/root/doris/contrib/openblas/lapack-netlib/SRC/slasd7.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | 0 | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static integer c__1 = 1; |
516 | | |
517 | | /* > \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries |
518 | | to deflate the size of the problem. Used by sbdsdc. */ |
519 | | |
520 | | /* =========== DOCUMENTATION =========== */ |
521 | | |
522 | | /* Online html documentation available at */ |
523 | | /* http://www.netlib.org/lapack/explore-html/ */ |
524 | | |
525 | | /* > \htmlonly */ |
526 | | /* > Download SLASD7 + dependencies */ |
527 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7. |
528 | | f"> */ |
529 | | /* > [TGZ]</a> */ |
530 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7. |
531 | | f"> */ |
532 | | /* > [ZIP]</a> */ |
533 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7. |
534 | | f"> */ |
535 | | /* > [TXT]</a> */ |
536 | | /* > \endhtmlonly */ |
537 | | |
538 | | /* Definition: */ |
539 | | /* =========== */ |
540 | | |
541 | | /* SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */ |
542 | | /* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */ |
543 | | /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */ |
544 | | /* C, S, INFO ) */ |
545 | | |
546 | | /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */ |
547 | | /* $ NR, SQRE */ |
548 | | /* REAL ALPHA, BETA, C, S */ |
549 | | /* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */ |
550 | | /* $ IDXQ( * ), PERM( * ) */ |
551 | | /* REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */ |
552 | | /* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */ |
553 | | /* $ ZW( * ) */ |
554 | | |
555 | | |
556 | | /* > \par Purpose: */ |
557 | | /* ============= */ |
558 | | /* > */ |
559 | | /* > \verbatim */ |
560 | | /* > */ |
561 | | /* > SLASD7 merges the two sets of singular values together into a single */ |
562 | | /* > sorted set. Then it tries to deflate the size of the problem. There */ |
563 | | /* > are two ways in which deflation can occur: when two or more singular */ |
564 | | /* > values are close together or if there is a tiny entry in the Z */ |
565 | | /* > vector. For each such occurrence the order of the related */ |
566 | | /* > secular equation problem is reduced by one. */ |
567 | | /* > */ |
568 | | /* > SLASD7 is called from SLASD6. */ |
569 | | /* > \endverbatim */ |
570 | | |
571 | | /* Arguments: */ |
572 | | /* ========== */ |
573 | | |
574 | | /* > \param[in] ICOMPQ */ |
575 | | /* > \verbatim */ |
576 | | /* > ICOMPQ is INTEGER */ |
577 | | /* > Specifies whether singular vectors are to be computed */ |
578 | | /* > in compact form, as follows: */ |
579 | | /* > = 0: Compute singular values only. */ |
580 | | /* > = 1: Compute singular vectors of upper */ |
581 | | /* > bidiagonal matrix in compact form. */ |
582 | | /* > \endverbatim */ |
583 | | /* > */ |
584 | | /* > \param[in] NL */ |
585 | | /* > \verbatim */ |
586 | | /* > NL is INTEGER */ |
587 | | /* > The row dimension of the upper block. NL >= 1. */ |
588 | | /* > \endverbatim */ |
589 | | /* > */ |
590 | | /* > \param[in] NR */ |
591 | | /* > \verbatim */ |
592 | | /* > NR is INTEGER */ |
593 | | /* > The row dimension of the lower block. NR >= 1. */ |
