Coverage Report

Created: 2025-09-11 18:52

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slaed6.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
0
#define TRUE_ (1)
61
0
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
0
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* > \brief \b SLAED6 used by sstedc. Computes one Newton step in solution of the secular equation. */
514
515
/*  =========== DOCUMENTATION =========== */
516
517
/* Online html documentation available at */
518
/*            http://www.netlib.org/lapack/explore-html/ */
519
520
/* > \htmlonly */
521
/* > Download SLAED6 + dependencies */
522
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed6.
523
f"> */
524
/* > [TGZ]</a> */
525
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed6.
526
f"> */
527
/* > [ZIP]</a> */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed6.
529
f"> */
530
/* > [TXT]</a> */
531
/* > \endhtmlonly */
532
533
/*  Definition: */
534
/*  =========== */
535
536
/*       SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO ) */
537
538
/*       LOGICAL            ORGATI */
539
/*       INTEGER            INFO, KNITER */
540
/*       REAL               FINIT, RHO, TAU */
541
/*       REAL               D( 3 ), Z( 3 ) */
542
543
544
/* > \par Purpose: */
545
/*  ============= */
546
/* > */
547
/* > \verbatim */
548
/* > */
549
/* > SLAED6 computes the positive or negative root (closest to the origin) */
550
/* > of */
551
/* >                  z(1)        z(2)        z(3) */
552
/* > f(x) =   rho + --------- + ---------- + --------- */
553
/* >                 d(1)-x      d(2)-x      d(3)-x */
554
/* > */
555
/* > It is assumed that */
556
/* > */
557
/* >       if ORGATI = .true. the root is between d(2) and d(3); */
558
/* >       otherwise it is between d(1) and d(2) */
559
/* > */
560
/* > This routine will be called by SLAED4 when necessary. In most cases, */
561
/* > the root sought is the smallest in magnitude, though it might not be */
562
/* > in some extremely rare situations. */
563
/* > \endverbatim */
564
565
/*  Arguments: */
566
/*  ========== */
567
568
/* > \param[in] KNITER */
569
/* > \verbatim */
570
/* >          KNITER is INTEGER */
571
/* >               Refer to SLAED4 for its significance. */
572
/* > \endverbatim */
573
/* > */
574
/* > \param[in] ORGATI */
575
/* > \verbatim */
576
/* >          ORGATI is LOGICAL */
577
/* >               If ORGATI is true, the needed root is between d(2) and */
578
/* >               d(3); otherwise it is between d(1) and d(2).  See */
579
/* >               SLAED4 for further details. */
580
/* > \endverbatim */
581
/* > */
582
/* > \param[in] RHO */
583
/* > \verbatim */
584
/* >          RHO is REAL */
585
/* >               Refer to the equation f(x) above. */
586
/* > \endverbatim */
587
/* > */
588
/* > \param[in] D */
589
/* > \verbatim */
590
/* >          D is REAL array, dimension (3) */
591
/* >               D satisfies d(1) < d(2) < d(3). */
592
/* > \endverbatim */
593
/* > */
594
/* > \param[in] Z */
595
/* > \verbatim */
596
/* >          Z is REAL array, dimension (3) */
597
/* >               Each of the elements in z must be positive. */
598
/* > \endverbatim */
599
/* > */
600
/* > \param[in] FINIT */
601
/* > \verbatim */
602
/* >          FINIT is REAL */
603
/* >               The value of f at 0. It is more accurate than the one */
604
/* >               evaluated inside this routine (if someone wants to do */
605
/* >               so). */
606
/* > \endverbatim */
607
/* > */
608
/* > \param[out] TAU */
609
/* > \verbatim */
610
/* >          TAU is REAL */
611
/* >               The root of the equation f(x). */
612
/* > \endverbatim */
613
/* > */
614
/* > \param[out] INFO */
615
/* > \verbatim */
616
/* >          INFO is INTEGER */
617
/* >               = 0: successful exit */
618
/* >               > 0: if INFO = 1, failure to converge */
619
/* > \endverbatim */
620
621
/*  Authors: */
622
/*  ======== */
623
624
/* > \author Univ. of Tennessee */
625
/* > \author Univ. of California Berkeley */
626
/* > \author Univ. of Colorado Denver */
627
/* > \author NAG Ltd. */
628
629
/* > \date December 2016 */
630
631
/* > \ingroup auxOTHERcomputational */
632
633
/* > \par Further Details: */
634
/*  ===================== */
635
/* > */
636
/* > \verbatim */
637
/* > */
638
