/root/doris/contrib/openblas/lapack-netlib/SRC/slasq2.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | 0 | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | 0 | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | 0 | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | 0 | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static integer c__1 = 1; |
516 | | static integer c__2 = 2; |
517 | | |
518 | | /* > \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc |
519 | | iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. */ |
520 | | |
521 | | /* =========== DOCUMENTATION =========== */ |
522 | | |
523 | | /* Online html documentation available at */ |
524 | | /* http://www.netlib.org/lapack/explore-html/ */ |
525 | | |
526 | | /* > \htmlonly */ |
527 | | /* > Download SLASQ2 + dependencies */ |
528 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2. |
529 | | f"> */ |
530 | | /* > [TGZ]</a> */ |
531 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2. |
532 | | f"> */ |
533 | | /* > [ZIP]</a> */ |
534 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2. |
535 | | f"> */ |
536 | | /* > [TXT]</a> */ |
537 | | /* > \endhtmlonly */ |
538 | | |
539 | | /* Definition: */ |
540 | | /* =========== */ |
541 | | |
542 | | /* SUBROUTINE SLASQ2( N, Z, INFO ) */ |
543 | | |
544 | | /* INTEGER INFO, N */ |
545 | | /* REAL Z( * ) */ |
546 | | |
547 | | |
548 | | /* > \par Purpose: */ |
549 | | /* ============= */ |
550 | | /* > */ |
551 | | /* > \verbatim */ |
552 | | /* > */ |
553 | | /* > SLASQ2 computes all the eigenvalues of the symmetric positive */ |
554 | | /* > definite tridiagonal matrix associated with the qd array Z to high */ |
555 | | /* > relative accuracy are computed to high relative accuracy, in the */ |
556 | | /* > absence of denormalization, underflow and overflow. */ |
557 | | /* > */ |
558 | | /* > To see the relation of Z to the tridiagonal matrix, let L be a */ |
559 | | /* > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */ |
560 | | /* > let U be an upper bidiagonal matrix with 1's above and diagonal */ |
561 | | /* > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */ |
562 | | /* > symmetric tridiagonal to which it is similar. */ |
563 | | /* > */ |
564 | | /* > Note : SLASQ2 defines a logical variable, IEEE, which is true */ |
565 | | /* > on machines which follow ieee-754 floating-point standard in their */ |
566 | | /* > handling of infinities and NaNs, and false otherwise. This variable */ |
567 | | /* > is passed to SLASQ3. */ |
568 | | /* > \endverbatim */ |
569 | | |
570 | | /* Arguments: */ |
571 | | /* ========== */ |
572 | | |
573 | | /* > \param[in] N */ |
574 | | /* > \verbatim */ |
575 | | /* > N is INTEGER */ |
576 | | /* > The number of rows and columns in the matrix. N >= 0. */ |
577 | | /* > \endverbatim */ |
578 | | /* > */ |
579 | | /* > \param[in,out] Z */ |
580 | | /* > \verbatim */ |
581 | | /* > Z is REAL array, dimension ( 4*N ) */ |
582 | | /* > On entry Z holds the qd array. On exit, entries 1 to N hold */ |
583 | | /* > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */ |
584 | | /* > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */ |
585 | | /* > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */ |
586 | | /* > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */ |
587 | | /* > shifts that failed. */ |
588 | | /* > \endverbatim */ |
589 | | /* > */ |
590 | | /* > \param[out] INFO */ |
591 | | /* > \verbatim */ |
592 | | /* > INFO is INTEGER */ |
593 | | /* > = 0: successful exit */ |
594 | | /* > < 0: if the i-th argument is a scalar and had an illegal */ |
595 | | /* > value, then INFO = -i, if the i-th argument is an */ |
596 | | /* > array and the j-entry had an illegal value, then */ |
597 | | /* > INFO = -(i*100+j) */ |
598 | | /* > > 0: the algorithm failed */ |
599 | | /* > = 1, a split was marked by a positive value in E */ |
600 | | /* > = 2, current block of Z not diagonalized after 100*N */ |
601 | | /* > iterations (in inner while loop). On exit Z holds */ |
602 | | /* > a qd array with the same eigenvalues as the given Z. */ |
603 | | /* > = 3, termination criterion of outer while loop not met */ |
604 | | /* > (program created more than N unreduced blocks) */ |
605 | | /* > \endverbatim */ |
606 | | |
607 | | /* Authors: */ |
608 | | /* ======== */ |
609 | | |
610 | | /* > \author Univ. of Tennessee */ |
611 | | /* > \author Univ. of California Berkeley */ |
612 | | /* > \author Univ. of Colorado Denver */ |
613 | | /* > \author NAG Ltd. */ |
614 | | |
615 | | /* > \date December 2016 */ |
616 | | |
617 | | /* > \ingroup auxOTHERcomputational */ |
618 | | |
619 | | /* > \par Further Details: */ |
620 | | /* ===================== */ |
621 | | /* > */ |
622 | | /* > \verbatim */ |
623 | | /* > */ |
624 | | /* > Local Variables: I0:N0 defines a current unreduced segment of Z. */ |
625 | | /* > The shifts are accumulated in SIGMA. Iteration count is in ITER. */ |
626 | | /* > Ping-pong is controlled by PP (alternates between 0 and 1). */ |
627 | | /* > \endverbatim */ |
628 | | /* > */ |
629 | | /* ===================================================================== */ |
630 | | /* Subroutine */ void slasq2_(integer *n, real *z__, integer *info) |
631 | 0 | { |
632 | | /* System generated locals */ |
633 | 0 | integer i__1, i__2, i__3; |
634 | 0 | real r__1, r__2; |
635 | | |
636 | | /* Local variables */ |
637 | 0 | logical ieee; |
638 | 0 | integer nbig; |
639 | 0 | real dmin__, emin, emax; |
640 | 0 | integer kmin, ndiv, iter; |
641 | 0 | real qmin, temp, qmax, zmax; |
642 | 0 | integer splt; |
643 | 0 | real dmin1, dmin2, d__, e, g; |
644 | 0 | integer k; |
645 | 0 | real s, t; |
646 | 0 | integer nfail; |
647 | 0 | real desig, trace, sigma; |
648 | 0 | integer iinfo; |
649 | 0 | real tempe, tempq; |
650 | 0 | integer i0, i1, i4, n0, n1, ttype; |
651 | 0 | extern /* Subroutine */ void slasq3_(integer *, integer *, real *, integer |
652 | 0 | *, real *, real *, real *, real *, integer *, integer *, integer * |
653 | 0 | , logical *, integer *, real *, real *, real *, real *, real *, |
654 | 0 | real *, real *); |
655 | 0 | real dn; |
656 | 0 | integer pp; |
657 | 0 | real deemin; |
658 | 0 | extern real slamch_(char *); |
659 | 0 | integer iwhila, iwhilb; |
660 | 0 | real oldemn, safmin; |
661 | 0 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
662 | 0 | real dn1, dn2; |
663 | 0 | extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *); |
664 | 0 | real dee, eps, tau, tol; |
665 | 0 | integer ipn4; |
