Coverage Report

Created: 2025-09-11 18:52

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasd7.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
0
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
517
/* > \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries 
518
to deflate the size of the problem. Used by sbdsdc. */
519
520
/*  =========== DOCUMENTATION =========== */
521
522
/* Online html documentation available at */
523
/*            http://www.netlib.org/lapack/explore-html/ */
524
525
/* > \htmlonly */
526
/* > Download SLASD7 + dependencies */
527
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.
528
f"> */
529
/* > [TGZ]</a> */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.
531
f"> */
532
/* > [ZIP]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.
534
f"> */
535
/* > [TXT]</a> */
536
/* > \endhtmlonly */
537
538
/*  Definition: */
539
/*  =========== */
540
541
/*       SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */
542
/*                          VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */
543
/*                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
544
/*                          C, S, INFO ) */
545
546
/*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
547
/*      $                   NR, SQRE */
548
/*       REAL               ALPHA, BETA, C, S */
549
/*       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */
550
/*      $                   IDXQ( * ), PERM( * ) */
551
/*       REAL               D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */
552
/*      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */
553
/*      $                   ZW( * ) */
554
555
556
/* > \par Purpose: */
557
/*  ============= */
558
/* > */
559
/* > \verbatim */
560
/* > */
561
/* > SLASD7 merges the two sets of singular values together into a single */
562
/* > sorted set. Then it tries to deflate the size of the problem. There */
563
/* > are two ways in which deflation can occur:  when two or more singular */
564
/* > values are close together or if there is a tiny entry in the Z */
565
/* > vector. For each such occurrence the order of the related */
566
/* > secular equation problem is reduced by one. */
567
/* > */
568
/* > SLASD7 is called from SLASD6. */
569
/* > \endverbatim */
570
571
/*  Arguments: */
572
/*  ========== */
573
574
/* > \param[in] ICOMPQ */
575
/* > \verbatim */
576
/* >          ICOMPQ is INTEGER */
577
/* >          Specifies whether singular vectors are to be computed */
578
/* >          in compact form, as follows: */
579
/* >          = 0: Compute singular values only. */
580
/* >          = 1: Compute singular vectors of upper */
581
/* >               bidiagonal matrix in compact form. */
582
/* > \endverbatim */
583
/* > */
584
/* > \param[in] NL */
585
/* > \verbatim */
586
/* >          NL is INTEGER */
587
/* >         The row dimension of the upper block. NL >= 1. */
588
/* > \endverbatim */
589
/* > */
590
/* > \param[in] NR */
591
/* > \verbatim */
592
/* >          NR is INTEGER */
593
/* >         The row dimension of the lower block. NR >= 1. */
594
/* > \endverbatim */
595
/* > */
596
/* > \param[in] SQRE */
597
/* > \verbatim */
598
/* >          SQRE is INTEGER */
599
/* >         = 0: the lower block is an NR-by-NR square matrix. */
600
/* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
601
/* > */
602
/* >         The bidiagonal matrix has */
603
/* >         N = NL + NR + 1 rows and */
604
/* >         M = N + SQRE >= N columns. */
605
/* > \endverbatim */
606
/* > */
607
/* > \param[out] K */
608
/* > \verbatim */
609
/* >          K is INTEGER */
610
/* >         Contains the dimension of the non-deflated matrix, this is */
611
/* >         the order of the related secular equation. 1 <= K <=N. */
612
/* > \endverbatim */
613
/* > */
614
/* > \param[in,out] D */
615
/* > \verbatim */
616
/* >          D is REAL array, dimension ( N ) */
617
/* >         On entry D contains the singular values of the two submatrices */
618
/* >         to be combined. On exit D contains the trailing (N-K) updated */
619
/* >         singular values (those which were deflated) sorted into */
620
/* >         increasing order. */
621
