Coverage Report

Created: 2025-09-11 18:52

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasd6.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__0 = 0;
516
static real c_b7 = 1.f;
517
static integer c__1 = 1;
518
static integer c_n1 = -1;
519
520
/* > \brief \b SLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller o
521
nes by appending a row. Used by sbdsdc. */
522
523
/*  =========== DOCUMENTATION =========== */
524
525
/* Online html documentation available at */
526
/*            http://www.netlib.org/lapack/explore-html/ */
527
528
/* > \htmlonly */
529
/* > Download SLASD6 + dependencies */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd6.
531
f"> */
532
/* > [TGZ]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd6.
534
f"> */
535
/* > [ZIP]</a> */
536
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd6.
537
f"> */
538
/* > [TXT]</a> */
539
/* > \endhtmlonly */
540
541
/*  Definition: */
542
/*  =========== */
543
544
/*       SUBROUTINE SLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA, */
545
/*                          IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, */
546
/*                          LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, */
547
/*                          IWORK, INFO ) */
548
549
/*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
550
/*      $                   NR, SQRE */
551
/*       REAL               ALPHA, BETA, C, S */
552
/*       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ), */
553
/*      $                   PERM( * ) */
554
/*       REAL               D( * ), DIFL( * ), DIFR( * ), */
555
/*      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
556
/*      $                   VF( * ), VL( * ), WORK( * ), Z( * ) */
557
558
559
/* > \par Purpose: */
560
/*  ============= */
561
/* > */
562
/* > \verbatim */
563
/* > */
564
/* > SLASD6 computes the SVD of an updated upper bidiagonal matrix B */
565
/* > obtained by merging two smaller ones by appending a row. This */
566
/* > routine is used only for the problem which requires all singular */
567
/* > values and optionally singular vector matrices in factored form. */
568
/* > B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
569
/* > A related subroutine, SLASD1, handles the case in which all singular */
570
/* > values and singular vectors of the bidiagonal matrix are desired. */
571
/* > */
572
/* > SLASD6 computes the SVD as follows: */
573
/* > */
574
/* >               ( D1(in)    0    0       0 ) */
575
/* >   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in) */
576
/* >               (   0       0   D2(in)   0 ) */
577
/* > */
578
/* >     = U(out) * ( D(out) 0) * VT(out) */
579
/* > */
580
/* > where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M */
581
/* > with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
582
/* > elsewhere; and the entry b is empty if SQRE = 0. */
583
/* > */
584
/* > The singular values of B can be computed using D1, D2, the first */
585
/* > components of all the right singular vectors of the lower block, and */
586
/* > the last components of all the right singular vectors of the upper */
587
/* > block. These components are stored and updated in VF and VL, */
588
/* > respectively, in SLASD6. Hence U and VT are not explicitly */
589
/* > referenced. */
590
/* > */
591
/* > The singular values are stored in D. The algorithm consists of two */
592
/* > stages: */
593
/* > */
594
/* >       The first stage consists of deflating the size of the problem */
595
/* >       when there are multiple singular values or if there is a zero */
596
/* >       in the Z vector. For each such occurrence the dimension of the */
597
/* >       secular equation problem is reduced by one. This stage is */
598
/* >       performed by the routine SLASD7. */
599
/* > */
600
/* >       The second stage consists of calculating the updated */
601
/* >       singular values. This is done by finding the roots of the */
602
/* >       secular equation via the routine SLASD4 (as called by SLASD8). */
603
/* >       This routine also updates VF and VL and computes the distances */
604
/* >       between the updated singular values and the old singular */
605
/* >       values. */
606
/* > */
607
/* > SLASD6 is called from SLASDA. */
608
/* > \endverbatim */
609
610
/*  Arguments: */
611
/*  ========== */
612
613
/* > \param[in] ICOMPQ */
614
/* > \verbatim */
615
/* >          ICOMPQ is INTEGER */
616
/* >         Specifies whether singular vectors are to be computed in */
617
/* >         factored form: */
618