666 | 0 | real tol2; |
667 | | |
668 | | |
669 | | /* -- LAPACK computational routine (version 3.7.0) -- */ |
670 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
671 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
672 | | /* December 2016 */ |
673 | | |
674 | | |
675 | | /* ===================================================================== */ |
676 | | |
677 | | |
678 | | /* Test the input arguments. */ |
679 | | /* (in case SLASQ2 is not called by SLASQ1) */ |
680 | | |
681 | | /* Parameter adjustments */ |
682 | 0 | --z__; |
683 | | |
684 | | /* Function Body */ |
685 | 0 | *info = 0; |
686 | 0 | eps = slamch_("Precision"); |
687 | 0 | safmin = slamch_("Safe minimum"); |
688 | 0 | tol = eps * 100.f; |
689 | | /* Computing 2nd power */ |
690 | 0 | r__1 = tol; |
691 | 0 | tol2 = r__1 * r__1; |
692 | |
|
693 | 0 | if (*n < 0) { |
694 | 0 | *info = -1; |
695 | 0 | xerbla_("SLASQ2", &c__1, (ftnlen)6); |
696 | 0 | return; |
697 | 0 | } else if (*n == 0) { |
698 | 0 | return; |
699 | 0 | } else if (*n == 1) { |
700 | | |
701 | | /* 1-by-1 case. */ |
702 | |
|
703 | 0 | if (z__[1] < 0.f) { |
704 | 0 | *info = -201; |
705 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
706 | 0 | } |
707 | 0 | return; |
708 | 0 | } else if (*n == 2) { |
709 | | |
710 | | /* 2-by-2 case. */ |
711 | |
|
712 | 0 | if (z__[1] < 0.f) { |
713 | 0 | *info = -201; |
714 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
715 | 0 | return; |
716 | 0 | } else if (z__[2] < 0.f) { |
717 | 0 | *info = -202; |
718 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
719 | 0 | return; |
720 | 0 | } else if (z__[3] < 0.f) { |
721 | 0 | *info = -203; |
722 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
723 | 0 | return; |
724 | 0 | } else if (z__[3] > z__[1]) { |
725 | 0 | d__ = z__[3]; |
726 | 0 | z__[3] = z__[1]; |
727 | 0 | z__[1] = d__; |
728 | 0 | } |
729 | 0 | z__[5] = z__[1] + z__[2] + z__[3]; |
730 | 0 | if (z__[2] > z__[3] * tol2) { |
731 | 0 | t = (z__[1] - z__[3] + z__[2]) * .5f; |
732 | 0 | s = z__[3] * (z__[2] / t); |
733 | 0 | if (s <= t) { |
734 | 0 | s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f))); |
735 | 0 | } else { |
736 | 0 | s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s))); |
737 | 0 | } |
738 | 0 | t = z__[1] + (s + z__[2]); |
739 | 0 | z__[3] *= z__[1] / t; |
740 | 0 | z__[1] = t; |
741 | 0 | } |
742 | 0 | z__[2] = z__[3]; |
743 | 0 | z__[6] = z__[2] + z__[1]; |
744 | 0 | return; |
745 | 0 | } |
746 | | |
747 | | /* Check for negative data and compute sums of q's and e's. */ |
748 | | |
749 | 0 | z__[*n * 2] = 0.f; |
750 | 0 | emin = z__[2]; |
751 | 0 | qmax = 0.f; |
752 | 0 | zmax = 0.f; |
753 | 0 | d__ = 0.f; |
754 | 0 | e = 0.f; |
755 | |
|
756 | 0 | i__1 = *n - 1 << 1; |
757 | 0 | for (k = 1; k <= i__1; k += 2) { |
758 | 0 | if (z__[k] < 0.f) { |
759 | 0 | *info = -(k + 200); |
760 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
761 | 0 | return; |
762 | 0 | } else if (z__[k + 1] < 0.f) { |
763 | 0 | *info = -(k + 201); |
764 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
765 | 0 | return; |
766 | 0 | } |
767 | 0 | d__ += z__[k]; |
768 | 0 | e += z__[k + 1]; |
769 | | /* Computing MAX */ |
770 | 0 | r__1 = qmax, r__2 = z__[k]; |
771 | 0 | qmax = f2cmax(r__1,r__2); |