594 | | /* > \endverbatim */ |
595 | | /* > */ |
596 | | /* > \param[in] SQRE */ |
597 | | /* > \verbatim */ |
598 | | /* > SQRE is INTEGER */ |
599 | | /* > = 0: the lower block is an NR-by-NR square matrix. */ |
600 | | /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ |
601 | | /* > */ |
602 | | /* > The bidiagonal matrix has */ |
603 | | /* > N = NL + NR + 1 rows and */ |
604 | | /* > M = N + SQRE >= N columns. */ |
605 | | /* > \endverbatim */ |
606 | | /* > */ |
607 | | /* > \param[out] K */ |
608 | | /* > \verbatim */ |
609 | | /* > K is INTEGER */ |
610 | | /* > Contains the dimension of the non-deflated matrix, this is */ |
611 | | /* > the order of the related secular equation. 1 <= K <=N. */ |
612 | | /* > \endverbatim */ |
613 | | /* > */ |
614 | | /* > \param[in,out] D */ |
615 | | /* > \verbatim */ |
616 | | /* > D is REAL array, dimension ( N ) */ |
617 | | /* > On entry D contains the singular values of the two submatrices */ |
618 | | /* > to be combined. On exit D contains the trailing (N-K) updated */ |
619 | | /* > singular values (those which were deflated) sorted into */ |
620 | | /* > increasing order. */ |
621 | | /* > \endverbatim */ |
622 | | /* > */ |
623 | | /* > \param[out] Z */ |
624 | | /* > \verbatim */ |
625 | | /* > Z is REAL array, dimension ( M ) */ |
626 | | /* > On exit Z contains the updating row vector in the secular */ |
627 | | /* > equation. */ |
628 | | /* > \endverbatim */ |
629 | | /* > */ |
630 | | /* > \param[out] ZW */ |
631 | | /* > \verbatim */ |
632 | | /* > ZW is REAL array, dimension ( M ) */ |
633 | | /* > Workspace for Z. */ |
634 | | /* > \endverbatim */ |
635 | | /* > */ |
636 | | /* > \param[in,out] VF */ |
637 | | /* > \verbatim */ |
638 | | /* > VF is REAL array, dimension ( M ) */ |
639 | | /* > On entry, VF(1:NL+1) contains the first components of all */ |
640 | | /* > right singular vectors of the upper block; and VF(NL+2:M) */ |
641 | | /* > contains the first components of all right singular vectors */ |
642 | | /* > of the lower block. On exit, VF contains the first components */ |
643 | | /* > of all right singular vectors of the bidiagonal matrix. */ |
644 | | /* > \endverbatim */ |
645 | | /* > */ |
646 | | /* > \param[out] VFW */ |
647 | | /* > \verbatim */ |
648 | | /* > VFW is REAL array, dimension ( M ) */ |
649 | | /* > Workspace for VF. */ |
650 | | /* > \endverbatim */ |
651 | | /* > */ |
652 | | /* > \param[in,out] VL */ |
653 | | /* > \verbatim */ |
654 | | /* > VL is REAL array, dimension ( M ) */ |
655 | | /* > On entry, VL(1:NL+1) contains the last components of all */ |
656 | | /* > right singular vectors of the upper block; and VL(NL+2:M) */ |
657 | | /* > contains the last components of all right singular vectors */ |
658 | | /* > of the lower block. On exit, VL contains the last components */ |
659 | | /* > of all right singular vectors of the bidiagonal matrix. */ |
660 | | /* > \endverbatim */ |
661 | | /* > */ |
662 | | /* > \param[out] VLW */ |
663 | | /* > \verbatim */ |
664 | | /* > VLW is REAL array, dimension ( M ) */ |
665 | | /* > Workspace for VL. */ |
666 | | /* > \endverbatim */ |
667 | | /* > */ |
668 | | /* > \param[in] ALPHA */ |
669 | | /* > \verbatim */ |
670 | | /* > ALPHA is REAL */ |