/* > \endverbatim */
622
/* > */
623
/* > \param[out] Z */
624
/* > \verbatim */
625
/* >          Z is REAL array, dimension ( M ) */
626
/* >         On exit Z contains the updating row vector in the secular */
627
/* >         equation. */
628
/* > \endverbatim */
629
/* > */
630
/* > \param[out] ZW */
631
/* > \verbatim */
632
/* >          ZW is REAL array, dimension ( M ) */
633
/* >         Workspace for Z. */
634
/* > \endverbatim */
635
/* > */
636
/* > \param[in,out] VF */
637
/* > \verbatim */
638
/* >          VF is REAL array, dimension ( M ) */
639
/* >         On entry, VF(1:NL+1) contains the first components of all */
640
/* >         right singular vectors of the upper block; and VF(NL+2:M) */
641
/* >         contains the first components of all right singular vectors */
642
/* >         of the lower block. On exit, VF contains the first components */
643
/* >         of all right singular vectors of the bidiagonal matrix. */
644
/* > \endverbatim */
645
/* > */
646
/* > \param[out] VFW */
647
/* > \verbatim */
648
/* >          VFW is REAL array, dimension ( M ) */
649
/* >         Workspace for VF. */
650
/* > \endverbatim */
651
/* > */
652
/* > \param[in,out] VL */
653
/* > \verbatim */
654
/* >          VL is REAL array, dimension ( M ) */
655
/* >         On entry, VL(1:NL+1) contains the  last components of all */
656
/* >         right singular vectors of the upper block; and VL(NL+2:M) */
657
/* >         contains the last components of all right singular vectors */
658
/* >         of the lower block. On exit, VL contains the last components */
659
/* >         of all right singular vectors of the bidiagonal matrix. */
660
/* > \endverbatim */
661
/* > */
662
/* > \param[out] VLW */
663
/* > \verbatim */
664
/* >          VLW is REAL array, dimension ( M ) */
665
/* >         Workspace for VL. */
666
/* > \endverbatim */
667
/* > */
668
/* > \param[in] ALPHA */
669
/* > \verbatim */
670
/* >          ALPHA is REAL */
671
/* >         Contains the diagonal element associated with the added row. */
672
/* > \endverbatim */
673
/* > */
674
/* > \param[in] BETA */
675
/* > \verbatim */
676
/* >          BETA is REAL */
677
/* >         Contains the off-diagonal element associated with the added */
678
/* >         row. */
679
/* > \endverbatim */
680
/* > */
681
/* > \param[out] DSIGMA */
682
/* > \verbatim */
683
/* >          DSIGMA is REAL array, dimension ( N ) */
684
/* >         Contains a copy of the diagonal elements (K-1 singular values */
685
/* >         and one zero) in the secular equation. */
686
/* > \endverbatim */
687
/* > */
688
/* > \param[out] IDX */
689
/* > \verbatim */
690
/* >          IDX is INTEGER array, dimension ( N ) */
691
/* >         This will contain the permutation used to sort the contents of */
692
/* >         D into ascending order. */
693
/* > \endverbatim */
694
/* > */
695
/* > \param[out] IDXP */
696
/* > \verbatim */
697
/* >          IDXP is INTEGER array, dimension ( N ) */
698
/* >         This will contain the permutation used to place deflated */
699
/* >         values of D at the end of the array. On output IDXP(2:K) */
700
/* >         points to the nondeflated D-values and IDXP(K+1:N) */
701
/* >         points to the deflated singular values. */
702
/* > \endverbatim */
703
/* > */
704
/* > \param[in] IDXQ */
705
/* > \verbatim */
706
/* >          IDXQ is INTEGER array, dimension ( N ) */
707
/* >         This contains the permutation which separately sorts the two */
708
/* >         sub-problems in D into ascending order.  Note that entries in */
709
/* >         the first half of this permutation must first be moved one */
710
/* >         position backward; and entries in the second half */
711
/* >         must first have NL+1 added to their values. */
712
/* > \endverbatim */
713
/* > */
714
/* > \param[out] PERM */
715
/* > \verbatim */
716
/* >          PERM is INTEGER array, dimension ( N ) */
717
/* >         The permutations (from deflation and sorting) to be applied */
718
/* >         to each singular block. Not referenced if ICOMPQ = 0. */
719
/* > \endverbatim */
720
/* > */
721
/* > \param[out] GIVPTR */
722
/* > \verbatim */
723
/* >          GIVPTR is INTEGER */
724