772 | | /* Computing MIN */ |
773 | 0 | r__1 = emin, r__2 = z__[k + 1]; |
774 | 0 | emin = f2cmin(r__1,r__2); |
775 | | /* Computing MAX */ |
776 | 0 | r__1 = f2cmax(qmax,zmax), r__2 = z__[k + 1]; |
777 | 0 | zmax = f2cmax(r__1,r__2); |
778 | | /* L10: */ |
779 | 0 | } |
780 | 0 | if (z__[(*n << 1) - 1] < 0.f) { |
781 | 0 | *info = -((*n << 1) + 199); |
782 | 0 | xerbla_("SLASQ2", &c__2, (ftnlen)6); |
783 | 0 | return; |
784 | 0 | } |
785 | 0 | d__ += z__[(*n << 1) - 1]; |
786 | | /* Computing MAX */ |
787 | 0 | r__1 = qmax, r__2 = z__[(*n << 1) - 1]; |
788 | 0 | qmax = f2cmax(r__1,r__2); |
789 | 0 | zmax = f2cmax(qmax,zmax); |
790 | | |
791 | | /* Check for diagonality. */ |
792 | |
|
793 | 0 | if (e == 0.f) { |
794 | 0 | i__1 = *n; |
795 | 0 | for (k = 2; k <= i__1; ++k) { |
796 | 0 | z__[k] = z__[(k << 1) - 1]; |
797 | | /* L20: */ |
798 | 0 | } |
799 | 0 | slasrt_("D", n, &z__[1], &iinfo); |
800 | 0 | z__[(*n << 1) - 1] = d__; |
801 | 0 | return; |
802 | 0 | } |
803 | | |
804 | 0 | trace = d__ + e; |
805 | | |
806 | | /* Check for zero data. */ |
807 | |
|
808 | 0 | if (trace == 0.f) { |
809 | 0 | z__[(*n << 1) - 1] = 0.f; |
810 | 0 | return; |
811 | 0 | } |
812 | | |
813 | | /* Check whether the machine is IEEE conformable. */ |
814 | | |
815 | | /* IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */ |
816 | | /* $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */ |
817 | | |
818 | | /* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */ |
819 | | /* some the test matrices of type 16. The double precision code is fine. */ |
820 | | |
821 | 0 | ieee = FALSE_; |
822 | | |
823 | | /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */ |
824 | |
|
825 | 0 | for (k = *n << 1; k >= 2; k += -2) { |
826 | 0 | z__[k * 2] = 0.f; |
827 | 0 | z__[(k << 1) - 1] = z__[k]; |
828 | 0 | z__[(k << 1) - 2] = 0.f; |
829 | 0 | z__[(k << 1) - 3] = z__[k - 1]; |
830 | | /* L30: */ |
831 | 0 | } |
832 | |
|
833 | 0 | i0 = 1; |
834 | 0 | n0 = *n; |
835 | | |
836 | | /* Reverse the qd-array, if warranted. */ |
837 | |
|
838 | 0 | if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) { |
839 | 0 | ipn4 = i0 + n0 << 2; |
840 | 0 | i__1 = i0 + n0 - 1 << 1; |
841 | 0 | for (i4 = i0 << 2; i4 <= i__1; i4 += 4) { |
842 | 0 | temp = z__[i4 - 3]; |
843 | 0 | z__[i4 - 3] = z__[ipn4 - i4 - 3]; |
844 | 0 | z__[ipn4 - i4 - 3] = temp; |
845 | 0 | temp = z__[i4 - 1]; |
846 | 0 | z__[i4 - 1] = z__[ipn4 - i4 - 5]; |
847 | 0 | z__[ipn4 - i4 - 5] = temp; |
848 | | /* L40: */ |
849 | 0 | } |
850 | 0 | } |
851 | | |
852 | | /* Initial split checking via dqd and Li's test. */ |
853 | |
|
854 | 0 | pp = 0; |
855 | |
|
856 | 0 | for (k = 1; k <= 2; ++k) { |
857 | |
|
858 | 0 | d__ = z__[(n0 << 2) + pp - 3]; |
859 | 0 | i__1 = (i0 << 2) + pp; |
860 | 0 | for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) { |
861 | 0 | if (z__[i4 - 1] <= tol2 * d__) { |
862 | 0 | z__[i4 - 1] = 0.f; |
863 | 0 | d__ = z__[i4 - 3]; |
864 | 0 | } else { |
865 | 0 | d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1])); |
866 | 0 | } |
867 | | /* L50: */ |
868 | 0 | } |
869 | | |
870 | | /* dqd maps Z to ZZ plus Li's test. */ |
871 | |
|
872 | 0 | emin = z__[(i0 << 2) + pp + 1]; |
873 | 0 | d__ = z__[(i0 << 2) + pp - 3]; |