671 | | /* > Contains the diagonal element associated with the added row. */ |
672 | | /* > \endverbatim */ |
673 | | /* > */ |
674 | | /* > \param[in] BETA */ |
675 | | /* > \verbatim */ |
676 | | /* > BETA is REAL */ |
677 | | /* > Contains the off-diagonal element associated with the added */ |
678 | | /* > row. */ |
679 | | /* > \endverbatim */ |
680 | | /* > */ |
681 | | /* > \param[out] DSIGMA */ |
682 | | /* > \verbatim */ |
683 | | /* > DSIGMA is REAL array, dimension ( N ) */ |
684 | | /* > Contains a copy of the diagonal elements (K-1 singular values */ |
685 | | /* > and one zero) in the secular equation. */ |
686 | | /* > \endverbatim */ |
687 | | /* > */ |
688 | | /* > \param[out] IDX */ |
689 | | /* > \verbatim */ |
690 | | /* > IDX is INTEGER array, dimension ( N ) */ |
691 | | /* > This will contain the permutation used to sort the contents of */ |
692 | | /* > D into ascending order. */ |
693 | | /* > \endverbatim */ |
694 | | /* > */ |
695 | | /* > \param[out] IDXP */ |
696 | | /* > \verbatim */ |
697 | | /* > IDXP is INTEGER array, dimension ( N ) */ |
698 | | /* > This will contain the permutation used to place deflated */ |
699 | | /* > values of D at the end of the array. On output IDXP(2:K) */ |
700 | | /* > points to the nondeflated D-values and IDXP(K+1:N) */ |
701 | | /* > points to the deflated singular values. */ |
702 | | /* > \endverbatim */ |
703 | | /* > */ |
704 | | /* > \param[in] IDXQ */ |
705 | | /* > \verbatim */ |
706 | | /* > IDXQ is INTEGER array, dimension ( N ) */ |
707 | | /* > This contains the permutation which separately sorts the two */ |
708 | | /* > sub-problems in D into ascending order. Note that entries in */ |
709 | | /* > the first half of this permutation must first be moved one */ |
710 | | /* > position backward; and entries in the second half */ |
711 | | /* > must first have NL+1 added to their values. */ |
712 | | /* > \endverbatim */ |
713 | | /* > */ |
714 | | /* > \param[out] PERM */ |
715 | | /* > \verbatim */ |
716 | | /* > PERM is INTEGER array, dimension ( N ) */ |
717 | | /* > The permutations (from deflation and sorting) to be applied */ |
718 | | /* > to each singular block. Not referenced if ICOMPQ = 0. */ |
719 | | /* > \endverbatim */ |
720 | | /* > */ |
721 | | /* > \param[out] GIVPTR */ |
722 | | /* > \verbatim */ |
723 | | /* > GIVPTR is INTEGER */ |
724 | | /* > The number of Givens rotations which took place in this */ |
725 | | /* > subproblem. Not referenced if ICOMPQ = 0. */ |
726 | | /* > \endverbatim */ |
727 | | /* > */ |
728 | | /* > \param[out] GIVCOL */ |
729 | | /* > \verbatim */ |
730 | | /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */ |
731 | | /* > Each pair of numbers indicates a pair of columns to take place */ |
732 | | /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */ |
733 | | /* > \endverbatim */ |
734 | | /* > */ |
735 | | /* > \param[in] LDGCOL */ |
736 | | /* > \verbatim */ |
737 | | /* > LDGCOL is INTEGER */ |
738 | | /* > The leading dimension of GIVCOL, must be at least N. */ |
739 | | /* > \endverbatim */ |
740 | | /* > */ |
741 | | /* > \param[out] GIVNUM */ |
742 | | /* > \verbatim */ |
743 | | /* > GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */ |
744 | | /* > Each number indicates the C or S value to be used in the */ |
745 | | /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */ |
746 | | /* > \endverbatim */ |
747 | | /* > */ |
748 | | /* > \param[in] LDGNUM */ |
749 | | /* > \verbatim */ |
750 | | /* > LDGNUM is INTEGER */ |
751 | | /* > The leading dimension of GIVNUM, must be at least N. */ |
752 | | /* > \endverbatim */ |
753 | | /* > */ |
754 | | /* > \param[out] C */ |
755 | | /* > \verbatim */ |
756 | | /* > C is REAL */ |
757 | | /* > C contains garbage if SQRE =0 and the C-value of a Givens */ |
758 | | /* > rotation related to the right null space if SQRE = 1. */ |
759 | | /* > \endverbatim */ |
760 | | /* > */ |
761 | | /* > \param[out] S */ |
762 | | /* > \verbatim */ |
763 | | /* > S is REAL */ |
764 | | /* > S contains garbage if SQRE =0 and the S-value of a Givens */ |
765 | | /* > rotation related to the right null space if SQRE = 1. */ |
766 | | /* > \endverbatim */ |
767 | | /* > */ |
768 | | /* > \param[out] INFO */ |
769 | | /* > \verbatim */ |
770 | | /* > INFO is INTEGER */ |
771 | | /* > = 0: successful exit. */ |
772 | | /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ |
773 | | /* > \endverbatim */ |
774 | | |
775 | | /* Authors: */ |
776 | | /* ======== */ |
777 | | |
778 | | /* > \author Univ. of Tennessee */ |
779 | | /* > \author Univ. of California Berkeley */ |
780 | | /* > \author Univ. of Colorado Denver */ |
781 | | /* > \author NAG Ltd. */ |
782 | | |
783 | | /* > \date December 2016 */ |
784 | | |
785 | | /* > \ingroup OTHERauxiliary */ |
786 | | |
787 | | /* > \par Contributors: */ |
788 | | /* ================== */ |
789 | | /* > */ |
790 | | /* > Ming Gu and Huan Ren, Computer Science Division, University of */ |
791 | | /* > California at Berkeley, USA */ |
792 | | /* > */ |
793 | | /* ===================================================================== */ |
794 | | /* Subroutine */ void slasd7_(integer *icompq, integer *nl, integer *nr, |
795 | | integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf, |
796 | | real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma, |
797 | | integer *idx, integer *idxp, integer *idxq, integer *perm, integer * |
798 | | givptr, integer *givcol, integer *ldgcol, real *givnum, integer * |
799 | | ldgnum, real *c__, real *s, integer *info) |
800 | 0 | { |
801 | | /* System generated locals */ |
802 | 0 | integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1; |
803 | 0 | real r__1, r__2; |
804 | | |
805 | | /* Local variables */ |
806 | 0 | integer idxi, idxj; |
807 | 0 | extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, |
808 | 0 | integer *, real *, real *); |
809 | 0 | integer i__, j, m, n, idxjp, jprev, k2; |
810 | 0 | extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, |
811 | 0 | integer *); |
812 | 0 | real z1; |
813 | 0 | extern real slapy2_(real *, real *); |
814 | 0 | integer jp; |
815 | 0 | extern real slamch_(char *); |
816 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
817 | 0 | extern void slamrg_( |
818 | 0 | integer *, integer *, real *, integer *, integer *, integer *); |
819 | 0 | real hlftol, eps, tau, tol; |
820 | 0 | integer nlp1, nlp2; |
821 | | |
822 | | |
823 | | /* -- LAPACK auxiliary routine (version 3.7.0) -- */ |