/* >         = 0: Compute singular values only. */
619
/* >         = 1: Compute singular vectors in factored form as well. */
620
/* > \endverbatim */
621
/* > */
622
/* > \param[in] NL */
623
/* > \verbatim */
624
/* >          NL is INTEGER */
625
/* >         The row dimension of the upper block.  NL >= 1. */
626
/* > \endverbatim */
627
/* > */
628
/* > \param[in] NR */
629
/* > \verbatim */
630
/* >          NR is INTEGER */
631
/* >         The row dimension of the lower block.  NR >= 1. */
632
/* > \endverbatim */
633
/* > */
634
/* > \param[in] SQRE */
635
/* > \verbatim */
636
/* >          SQRE is INTEGER */
637
/* >         = 0: the lower block is an NR-by-NR square matrix. */
638
/* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
639
/* > */
640
/* >         The bidiagonal matrix has row dimension N = NL + NR + 1, */
641
/* >         and column dimension M = N + SQRE. */
642
/* > \endverbatim */
643
/* > */
644
/* > \param[in,out] D */
645
/* > \verbatim */
646
/* >          D is REAL array, dimension (NL+NR+1). */
647
/* >         On entry D(1:NL,1:NL) contains the singular values of the */
648
/* >         upper block, and D(NL+2:N) contains the singular values */
649
/* >         of the lower block. On exit D(1:N) contains the singular */
650
/* >         values of the modified matrix. */
651
/* > \endverbatim */
652
/* > */
653
/* > \param[in,out] VF */
654
/* > \verbatim */
655
/* >          VF is REAL array, dimension (M) */
656
/* >         On entry, VF(1:NL+1) contains the first components of all */
657
/* >         right singular vectors of the upper block; and VF(NL+2:M) */
658
/* >         contains the first components of all right singular vectors */
659
/* >         of the lower block. On exit, VF contains the first components */
660
/* >         of all right singular vectors of the bidiagonal matrix. */
661
/* > \endverbatim */
662
/* > */
663
/* > \param[in,out] VL */
664
/* > \verbatim */
665
/* >          VL is REAL array, dimension (M) */
666
/* >         On entry, VL(1:NL+1) contains the  last components of all */
667
/* >         right singular vectors of the upper block; and VL(NL+2:M) */
668
/* >         contains the last components of all right singular vectors of */
669
/* >         the lower block. On exit, VL contains the last components of */
670
/* >         all right singular vectors of the bidiagonal matrix. */
671
/* > \endverbatim */
672
/* > */
673
/* > \param[in,out] ALPHA */
674
/* > \verbatim */
675
/* >          ALPHA is REAL */
676
/* >         Contains the diagonal element associated with the added row. */
677
/* > \endverbatim */
678
/* > */
679
/* > \param[in,out] BETA */
680
/* > \verbatim */
681
/* >          BETA is REAL */
682
/* >         Contains the off-diagonal element associated with the added */
683
/* >         row. */
684
/* > \endverbatim */
685
/* > */
686
/* > \param[in,out] IDXQ */
687
/* > \verbatim */
688
/* >          IDXQ is INTEGER array, dimension (N) */
689
/* >         This contains the permutation which will reintegrate the */
690
/* >         subproblem just solved back into sorted order, i.e. */
691
/* >         D( IDXQ( I = 1, N ) ) will be in ascending order. */
692
/* > \endverbatim */
693
/* > */
694
/* > \param[out] PERM */
695
/* > \verbatim */
696
/* >          PERM is INTEGER array, dimension ( N ) */
697
/* >         The permutations (from deflation and sorting) to be applied */
698
/* >         to each block. Not referenced if ICOMPQ = 0. */
699
/* > \endverbatim */
700
/* > */
701
/* > \param[out] GIVPTR */
702
/* > \verbatim */
703
/* >          GIVPTR is INTEGER */
704
/* >         The number of Givens rotations which took place in this */
705
/* >         subproblem. Not referenced if ICOMPQ = 0. */
706
/* > \endverbatim */
707
/* > */
708
/* > \param[out] GIVCOL */
709
/* > \verbatim */
710
/* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
711
/* >         Each pair of numbers indicates a pair of columns to take place */
712
/* >         in a Givens rotation. Not referenced if ICOMPQ = 0. */
713
/* > \endverbatim */
714
/* > */
715
/* > \param[in] LDGCOL */
716
/* > \verbatim */
717
/* >          LDGCOL is INTEGER */
718
/* >         leading dimension of GIVCOL, must be at least N. */
719
/* > \endverbatim */
720
/* > */
721
/* > \param[out] GIVNUM */
722
/* > \verbatim */
723
/* >          GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
724
/* >         Each number indicates the C or S value to be used in the */
725
/* >         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
726
/* > \endverbatim */
727