874 | 0 | i__1 = (n0 - 1 << 2) + pp; |
875 | 0 | for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) { |
876 | 0 | z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1]; |
877 | 0 | if (z__[i4 - 1] <= tol2 * d__) { |
878 | 0 | z__[i4 - 1] = 0.f; |
879 | 0 | z__[i4 - (pp << 1) - 2] = d__; |
880 | 0 | z__[i4 - (pp << 1)] = 0.f; |
881 | 0 | d__ = z__[i4 + 1]; |
882 | 0 | } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && |
883 | 0 | safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) { |
884 | 0 | temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2]; |
885 | 0 | z__[i4 - (pp << 1)] = z__[i4 - 1] * temp; |
886 | 0 | d__ *= temp; |
887 | 0 | } else { |
888 | 0 | z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - ( |
889 | 0 | pp << 1) - 2]); |
890 | 0 | d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]); |
891 | 0 | } |
892 | | /* Computing MIN */ |
893 | 0 | r__1 = emin, r__2 = z__[i4 - (pp << 1)]; |
894 | 0 | emin = f2cmin(r__1,r__2); |
895 | | /* L60: */ |
896 | 0 | } |
897 | 0 | z__[(n0 << 2) - pp - 2] = d__; |
898 | | |
899 | | /* Now find qmax. */ |
900 | |
|
901 | 0 | qmax = z__[(i0 << 2) - pp - 2]; |
902 | 0 | i__1 = (n0 << 2) - pp - 2; |
903 | 0 | for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) { |
904 | | /* Computing MAX */ |
905 | 0 | r__1 = qmax, r__2 = z__[i4]; |
906 | 0 | qmax = f2cmax(r__1,r__2); |
907 | | /* L70: */ |
908 | 0 | } |
909 | | |
910 | | /* Prepare for the next iteration on K. */ |
911 | |
|
912 | 0 | pp = 1 - pp; |
913 | | /* L80: */ |
914 | 0 | } |
915 | | |
916 | | /* Initialise variables to pass to SLASQ3. */ |
917 | |
|
918 | 0 | ttype = 0; |
919 | 0 | dmin1 = 0.f; |
920 | 0 | dmin2 = 0.f; |
921 | 0 | dn = 0.f; |
922 | 0 | dn1 = 0.f; |
923 | 0 | dn2 = 0.f; |
924 | 0 | g = 0.f; |
925 | 0 | tau = 0.f; |
926 | |
|
927 | 0 | iter = 2; |
928 | 0 | nfail = 0; |
929 | 0 | ndiv = n0 - i0 << 1; |
930 | |
|
931 | 0 | i__1 = *n + 1; |
932 | 0 | for (iwhila = 1; iwhila <= i__1; ++iwhila) { |
933 | 0 | if (n0 < 1) { |
934 | 0 | goto L170; |
935 | 0 | } |
936 | | |
937 | | /* While array unfinished do */ |
938 | | |
939 | | /* E(N0) holds the value of SIGMA when submatrix in I0:N0 */ |
940 | | /* splits from the rest of the array, but is negated. */ |
941 | | |
942 | 0 | desig = 0.f; |
943 | 0 | if (n0 == *n) { |
944 | 0 | sigma = 0.f; |
945 | 0 | } else { |
946 | 0 | sigma = -z__[(n0 << 2) - 1]; |
947 | 0 | } |
948 | 0 | if (sigma < 0.f) { |
949 | 0 | *info = 1; |
950 | 0 | return; |
951 | 0 | } |
952 | | |
953 | | /* Find last unreduced submatrix's top index I0, find QMAX and */ |
954 | | /* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */ |
955 | | |
956 | 0 | emax = 0.f; |
957 | 0 | if (n0 > i0) { |
958 | 0 | emin = (r__1 = z__[(n0 << 2) - 5], abs(r__1)); |
959 | 0 | } else { |
960 | 0 | emin = 0.f; |
961 | 0 | } |
962 | 0 | qmin = z__[(n0 << 2) - 3]; |
963 | 0 | qmax = qmin; |
964 | 0 | for (i4 = n0 << 2; i4 >= 8; i4 += -4) { |
965 | 0 | if (z__[i4 - 5] <= 0.f) { |
966 | 0 | goto L100; |
967 | 0 | } |
968 | 0 | if (qmin >= emax * 4.f) { |
969 | | /* Computing MIN */ |
970 | 0 | r__1 = qmin, r__2 = z__[i4 - 3]; |
971 | 0 | qmin = f2cmin(r__1,r__2); |
972 | | /* Computing MAX */ |
973 | 0 | r__1 = emax, r__2 = z__[i4 - 5]; |
974 | 0 | emax = f2cmax(r__1,r__2); |