824 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
825 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
826 | | /* December 2016 */ |
827 | | |
828 | | |
829 | | /* ===================================================================== */ |
830 | | |
831 | | |
832 | | |
833 | | /* Test the input parameters. */ |
834 | | |
835 | | /* Parameter adjustments */ |
836 | 0 | --d__; |
837 | 0 | --z__; |
838 | 0 | --zw; |
839 | 0 | --vf; |
840 | 0 | --vfw; |
841 | 0 | --vl; |
842 | 0 | --vlw; |
843 | 0 | --dsigma; |
844 | 0 | --idx; |
845 | 0 | --idxp; |
846 | 0 | --idxq; |
847 | 0 | --perm; |
848 | 0 | givcol_dim1 = *ldgcol; |
849 | 0 | givcol_offset = 1 + givcol_dim1 * 1; |
850 | 0 | givcol -= givcol_offset; |
851 | 0 | givnum_dim1 = *ldgnum; |
852 | 0 | givnum_offset = 1 + givnum_dim1 * 1; |
853 | 0 | givnum -= givnum_offset; |
854 | | |
855 | | /* Function Body */ |
856 | 0 | *info = 0; |
857 | 0 | n = *nl + *nr + 1; |
858 | 0 | m = n + *sqre; |
859 | |
|
860 | 0 | if (*icompq < 0 || *icompq > 1) { |
861 | 0 | *info = -1; |
862 | 0 | } else if (*nl < 1) { |
863 | 0 | *info = -2; |
864 | 0 | } else if (*nr < 1) { |
865 | 0 | *info = -3; |
866 | 0 | } else if (*sqre < 0 || *sqre > 1) { |
867 | 0 | *info = -4; |
868 | 0 | } else if (*ldgcol < n) { |
869 | 0 | *info = -22; |
870 | 0 | } else if (*ldgnum < n) { |
871 | 0 | *info = -24; |
872 | 0 | } |
873 | 0 | if (*info != 0) { |
874 | 0 | i__1 = -(*info); |
875 | 0 | xerbla_("SLASD7", &i__1, (ftnlen)6); |
876 | 0 | return; |
877 | 0 | } |
878 | | |
879 | 0 | nlp1 = *nl + 1; |
880 | 0 | nlp2 = *nl + 2; |
881 | 0 | if (*icompq == 1) { |
882 | 0 | *givptr = 0; |
883 | 0 | } |
884 | | |
885 | | /* Generate the first part of the vector Z and move the singular */ |
886 | | /* values in the first part of D one position backward. */ |
887 | |
|
888 | 0 | z1 = *alpha * vl[nlp1]; |
889 | 0 | vl[nlp1] = 0.f; |
890 | 0 | tau = vf[nlp1]; |
891 | 0 | for (i__ = *nl; i__ >= 1; --i__) { |
892 | 0 | z__[i__ + 1] = *alpha * vl[i__]; |
893 | 0 | vl[i__] = 0.f; |
894 | 0 | vf[i__ + 1] = vf[i__]; |
895 | 0 | d__[i__ + 1] = d__[i__]; |
896 | 0 | idxq[i__ + 1] = idxq[i__] + 1; |
897 | | /* L10: */ |
898 | 0 | } |
899 | 0 | vf[1] = tau; |
900 | | |
901 | | /* Generate the second part of the vector Z. */ |
902 | |
|
903 | 0 | i__1 = m; |
904 | 0 | for (i__ = nlp2; i__ <= i__1; ++i__) { |
905 | 0 | z__[i__] = *beta * vf[i__]; |
906 | 0 | vf[i__] = 0.f; |
907 | | /* L20: */ |
908 | 0 | } |
909 | | |
910 | | /* Sort the singular values into increasing order */ |
911 | |
|
912 | 0 | i__1 = n; |
913 | 0 | for (i__ = nlp2; i__ <= i__1; ++i__) { |
914 | 0 | idxq[i__] += nlp1; |
915 | | /* L30: */ |
916 | 0 | } |
917 | | |
918 | | /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */ |
919 | |
|
920 | 0 | i__1 = n; |
921 | 0 | for (i__ = 2; i__ <= i__1; ++i__) { |
922 | 0 | dsigma[i__] = d__[idxq[i__]]; |
923 | 0 | zw[i__] = z__[idxq[i__]]; |
924 | 0 | vfw[i__] = vf[idxq[i__]]; |
925 | 0 | vlw[i__] = vl[idxq[i__]]; |
926 | | /* L40: */ |
927 | 0 | } |
928 | |
|
929 | 0 | slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); |
930 | |
|
931 | 0 | i__1 = n; |
932 | 0 | for (i__ = 2; i__ <= i__1; ++i__) { |
933 | 0 | idxi = idx[i__] + 1; |
934 | 0 | d__[i__] = dsigma[idxi]; |
935 | 0 | z__[i__] = zw[idxi]; |