/* >         The number of Givens rotations which took place in this */
725
/* >         subproblem. Not referenced if ICOMPQ = 0. */
726
/* > \endverbatim */
727
/* > */
728
/* > \param[out] GIVCOL */
729
/* > \verbatim */
730
/* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
731
/* >         Each pair of numbers indicates a pair of columns to take place */
732
/* >         in a Givens rotation. Not referenced if ICOMPQ = 0. */
733
/* > \endverbatim */
734
/* > */
735
/* > \param[in] LDGCOL */
736
/* > \verbatim */
737
/* >          LDGCOL is INTEGER */
738
/* >         The leading dimension of GIVCOL, must be at least N. */
739
/* > \endverbatim */
740
/* > */
741
/* > \param[out] GIVNUM */
742
/* > \verbatim */
743
/* >          GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
744
/* >         Each number indicates the C or S value to be used in the */
745
/* >         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
746
/* > \endverbatim */
747
/* > */
748
/* > \param[in] LDGNUM */
749
/* > \verbatim */
750
/* >          LDGNUM is INTEGER */
751
/* >         The leading dimension of GIVNUM, must be at least N. */
752
/* > \endverbatim */
753
/* > */
754
/* > \param[out] C */
755
/* > \verbatim */
756
/* >          C is REAL */
757
/* >         C contains garbage if SQRE =0 and the C-value of a Givens */
758
/* >         rotation related to the right null space if SQRE = 1. */
759
/* > \endverbatim */
760
/* > */
761
/* > \param[out] S */
762
/* > \verbatim */
763
/* >          S is REAL */
764
/* >         S contains garbage if SQRE =0 and the S-value of a Givens */
765
/* >         rotation related to the right null space if SQRE = 1. */
766
/* > \endverbatim */
767
/* > */
768
/* > \param[out] INFO */
769
/* > \verbatim */
770
/* >          INFO is INTEGER */
771
/* >         = 0:  successful exit. */
772
/* >         < 0:  if INFO = -i, the i-th argument had an illegal value. */
773
/* > \endverbatim */
774
775
/*  Authors: */
776
/*  ======== */
777
778
/* > \author Univ. of Tennessee */
779
/* > \author Univ. of California Berkeley */
780
/* > \author Univ. of Colorado Denver */
781
/* > \author NAG Ltd. */
782
783
/* > \date December 2016 */
784
785
/* > \ingroup OTHERauxiliary */
786
787
/* > \par Contributors: */
788
/*  ================== */
789
/* > */
790
/* >     Ming Gu and Huan Ren, Computer Science Division, University of */
791
/* >     California at Berkeley, USA */
792
/* > */
793
/*  ===================================================================== */
794
/* Subroutine */ void slasd7_(integer *icompq, integer *nl, integer *nr, 
795
  integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf, 
796
  real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma,
797
   integer *idx, integer *idxp, integer *idxq, integer *perm, integer *
798
  givptr, integer *givcol, integer *ldgcol, real *givnum, integer *
799
  ldgnum, real *c__, real *s, integer *info)
800
0
{
801
    /* System generated locals */
802
0
    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
803
0
    real r__1, r__2;
804
805
    /* Local variables */
806
0
    integer idxi, idxj;
807
0
    extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
808
0
      integer *, real *, real *);
809
0
    integer i__, j, m, n, idxjp, jprev, k2;
810
0
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
811
0
      integer *);
812
0
    real z1;
813
0
    extern real slapy2_(real *, real *);
814
0
    integer jp;
815
0
    extern real slamch_(char *);
816
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
817
0
    extern void slamrg_(
818
0
      integer *, integer *, real *, integer *, integer *, integer *);
819
0
    real hlftol, eps, tau, tol;
820
0
    integer nlp1, nlp2;
821
822
823
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
824
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
825
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
826
/*     December 2016 */
827
828
829
/*  ===================================================================== */
830
831
832
833
/*     Test the input parameters. */
834
835
    /* Parameter adjustments */
836
0
    --d__;
837
0
    --z__;
838
0
    --zw;
839
0
    --vf;
840
0
    --vfw;
841
0
    --vl;