975 | 0 | } |
976 | | /* Computing MAX */ |
977 | 0 | r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5]; |
978 | 0 | qmax = f2cmax(r__1,r__2); |
979 | | /* Computing MIN */ |
980 | 0 | r__1 = emin, r__2 = z__[i4 - 5]; |
981 | 0 | emin = f2cmin(r__1,r__2); |
982 | | /* L90: */ |
983 | 0 | } |
984 | 0 | i4 = 4; |
985 | |
|
986 | 0 | L100: |
987 | 0 | i0 = i4 / 4; |
988 | 0 | pp = 0; |
989 | |
|
990 | 0 | if (n0 - i0 > 1) { |
991 | 0 | dee = z__[(i0 << 2) - 3]; |
992 | 0 | deemin = dee; |
993 | 0 | kmin = i0; |
994 | 0 | i__2 = (n0 << 2) - 3; |
995 | 0 | for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) { |
996 | 0 | dee = z__[i4] * (dee / (dee + z__[i4 - 2])); |
997 | 0 | if (dee <= deemin) { |
998 | 0 | deemin = dee; |
999 | 0 | kmin = (i4 + 3) / 4; |
1000 | 0 | } |
1001 | | /* L110: */ |
1002 | 0 | } |
1003 | 0 | if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * |
1004 | 0 | .5f) { |
1005 | 0 | ipn4 = i0 + n0 << 2; |
1006 | 0 | pp = 2; |
1007 | 0 | i__2 = i0 + n0 - 1 << 1; |
1008 | 0 | for (i4 = i0 << 2; i4 <= i__2; i4 += 4) { |
1009 | 0 | temp = z__[i4 - 3]; |
1010 | 0 | z__[i4 - 3] = z__[ipn4 - i4 - 3]; |
1011 | 0 | z__[ipn4 - i4 - 3] = temp; |
1012 | 0 | temp = z__[i4 - 2]; |
1013 | 0 | z__[i4 - 2] = z__[ipn4 - i4 - 2]; |
1014 | 0 | z__[ipn4 - i4 - 2] = temp; |
1015 | 0 | temp = z__[i4 - 1]; |
1016 | 0 | z__[i4 - 1] = z__[ipn4 - i4 - 5]; |
1017 | 0 | z__[ipn4 - i4 - 5] = temp; |
1018 | 0 | temp = z__[i4]; |
1019 | 0 | z__[i4] = z__[ipn4 - i4 - 4]; |
1020 | 0 | z__[ipn4 - i4 - 4] = temp; |
1021 | | /* L120: */ |
1022 | 0 | } |
1023 | 0 | } |
1024 | 0 | } |
1025 | | |
1026 | | /* Put -(initial shift) into DMIN. */ |
1027 | | |
1028 | | /* Computing MAX */ |
1029 | 0 | r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax); |
1030 | 0 | dmin__ = -f2cmax(r__1,r__2); |
1031 | | |
1032 | | /* Now I0:N0 is unreduced. */ |
1033 | | /* PP = 0 for ping, PP = 1 for pong. */ |
1034 | | /* PP = 2 indicates that flipping was applied to the Z array and */ |
1035 | | /* and that the tests for deflation upon entry in SLASQ3 */ |
1036 | | /* should not be performed. */ |
1037 | |
|
1038 | 0 | nbig = (n0 - i0 + 1) * 100; |
1039 | 0 | i__2 = nbig; |
1040 | 0 | for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) { |
1041 | 0 | if (i0 > n0) { |
1042 | 0 | goto L150; |
1043 | 0 | } |
1044 | | |
1045 | | /* While submatrix unfinished take a good dqds step. */ |
1046 | | |
1047 | 0 | slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, & |
1048 | 0 | nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, & |
1049 | 0 | dn1, &dn2, &g, &tau); |
1050 | |
|
1051 | 0 | pp = 1 - pp; |
1052 | | |
1053 | | /* When EMIN is very small check for splits. */ |
1054 | |
|
1055 | 0 | if (pp == 0 && n0 - i0 >= 3) { |
1056 | 0 | if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 * |
1057 | 0 | sigma) { |
1058 | 0 | splt = i0 - 1; |
1059 | 0 | qmax = z__[(i0 << 2) - 3]; |
1060 | 0 | emin = z__[(i0 << 2) - 1]; |
1061 | 0 | oldemn = z__[i0 * 4]; |
1062 | 0 | i__3 = n0 - 3 << 2; |
1063 | 0 | for (i4 = i0 << 2; i4 <= i__3; i4 += 4) { |
1064 | 0 | if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= |
1065 | 0 | tol2 * sigma) { |
1066 | 0 | z__[i4 - 1] = -sigma; |
1067 | 0 | splt = i4 / 4; |
1068 | 0 | qmax = 0.f; |