936 | 0 | vf[i__] = vfw[idxi]; |
937 | 0 | vl[i__] = vlw[idxi]; |
938 | | /* L50: */ |
939 | 0 | } |
940 | | |
941 | | /* Calculate the allowable deflation tolerance */ |
942 | |
|
943 | 0 | eps = slamch_("Epsilon"); |
944 | | /* Computing MAX */ |
945 | 0 | r__1 = abs(*alpha), r__2 = abs(*beta); |
946 | 0 | tol = f2cmax(r__1,r__2); |
947 | | /* Computing MAX */ |
948 | 0 | r__2 = (r__1 = d__[n], abs(r__1)); |
949 | 0 | tol = eps * 64.f * f2cmax(r__2,tol); |
950 | | |
951 | | /* There are 2 kinds of deflation -- first a value in the z-vector */ |
952 | | /* is small, second two (or more) singular values are very close */ |
953 | | /* together (their difference is small). */ |
954 | | |
955 | | /* If the value in the z-vector is small, we simply permute the */ |
956 | | /* array so that the corresponding singular value is moved to the */ |
957 | | /* end. */ |
958 | | |
959 | | /* If two values in the D-vector are close, we perform a two-sided */ |
960 | | /* rotation designed to make one of the corresponding z-vector */ |
961 | | /* entries zero, and then permute the array so that the deflated */ |
962 | | /* singular value is moved to the end. */ |
963 | | |
964 | | /* If there are multiple singular values then the problem deflates. */ |
965 | | /* Here the number of equal singular values are found. As each equal */ |
966 | | /* singular value is found, an elementary reflector is computed to */ |
967 | | /* rotate the corresponding singular subspace so that the */ |
968 | | /* corresponding components of Z are zero in this new basis. */ |
969 | |
|
970 | 0 | *k = 1; |
971 | 0 | k2 = n + 1; |
972 | 0 | i__1 = n; |
973 | 0 | for (j = 2; j <= i__1; ++j) { |
974 | 0 | if ((r__1 = z__[j], abs(r__1)) <= tol) { |
975 | | |
976 | | /* Deflate due to small z component. */ |
977 | |
|
978 | 0 | --k2; |
979 | 0 | idxp[k2] = j; |
980 | 0 | if (j == n) { |
981 | 0 | goto L100; |
982 | 0 | } |
983 | 0 | } else { |
984 | 0 | jprev = j; |
985 | 0 | goto L70; |
986 | 0 | } |
987 | | /* L60: */ |
988 | 0 | } |
989 | 0 | L70: |
990 | 0 | j = jprev; |
991 | 0 | L80: |
992 | 0 | ++j; |
993 | 0 | if (j > n) { |
994 | 0 | goto L90; |
995 | 0 | } |
996 | 0 | if ((r__1 = z__[j], abs(r__1)) <= tol) { |
997 | | |
998 | | /* Deflate due to small z component. */ |
999 | |
|
1000 | 0 | --k2; |
1001 | 0 | idxp[k2] = j; |
1002 | 0 | } else { |
1003 | | |
1004 | | /* Check if singular values are close enough to allow deflation. */ |
1005 | |
|
1006 | 0 | if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) { |
1007 | | |
1008 | | /* Deflation is possible. */ |
1009 | |
|
1010 | 0 | *s = z__[jprev]; |
1011 | 0 | *c__ = z__[j]; |
1012 | | |
1013 | | /* Find sqrt(a**2+b**2) without overflow or */ |
1014 | | /* destructive underflow. */ |
1015 | |
|
1016 | 0 | tau = slapy2_(c__, s); |
1017 | 0 | z__[j] = tau; |
1018 | 0 | z__[jprev] = 0.f; |
1019 | 0 | *c__ /= tau; |
1020 | 0 | *s = -(*s) / tau; |
1021 | | |
1022 | | /* Record the appropriate Givens rotation */ |
1023 | |
|
1024 | 0 | if (*icompq == 1) { |
1025 | 0 | ++(*givptr); |
1026 | 0 | idxjp = idxq[idx[jprev] + 1]; |
1027 | 0 | idxj = idxq[idx[j] + 1]; |
1028 | 0 | if (idxjp <= nlp1) { |
1029 | 0 | --idxjp; |
1030 | 0 | } |
1031 | 0 | if (idxj <= nlp1) { |
1032 | 0 | --idxj; |