/* > */
728
/* > \param[in] LDGNUM */
729
/* > \verbatim */
730
/* >          LDGNUM is INTEGER */
731
/* >         The leading dimension of GIVNUM and POLES, must be at least N. */
732
/* > \endverbatim */
733
/* > */
734
/* > \param[out] POLES */
735
/* > \verbatim */
736
/* >          POLES is REAL array, dimension ( LDGNUM, 2 ) */
737
/* >         On exit, POLES(1,*) is an array containing the new singular */
738
/* >         values obtained from solving the secular equation, and */
739
/* >         POLES(2,*) is an array containing the poles in the secular */
740
/* >         equation. Not referenced if ICOMPQ = 0. */
741
/* > \endverbatim */
742
/* > */
743
/* > \param[out] DIFL */
744
/* > \verbatim */
745
/* >          DIFL is REAL array, dimension ( N ) */
746
/* >         On exit, DIFL(I) is the distance between I-th updated */
747
/* >         (undeflated) singular value and the I-th (undeflated) old */
748
/* >         singular value. */
749
/* > \endverbatim */
750
/* > */
751
/* > \param[out] DIFR */
752
/* > \verbatim */
753
/* >          DIFR is REAL array, */
754
/* >                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
755
/* >                   dimension ( K ) if ICOMPQ = 0. */
756
/* >          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
757
/* >          defined and will not be referenced. */
758
/* > */
759
/* >          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
760
/* >          normalizing factors for the right singular vector matrix. */
761
/* > */
762
/* >         See SLASD8 for details on DIFL and DIFR. */
763
/* > \endverbatim */
764
/* > */
765
/* > \param[out] Z */
766
/* > \verbatim */
767
/* >          Z is REAL array, dimension ( M ) */
768
/* >         The first elements of this array contain the components */
769
/* >         of the deflation-adjusted updating row vector. */
770
/* > \endverbatim */
771
/* > */
772
/* > \param[out] K */
773
/* > \verbatim */
774
/* >          K is INTEGER */
775
/* >         Contains the dimension of the non-deflated matrix, */
776
/* >         This is the order of the related secular equation. 1 <= K <=N. */
777
/* > \endverbatim */
778
/* > */
779
/* > \param[out] C */
780
/* > \verbatim */
781
/* >          C is REAL */
782
/* >         C contains garbage if SQRE =0 and the C-value of a Givens */
783
/* >         rotation related to the right null space if SQRE = 1. */
784
/* > \endverbatim */
785
/* > */
786
/* > \param[out] S */
787
/* > \verbatim */
788
/* >          S is REAL */
789
/* >         S contains garbage if SQRE =0 and the S-value of a Givens */
790
/* >         rotation related to the right null space if SQRE = 1. */
791
/* > \endverbatim */
792
/* > */
793
/* > \param[out] WORK */
794
/* > \verbatim */
795
/* >          WORK is REAL array, dimension ( 4 * M ) */
796
/* > \endverbatim */
797
/* > */
798
/* > \param[out] IWORK */
799
/* > \verbatim */
800
/* >          IWORK is INTEGER array, dimension ( 3 * N ) */
801
/* > \endverbatim */
802
/* > */
803
/* > \param[out] INFO */
804
/* > \verbatim */
805
/* >          INFO is INTEGER */
806
/* >          = 0:  successful exit. */
807
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
808
/* >          > 0:  if INFO = 1, a singular value did not converge */
809
/* > \endverbatim */
810
811
/*  Authors: */
812
/*  ======== */
813
814
/* > \author Univ. of Tennessee */
815
/* > \author Univ. of California Berkeley */
816
/* > \author Univ. of Colorado Denver */
817
/* > \author NAG Ltd. */
818
819
/* > \date June 2016 */
820
821
/* > \ingroup OTHERauxiliary */
822
823
/* > \par Contributors: */
824
/*  ================== */
825
/* > */
826
/* >     Ming Gu and Huan Ren, Computer Science Division, University of */
827
/* >     California at Berkeley, USA */
828
/* > */
829
/*  ===================================================================== */
830
/* Subroutine */ void slasd6_(integer *icompq, integer *nl, integer *nr, 
831
  integer *sqre, real *d__, real *vf, real *vl, real *alpha, real *beta,
832
   integer *idxq, integer *perm, integer *givptr, integer *givcol, 
833
  integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real *
834
  difl, real *difr, real *z__, integer *k, real *c__, real *s, real *
835
  work, integer *iwork, integer *info)
836
0
{
837
    /* System generated locals */
838
0
    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, 
839
0
      poles_dim1, poles_offset, i__1;
840
0
    real r__1, r__2;
841
842
    /* Local variables */
843
0
    integer idxc, idxp, ivfw, ivlw, i__, m, n;
844
0