842
0
    --vlw;
843
0
    --dsigma;
844
0
    --idx;
845
0
    --idxp;
846
0
    --idxq;
847
0
    --perm;
848
0
    givcol_dim1 = *ldgcol;
849
0
    givcol_offset = 1 + givcol_dim1 * 1;
850
0
    givcol -= givcol_offset;
851
0
    givnum_dim1 = *ldgnum;
852
0
    givnum_offset = 1 + givnum_dim1 * 1;
853
0
    givnum -= givnum_offset;
854
855
    /* Function Body */
856
0
    *info = 0;
857
0
    n = *nl + *nr + 1;
858
0
    m = n + *sqre;
859
860
0
    if (*icompq < 0 || *icompq > 1) {
861
0
  *info = -1;
862
0
    } else if (*nl < 1) {
863
0
  *info = -2;
864
0
    } else if (*nr < 1) {
865
0
  *info = -3;
866
0
    } else if (*sqre < 0 || *sqre > 1) {
867
0
  *info = -4;
868
0
    } else if (*ldgcol < n) {
869
0
  *info = -22;
870
0
    } else if (*ldgnum < n) {
871
0
  *info = -24;
872
0
    }
873
0
    if (*info != 0) {
874
0
  i__1 = -(*info);
875
0
  xerbla_("SLASD7", &i__1, (ftnlen)6);
876
0
  return;
877
0
    }
878
879
0
    nlp1 = *nl + 1;
880
0
    nlp2 = *nl + 2;
881
0
    if (*icompq == 1) {
882
0
  *givptr = 0;
883
0
    }
884
885
/*     Generate the first part of the vector Z and move the singular */
886
/*     values in the first part of D one position backward. */
887
888
0
    z1 = *alpha * vl[nlp1];
889
0
    vl[nlp1] = 0.f;
890
0
    tau = vf[nlp1];
891
0
    for (i__ = *nl; i__ >= 1; --i__) {
892
0
  z__[i__ + 1] = *alpha * vl[i__];
893
0
  vl[i__] = 0.f;
894
0
  vf[i__ + 1] = vf[i__];
895
0
  d__[i__ + 1] = d__[i__];
896
0
  idxq[i__ + 1] = idxq[i__] + 1;
897
/* L10: */
898
0
    }
899
0
    vf[1] = tau;
900
901
/*     Generate the second part of the vector Z. */
902
903
0
    i__1 = m;
904
0
    for (i__ = nlp2; i__ <= i__1; ++i__) {
905
0
  z__[i__] = *beta * vf[i__];
906
0
  vf[i__] = 0.f;
907
/* L20: */
908
0
    }
909
910
/*     Sort the singular values into increasing order */
911
912
0
    i__1 = n;
913
0
    for (i__ = nlp2; i__ <= i__1; ++i__) {
914
0
  idxq[i__] += nlp1;
915
/* L30: */
916
0
    }
917
918
/*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
919
920
0
    i__1 = n;
921
0
    for (i__ = 2; i__ <= i__1; ++i__) {
922
0
  dsigma[i__] = d__[idxq[i__]];
923
0
  zw[i__] = z__[idxq[i__]];
924
0
  vfw[i__] = vf[idxq[i__]];
925
0
  vlw[i__] = vl[idxq[i__]];
926
/* L40: */
927
0
    }
928
929
0
    slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
930
931
0
    i__1 = n;
932
0
    for (i__ = 2; i__ <= i__1; ++i__) {
933
0
  idxi = idx[i__] + 1;
934
0
  d__[i__] = dsigma[idxi];
935
0
  z__[i__] = zw[idxi];
936
0
  vf[i__] = vfw[idxi];
937
0
  vl[i__] = vlw[idxi];
938
/* L50: */
939
0
    }
940
941
/*     Calculate the allowable deflation tolerance */
942
943
0
    eps = slamch_("Epsilon");
944
/* Computing MAX */
945
0
    r__1 = abs(*alpha), r__2 = abs(*beta);
946
0
    tol = f2cmax(r__1,r__2);
947
/* Computing MAX */
948
0
    r__2 = (r__1 = d__[n], abs(r__1));
949
0
    tol = eps * 64.f * f2cmax(r__2,tol);
950
951
/*     There are 2 kinds of deflation -- first a value in the z-vector */
952
/*     is small, second two (or more) singular values are very close */
953
/*     together (their difference is small). */
954
955
/*     If the value in the z-vector is small, we simply permute the */
956
/*     array so that the corresponding singular value is moved to the */
957
/*     end. */
958
959
/*     If two values in the D-vector are close, we perform a two-sided */
960
/*     rotation designed to make one of the corresponding z-vector */
961
/*     entries zero, and then permute the array so that the deflated */
962
/*     singular value is moved to the end. */
963
964
/*     If there are multiple singular values then the problem deflates. */
965
/*     Here the number of equal singular values are found.  As each equal */
966
/*     singular value is found, an elementary reflector is computed to */
967
/*     rotate the corresponding singular subspace so that the */
968
/*     corresponding components of Z are zero in this new basis. */
969
970
0
    *k = 1;
971
0
    k2 = n + 1;
972
0
    i__1 = n;
973
0
    for (j = 2; j <= i__1; ++j) {
974
0
  if ((r__1 = z__[j], abs(r__1)) <= tol) {
975
976
/*           Deflate due to small z component. */
977
978
0
      --k2;
979
0
      idxp[k2] = j;
980
0
      if (j == n) {