1033 | 0 | } |
1034 | 0 | givcol[*givptr + (givcol_dim1 << 1)] = idxjp; |
1035 | 0 | givcol[*givptr + givcol_dim1] = idxj; |
1036 | 0 | givnum[*givptr + (givnum_dim1 << 1)] = *c__; |
1037 | 0 | givnum[*givptr + givnum_dim1] = *s; |
1038 | 0 | } |
1039 | 0 | srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s); |
1040 | 0 | srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s); |
1041 | 0 | --k2; |
1042 | 0 | idxp[k2] = jprev; |
1043 | 0 | jprev = j; |
1044 | 0 | } else { |
1045 | 0 | ++(*k); |
1046 | 0 | zw[*k] = z__[jprev]; |
1047 | 0 | dsigma[*k] = d__[jprev]; |
1048 | 0 | idxp[*k] = jprev; |
1049 | 0 | jprev = j; |
1050 | 0 | } |
1051 | 0 | } |
1052 | 0 | goto L80; |
1053 | 0 | L90: |
1054 | | |
1055 | | /* Record the last singular value. */ |
1056 | |
|
1057 | 0 | ++(*k); |
1058 | 0 | zw[*k] = z__[jprev]; |
1059 | 0 | dsigma[*k] = d__[jprev]; |
1060 | 0 | idxp[*k] = jprev; |
1061 | |
|
1062 | 0 | L100: |
1063 | | |
1064 | | /* Sort the singular values into DSIGMA. The singular values which */ |
1065 | | /* were not deflated go into the first K slots of DSIGMA, except */ |
1066 | | /* that DSIGMA(1) is treated separately. */ |
1067 | |
|
1068 | 0 | i__1 = n; |
1069 | 0 | for (j = 2; j <= i__1; ++j) { |
1070 | 0 | jp = idxp[j]; |
1071 | 0 | dsigma[j] = d__[jp]; |
1072 | 0 | vfw[j] = vf[jp]; |
1073 | 0 | vlw[j] = vl[jp]; |
1074 | | /* L110: */ |
1075 | 0 | } |
1076 | 0 | if (*icompq == 1) { |
1077 | 0 | i__1 = n; |
1078 | 0 | for (j = 2; j <= i__1; ++j) { |
1079 | 0 | jp = idxp[j]; |
1080 | 0 | perm[j] = idxq[idx[jp] + 1]; |
1081 | 0 | if (perm[j] <= nlp1) { |
1082 | 0 | --perm[j]; |
1083 | 0 | } |
1084 | | /* L120: */ |
1085 | 0 | } |
1086 | 0 | } |
1087 | | |
1088 | | /* The deflated singular values go back into the last N - K slots of */ |
1089 | | /* D. */ |
1090 | |
|
1091 | 0 | i__1 = n - *k; |
1092 | 0 | scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); |
1093 | | |
1094 | | /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */ |
1095 | | /* VL(M). */ |
1096 | |
|
1097 | 0 | dsigma[1] = 0.f; |
1098 | 0 | hlftol = tol / 2.f; |
1099 | 0 | if (abs(dsigma[2]) <= hlftol) { |
1100 | 0 | dsigma[2] = hlftol; |
1101 | 0 | } |
1102 | 0 | if (m > n) { |
1103 | 0 | z__[1] = slapy2_(&z1, &z__[m]); |
1104 | 0 | if (z__[1] <= tol) { |
1105 | 0 | *c__ = 1.f; |
1106 | 0 | *s = 0.f; |
1107 | 0 | z__[1] = tol; |
1108 | 0 | } else { |
1109 | 0 | *c__ = z1 / z__[1]; |
1110 | 0 | *s = -z__[m] / z__[1]; |
1111 | 0 | } |
1112 | 0 | srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s); |
1113 | 0 | srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s); |
1114 | 0 | } else { |
1115 | 0 | if (abs(z1) <= tol) { |
1116 | 0 | z__[1] = tol; |
1117 | 0 | } else { |
1118 | 0 | z__[1] = z1; |
1119 | 0 | } |
1120 | 0 | } |
1121 | | |
1122 | | /* Restore Z, VF, and VL. */ |
1123 | |
|
1124 | 0 | i__1 = *k - 1; |
1125 | 0 | scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1); |
1126 | 0 | i__1 = n - 1; |
1127 | 0 | scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1); |
1128 | 0 | i__1 = n - 1; |
1129 | 0 | scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1); |
1130 | |
|
1131 | 0 | return; |
1132 | | |
1133 | | /* End of SLASD7 */ |
1134 | |
|
1135 | 0 | } /* slasd7_ */ |
1136 | | |