/* >  10/02/03: This version has a few statements commented out for thread */
639
/* >  safety (machine parameters are computed on each entry). SJH. */
640
/* > */
641
/* >  05/10/06: Modified from a new version of Ren-Cang Li, use */
642
/* >     Gragg-Thornton-Warner cubic convergent scheme for better stability. */
643
/* > \endverbatim */
644
645
/* > \par Contributors: */
646
/*  ================== */
647
/* > */
648
/* >     Ren-Cang Li, Computer Science Division, University of California */
649
/* >     at Berkeley, USA */
650
/* > */
651
/*  ===================================================================== */
652
/* Subroutine */ void slaed6_(integer *kniter, logical *orgati, real *rho, 
653
  real *d__, real *z__, real *finit, real *tau, integer *info)
654
0
{
655
    /* System generated locals */
656
0
    integer i__1;
657
0
    real r__1, r__2, r__3, r__4;
658
659
    /* Local variables */
660
0
    real base;
661
0
    integer iter;
662
0
    real temp, temp1, temp2, temp3, temp4, a, b, c__, f;
663
0
    integer i__;
664
0
    logical scale;
665
0
    integer niter;
666
0
    real small1, small2, fc, df, sminv1, sminv2, dscale[3], sclfac;
667
0
    extern real slamch_(char *);
668
0
    real zscale[3], erretm, sclinv, ddf, lbd, eta, ubd, eps;
669
670
671
/*  -- LAPACK computational routine (version 3.7.0) -- */
672
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
673
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
674
/*     December 2016 */
675
676
677
/*  ===================================================================== */
678
679
680
    /* Parameter adjustments */
681
0
    --z__;
682
0
    --d__;
683
684
    /* Function Body */
685
0
    *info = 0;
686
687
0
    if (*orgati) {
688
0
  lbd = d__[2];
689
0
  ubd = d__[3];
690
0
    } else {
691
0
  lbd = d__[1];
692
0
  ubd = d__[2];
693
0
    }
694
0
    if (*finit < 0.f) {
695
0
  lbd = 0.f;
696
0
    } else {
697
0
  ubd = 0.f;
698
0
    }
699
700
0
    niter = 1;
701
0
    *tau = 0.f;
702
0
    if (*kniter == 2) {
703
0
  if (*orgati) {
704
0
      temp = (d__[3] - d__[2]) / 2.f;
705
0
      c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
706
0
      a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
707
0
      b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
708
0
  } else {
709
0
      temp = (d__[1] - d__[2]) / 2.f;
710
0
      c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
711
0
      a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
712
0
      b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
713
0
  }
714
/* Computing MAX */
715
0
  r__1 = abs(a), r__2 = abs(b), r__1 = f2cmax(r__1,r__2), r__2 = abs(c__);
716
0
  temp = f2cmax(r__1,r__2);
717
0
  a /= temp;
718
0
  b /= temp;
719
0
  c__ /= temp;
720
0
  if (c__ == 0.f) {
721
0
      *tau = b / a;
722
0
  } else if (a <= 0.f) {
723
0
      *tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
724
0
        c__ * 2.f);
725
0
  } else {
726
0
      *tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
727
0
        r__1))));
728
0
  }
729
0
  if (*tau < lbd || *tau > ubd) {
730
0
      *tau = (lbd + ubd) / 2.f;
731
0
  }
732
0
  if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) {
733
0
      *tau = 0.f;
734
0
  } else {
735
0
      temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau 
736
0
        * z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / (
737
0
        d__[3] * (d__[3] - *tau));
738
0
      if (temp <= 0.f) {
739
0
    lbd = *tau;
740
0
      } else {
741
0
    ubd = *tau;
742
0
      }
743
0
      if (abs(*finit) <= abs(temp)) {
744
0
    *tau = 0.f;
745
0
      }
746
0
  }
747
0
    }
748
749
/*     get machine parameters for possible scaling to avoid overflow */
750
751
/*     modified by Sven: parameters SMALL1, SMINV1, SMALL2, */
752
/*     SMINV2, EPS are not SAVEd anymore between one call to the */
753
/*     others but recomputed at each call */
754
755
0
    eps = slamch_("Epsilon");
756
0
    base = slamch_("Base");
757
0
    i__1 = (integer) (log(slamch_("SafMin")) / log(base) / 3.f);
758
0
    small1 = pow_ri(&base, &i__1);
759
0
    sminv1 = 1.f / small1;
760
0
    small2 = small1 * small1;
761
0
    sminv2 = sminv1 * sminv1;
762
763
/*     Determine if scaling of inputs necessary to avoid overflow */
764
/*     when computing 1/TEMP**3 */
765
766
0
    if (*orgati) {
767
/* Computing MIN */
768
0