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
845
0
      integer *);
846
0
    integer n1, n2;
847
0
    extern /* Subroutine */ void slasd7_(integer *, integer *, integer *, 
848
0
      integer *, integer *, real *, real *, real *, real *, real *, 
849
0
      real *, real *, real *, real *, real *, integer *, integer *, 
850
0
      integer *, integer *, integer *, integer *, integer *, real *, 
851
0
      integer *, real *, real *, integer *), slasd8_(integer *, integer 
852
0
      *, real *, real *, real *, real *, real *, real *, integer *, 
853
0
      real *, real *, integer *);
854
0
    integer iw, isigma;
855
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
856
0
    extern void slascl_(
857
0
      char *, integer *, integer *, real *, real *, integer *, integer *
858
0
      , real *, integer *, integer *), slamrg_(integer *, 
859
0
      integer *, real *, integer *, integer *, integer *);
860
0
    real orgnrm;
861
0
    integer idx;
862
863
864
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
865
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
866
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
867
/*     June 2016 */
868
869
870
/*  ===================================================================== */
871
872
873
/*     Test the input parameters. */
874
875
    /* Parameter adjustments */
876
0
    --d__;
877
0
    --vf;
878
0
    --vl;
879
0
    --idxq;
880
0
    --perm;
881
0
    givcol_dim1 = *ldgcol;
882
0
    givcol_offset = 1 + givcol_dim1 * 1;
883
0
    givcol -= givcol_offset;
884
0
    poles_dim1 = *ldgnum;
885
0
    poles_offset = 1 + poles_dim1 * 1;
886
0
    poles -= poles_offset;
887
0
    givnum_dim1 = *ldgnum;
888
0
    givnum_offset = 1 + givnum_dim1 * 1;
889
0
    givnum -= givnum_offset;
890
0
    --difl;
891
0
    --difr;
892
0
    --z__;
893
0
    --work;
894
0
    --iwork;
895
896
    /* Function Body */
897
0
    *info = 0;
898
0
    n = *nl + *nr + 1;
899
0
    m = n + *sqre;
900
901
0
    if (*icompq < 0 || *icompq > 1) {
902
0
  *info = -1;
903
0
    } else if (*nl < 1) {
904
0
  *info = -2;
905
0
    } else if (*nr < 1) {
906
0
  *info = -3;
907
0
    } else if (*sqre < 0 || *sqre > 1) {
908
0
  *info = -4;
909
0
    } else if (*ldgcol < n) {
910
0
  *info = -14;
911
0
    } else if (*ldgnum < n) {
912
0
  *info = -16;
913
0
    }
914
0
    if (*info != 0) {
915
0
  i__1 = -(*info);
916
0
  xerbla_("SLASD6", &i__1, (ftnlen)6);
917
0
  return;
918
0
    }
919
920
/*     The following values are for bookkeeping purposes only.  They are */
921
/*     integer pointers which indicate the portion of the workspace */
922
/*     used by a particular array in SLASD7 and SLASD8. */
923
924
0
    isigma = 1;
925
0
    iw = isigma + n;
926
0
    ivfw = iw + m;
927
0
    ivlw = ivfw + m;
928
929
0
    idx = 1;
930
0
    idxc = idx + n;
931
0
    idxp = idxc + n;
932
933
/*     Scale. */
934
935
/* Computing MAX */
936
0
    r__1 = abs(*alpha), r__2 = abs(*beta);
937
0
    orgnrm = f2cmax(r__1,r__2);
938
0
    d__[*nl + 1] = 0.f;
939
0
    i__1 = n;
940
0
    for (i__ = 1; i__ <= i__1; ++i__) {
941
0
  if ((r__1 = d__[i__], abs(r__1)) > orgnrm) {
942
0
      orgnrm = (r__1 = d__[i__], abs(r__1));
943
0
  }
944
/* L10: */
945
0
    }
946
0
    slascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
947
0
    *alpha /= orgnrm;
948
0
    *beta /= orgnrm;
949
950
/*     Sort and Deflate singular values. */
951
952
0
    slasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
953
0
      work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
954
0
      iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
955
0
      givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s, 
956
0
      info);
957
958
/*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
959
960
0
    slasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1], 
961
0
      ldgnum, &work[isigma], &work[iw], info);
962
963
/*     Report the possible convergence failure. */
964
965
0
    if (*info != 0) {
966
0
  return;
967
0
    }
968
969
/*     Save the poles if ICOMPQ = 1. */
970
971
0
    if (*icompq == 1) {
972
0
  scopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
973
0
  scopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
974
0
    }
975
976
/*     Unscale. */
977
978
0
    slascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
979
980
/*     Prepare the IDXQ sorting permutation. */
981
982
0
    n1 = *k;
983
0
    n2 = n - *k;
984
0
    slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
985
986
0
    return;
987
988
/*     End of SLASD6 */
989
990
0
} /* slasd6_ */
991