (*i0 << 2) - 1 + *pp; | 
| 932 | 0 |       for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) { | 
| 933 | 0 |     if (z__[i4] > z__[i4 - 2]) { | 
| 934 | 0 |         return; | 
| 935 | 0 |     } | 
| 936 | 0 |     b1 *= z__[i4] / z__[i4 - 2]; | 
| 937 | 0 |     b2 += b1; | 
| 938 | 0 |     if (b1 * 100.f < b2) { | 
| 939 | 0 |         goto L80; | 
| 940 | 0 |     } | 
| 941 |  | /* L70: */ | 
| 942 | 0 |       } | 
| 943 | 0 | L80: | 
| 944 | 0 |       b2 = sqrt(b2 * 1.05f); | 
| 945 |  | /* Computing 2nd power */ | 
| 946 | 0 |       r__1 = b2; | 
| 947 | 0 |       a2 = *dmin2 / (r__1 * r__1 + 1.f); | 
| 948 | 0 |       gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[ | 
| 949 | 0 |         nn - 9]) - a2; | 
| 950 | 0 |       if (gap2 > 0.f && gap2 > b2 * a2) { | 
| 951 |  | /* Computing MAX */ | 
| 952 | 0 |     r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2); | 
| 953 | 0 |     s = f2cmax(r__1,r__2); | 
| 954 | 0 |       } else { | 
| 955 |  | /* Computing MAX */ | 
| 956 | 0 |     r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f); | 
| 957 | 0 |     s = f2cmax(r__1,r__2); | 
| 958 | 0 |       } | 
| 959 | 0 |   } else { | 
| 960 | 0 |       s = *dmin2 * .25f; | 
| 961 | 0 |       *ttype = -11; | 
| 962 | 0 |   } | 
| 963 | 0 |     } else if (*n0in > *n0 + 2) { | 
| 964 |  |  | 
| 965 |  | /*        Case 12, more than two eigenvalues deflated. No information. */ | 
| 966 |  | 
 | 
| 967 | 0 |   s = 0.f; | 
| 968 | 0 |   *ttype = -12; | 
| 969 | 0 |     } | 
| 970 |  |  | 
| 971 | 0 |     *tau = s; | 
| 972 | 0 |     return; | 
| 973 |  |  | 
| 974 |  | /*     End of SLASQ4 */ | 
| 975 |  | 
 | 
| 976 | 0 | } /* slasq4_ */ | 
| 977 |  |  |