  r__3 = (r__1 = d__[2] - *tau, abs(r__1)), r__4 = (r__2 = d__[3] - *
769
0
    tau, abs(r__2));
770
0
  temp = f2cmin(r__3,r__4);
771
0
    } else {
772
/* Computing MIN */
773
0
  r__3 = (r__1 = d__[1] - *tau, abs(r__1)), r__4 = (r__2 = d__[2] - *
774
0
    tau, abs(r__2));
775
0
  temp = f2cmin(r__3,r__4);
776
0
    }
777
0
    scale = FALSE_;
778
0
    if (temp <= small1) {
779
0
  scale = TRUE_;
780
0
  if (temp <= small2) {
781
782
/*        Scale up by power of radix nearest 1/SAFMIN**(2/3) */
783
784
0
      sclfac = sminv2;
785
0
      sclinv = small2;
786
0
  } else {
787
788
/*        Scale up by power of radix nearest 1/SAFMIN**(1/3) */
789
790
0
      sclfac = sminv1;
791
0
      sclinv = small1;
792
0
  }
793
794
/*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */
795
796
0
  for (i__ = 1; i__ <= 3; ++i__) {
797
0
      dscale[i__ - 1] = d__[i__] * sclfac;
798
0
      zscale[i__ - 1] = z__[i__] * sclfac;
799
/* L10: */
800
0
  }
801
0
  *tau *= sclfac;
802
0
  lbd *= sclfac;
803
0
  ubd *= sclfac;
804
0
    } else {
805
806
/*        Copy D and Z to DSCALE and ZSCALE */
807
808
0
  for (i__ = 1; i__ <= 3; ++i__) {
809
0
      dscale[i__ - 1] = d__[i__];
810
0
      zscale[i__ - 1] = z__[i__];
811
/* L20: */
812
0
  }
813
0
    }
814
815
0
    fc = 0.f;
816
0
    df = 0.f;
817
0
    ddf = 0.f;
818
0
    for (i__ = 1; i__ <= 3; ++i__) {
819
0
  temp = 1.f / (dscale[i__ - 1] - *tau);
820
0
  temp1 = zscale[i__ - 1] * temp;
821
0
  temp2 = temp1 * temp;
822
0
  temp3 = temp2 * temp;
823
0
  fc += temp1 / dscale[i__ - 1];
824
0
  df += temp2;
825
0
  ddf += temp3;
826
/* L30: */
827
0
    }
828
0
    f = *finit + *tau * fc;
829
830
0
    if (abs(f) <= 0.f) {
831
0
  goto L60;
832
0
    }
833
0
    if (f <= 0.f) {
834
0
  lbd = *tau;
835
0
    } else {
836
0
  ubd = *tau;
837
0
    }
838
839
/*        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent */
840
/*                            scheme */
841
842
/*     It is not hard to see that */
843
844
/*           1) Iterations will go up monotonically */
845
/*              if FINIT < 0; */
846
847
/*           2) Iterations will go down monotonically */
848
/*              if FINIT > 0. */
849
850
0
    iter = niter + 1;
851
852
0
    for (niter = iter; niter <= 40; ++niter) {
853
854
0
  if (*orgati) {
855
0
      temp1 = dscale[1] - *tau;
856
0
      temp2 = dscale[2] - *tau;
857
0
  } else {
858
0
      temp1 = dscale[0] - *tau;
859
0
      temp2 = dscale[1] - *tau;
860
0
  }
861
0
  a = (temp1 + temp2) * f - temp1 * temp2 * df;
862
0
  b = temp1 * temp2 * f;
863
0
  c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
864
/* Computing MAX */
865
0
  r__1 = abs(a), r__2 = abs(b), r__1 = f2cmax(r__1,r__2), r__2 = abs(c__);
866
0
  temp = f2cmax(r__1,r__2);
867
0
  a /= temp;
868
0
  b /= temp;
869
0
  c__ /= temp;
870
0
  if (c__ == 0.f) {
871
0
      eta = b / a;
872
0
  } else if (a <= 0.f) {
873
0
      eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
874
0
        c__ * 2.f);
875
0
  } else {
876
0
      eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)
877
0
        )));
878
0
  }
879
0
  if (f * eta >= 0.f) {
880
0
      eta = -f / df;
881
0
  }
882
883
0
  *tau += eta;
884
0
  if (*tau < lbd || *tau > ubd) {
885
0
      *tau = (lbd + ubd) / 2.f;
886
0
  }
887
888
0
  fc = 0.f;
889
0
  erretm = 0.f;
890
0
  df = 0.f;
891
0
  ddf = 0.f;
892
0
  for (i__ = 1; i__ <= 3; ++i__) {
893
0
      if (dscale[i__ - 1] - *tau != 0.f) {
894
0
    temp = 1.f / (dscale[i__ - 1] - *tau);
895
0
    temp1 = zscale[i__ - 1] * temp;
896
0
    temp2 = temp1 * temp;
897
0
    temp3 = temp2 * temp;
898
0
    temp4 = temp1 / dscale[i__ - 1];
899
0
    fc += temp4;
900
0
    erretm += abs(temp4);
901
0
    df += temp2;
902
0
    ddf += temp3;
903
0
      } else {
904
0
    goto L60;
905
0
      }
906
/* L40: */
907
0
  }
908
0
  f = *finit + *tau * fc;
909
0
  erretm = (abs(*finit) + abs(*tau) * erretm) * 8.f + abs(*tau) * df;
910
0
  if (abs(f) <= eps * 4.f * erretm || ubd - lbd <= eps * 4.f * abs(*tau)
911
0
    ) {
912
0
      goto L60;
913
0
  }
914
0
  if (f <= 0.f) {
915
0
      lbd = *tau;
916
0
  } else {
917
0
      ubd = *tau;
918
0
  }
919
/* L50: */
920
0
    }
921
0
    *info = 1;
922
0
L60:
923
924
/*     Undo scaling */
925
926
0
    if (scale) {
927
0
  *tau *= sclinv;
928
0
    }
929
0
    return;
930
931
/*     End of SLAED6 */
932
933
0
} /* slaed6_ */
934