981
0
    goto L100;
982
0
      }
983
0
  } else {
984
0
      jprev = j;
985
0
      goto L70;
986
0
  }
987
/* L60: */
988
0
    }
989
0
L70:
990
0
    j = jprev;
991
0
L80:
992
0
    ++j;
993
0
    if (j > n) {
994
0
  goto L90;
995
0
    }
996
0
    if ((r__1 = z__[j], abs(r__1)) <= tol) {
997
998
/*        Deflate due to small z component. */
999
1000
0
  --k2;
1001
0
  idxp[k2] = j;
1002
0
    } else {
1003
1004
/*        Check if singular values are close enough to allow deflation. */
1005
1006
0
  if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
1007
1008
/*           Deflation is possible. */
1009
1010
0
      *s = z__[jprev];
1011
0
      *c__ = z__[j];
1012
1013
/*           Find sqrt(a**2+b**2) without overflow or */
1014
/*           destructive underflow. */
1015
1016
0
      tau = slapy2_(c__, s);
1017
0
      z__[j] = tau;
1018
0
      z__[jprev] = 0.f;
1019
0
      *c__ /= tau;
1020
0
      *s = -(*s) / tau;
1021
1022
/*           Record the appropriate Givens rotation */
1023
1024
0
      if (*icompq == 1) {
1025
0
    ++(*givptr);
1026
0
    idxjp = idxq[idx[jprev] + 1];
1027
0
    idxj = idxq[idx[j] + 1];
1028
0
    if (idxjp <= nlp1) {
1029
0
        --idxjp;
1030
0
    }
1031
0
    if (idxj <= nlp1) {
1032
0
        --idxj;
1033
0
    }
1034
0
    givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
1035
0
    givcol[*givptr + givcol_dim1] = idxj;
1036
0
    givnum[*givptr + (givnum_dim1 << 1)] = *c__;
1037
0
    givnum[*givptr + givnum_dim1] = *s;
1038
0
      }
1039
0
      srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
1040
0
      srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
1041
0
      --k2;
1042
0
      idxp[k2] = jprev;
1043
0
      jprev = j;
1044
0
  } else {
1045
0
      ++(*k);
1046
0
      zw[*k] = z__[jprev];
1047
0
      dsigma[*k] = d__[jprev];
1048
0
      idxp[*k] = jprev;
1049
0
      jprev = j;
1050
0
  }
1051
0
    }
1052
0
    goto L80;
1053
0
L90:
1054
1055
/*     Record the last singular value. */
1056
1057
0
    ++(*k);
1058
0
    zw[*k] = z__[jprev];
1059
0
    dsigma[*k] = d__[jprev];
1060
0
    idxp[*k] = jprev;
1061
1062
0
L100:
1063
1064
/*     Sort the singular values into DSIGMA. The singular values which */
1065
/*     were not deflated go into the first K slots of DSIGMA, except */
1066
/*     that DSIGMA(1) is treated separately. */
1067
1068
0
    i__1 = n;
1069
0
    for (j = 2; j <= i__1; ++j) {
1070
0
  jp = idxp[j];
1071
0
  dsigma[j] = d__[jp];
1072
0
  vfw[j] = vf[jp];
1073
0
  vlw[j] = vl[jp];
1074
/* L110: */
1075
0
    }
1076
0
    if (*icompq == 1) {
1077
0
  i__1 = n;
1078
0
  for (j = 2; j <= i__1; ++j) {
1079
0
      jp = idxp[j];
1080
0
      perm[j] = idxq[idx[jp] + 1];
1081
0
      if (perm[j] <= nlp1) {
1082
0
    --perm[j];
1083
0
      }
1084
/* L120: */
1085
0
  }
1086
0
    }
1087
1088
/*     The deflated singular values go back into the last N - K slots of */
1089
/*     D. */
1090
1091
0
    i__1 = n - *k;
1092
0
    scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
1093
1094
/*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
1095
/*     VL(M). */
1096
1097
0
    dsigma[1] = 0.f;
1098
0
    hlftol = tol / 2.f;
1099
0
    if (abs(dsigma[2]) <= hlftol) {
1100
0
  dsigma[2] = hlftol;
1101
0
    }
1102
0
    if (m > n) {
1103
0
  z__[1] = slapy2_(&z1, &z__[m]);
1104
0
  if (z__[1] <= tol) {
1105
0
      *c__ = 1.f;
1106
0
      *s = 0.f;
1107
0
      z__[1] = tol;
1108
0
  } else {
1109
0
      *c__ = z1 / z__[1];
1110
0
      *s = -z__[m] / z__[1];
1111
0
  }
1112
0
  srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
1113
0
  srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
1114
0
    } else {
1115
0
  if (abs(z1) <= tol) {
1116
0
      z__[1] = tol;
1117
0
  } else {
1118
0
      z__[1] = z1;
1119
0
  }
1120
0
    }
1121
1122
/*     Restore Z, VF, and VL. */
1123
1124
0
    i__1 = *k - 1;
1125
0
    scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
1126
0
    i__1 = n - 1;
1127
0
    scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
1128
0
    i__1 = n - 1;
1129
0
    scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
1130
1131
0
    return;
1132
1133
/*     End of SLASD7 */
1134
1135
0
} /* slasd7_ */
1136