1069 | 0 | emin = z__[i4 + 3]; |
1070 | 0 | oldemn = z__[i4 + 4]; |
1071 | 0 | } else { |
1072 | | /* Computing MAX */ |
1073 | 0 | r__1 = qmax, r__2 = z__[i4 + 1]; |
1074 | 0 | qmax = f2cmax(r__1,r__2); |
1075 | | /* Computing MIN */ |
1076 | 0 | r__1 = emin, r__2 = z__[i4 - 1]; |
1077 | 0 | emin = f2cmin(r__1,r__2); |
1078 | | /* Computing MIN */ |
1079 | 0 | r__1 = oldemn, r__2 = z__[i4]; |
1080 | 0 | oldemn = f2cmin(r__1,r__2); |
1081 | 0 | } |
1082 | | /* L130: */ |
1083 | 0 | } |
1084 | 0 | z__[(n0 << 2) - 1] = emin; |
1085 | 0 | z__[n0 * 4] = oldemn; |
1086 | 0 | i0 = splt + 1; |
1087 | 0 | } |
1088 | 0 | } |
1089 | | |
1090 | | /* L140: */ |
1091 | 0 | } |
1092 | | |
1093 | 0 | *info = 2; |
1094 | | |
1095 | | /* Maximum number of iterations exceeded, restore the shift */ |
1096 | | /* SIGMA and place the new d's and e's in a qd array. */ |
1097 | | /* This might need to be done for several blocks */ |
1098 | |
|
1099 | 0 | i1 = i0; |
1100 | 0 | n1 = n0; |
1101 | 0 | L145: |
1102 | 0 | tempq = z__[(i0 << 2) - 3]; |
1103 | 0 | z__[(i0 << 2) - 3] += sigma; |
1104 | 0 | i__2 = n0; |
1105 | 0 | for (k = i0 + 1; k <= i__2; ++k) { |
1106 | 0 | tempe = z__[(k << 2) - 5]; |
1107 | 0 | z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7]; |
1108 | 0 | tempq = z__[(k << 2) - 3]; |
1109 | 0 | z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k << |
1110 | 0 | 2) - 5]; |
1111 | 0 | } |
1112 | | |
1113 | | /* Prepare to do this on the previous block if there is one */ |
1114 | |
|
1115 | 0 | if (i1 > 1) { |
1116 | 0 | n1 = i1 - 1; |
1117 | 0 | while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.f) { |
1118 | 0 | --i1; |
1119 | 0 | } |
1120 | 0 | if (i1 >= 1) { |
1121 | 0 | sigma = -z__[(n1 << 2) - 1]; |
1122 | 0 | goto L145; |
1123 | 0 | } |
1124 | 0 | } |
1125 | 0 | i__2 = *n; |
1126 | 0 | for (k = 1; k <= i__2; ++k) { |
1127 | 0 | z__[(k << 1) - 1] = z__[(k << 2) - 3]; |
1128 | | |
1129 | | /* Only the block 1..N0 is unfinished. The rest of the e's */ |
1130 | | /* must be essentially zero, although sometimes other data */ |
1131 | | /* has been stored in them. */ |
1132 | |
|
1133 | 0 | if (k < n0) { |
1134 | 0 | z__[k * 2] = z__[(k << 2) - 1]; |
1135 | 0 | } else { |
1136 | 0 | z__[k * 2] = 0.f; |
1137 | 0 | } |
1138 | 0 | } |
1139 | 0 | return; |
1140 | | |
1141 | | /* end IWHILB */ |
1142 | | |
1143 | 0 | L150: |
1144 | | |
1145 | | /* L160: */ |
1146 | 0 | ; |
1147 | 0 | } |
1148 | | |
1149 | 0 | *info = 3; |
1150 | 0 | return; |
1151 | | |
1152 | | /* end IWHILA */ |
1153 | | |
1154 | 0 | L170: |
1155 | | |
1156 | | /* Move q's to the front. */ |
1157 | |
|
1158 | 0 | i__1 = *n; |
1159 | 0 | for (k = 2; k <= i__1; ++k) { |
1160 | 0 | z__[k] = z__[(k << 2) - 3]; |
1161 | | /* L180: */ |
1162 | 0 | } |
1163 | | |
1164 | | /* Sort and compute sum of eigenvalues. */ |
1165 | |
|
1166 | 0 | slasrt_("D", n, &z__[1], &iinfo); |
1167 | |
|
1168 | 0 | e = 0.f; |
1169 | 0 | for (k = *n; k >= 1; --k) { |
1170 | 0 | e += z__[k]; |
1171 | | /* L190: */ |
1172 | 0 | } |
1173 | | |
1174 | | /* Store trace, sum(eigenvalues) and information on performance. */ |
1175 | |
|
1176 | 0 | z__[(*n << 1) + 1] = trace; |
1177 | 0 | z__[(*n << 1) + 2] = e; |
1178 | 0 | z__[(*n << 1) + 3] = (real) iter; |
1179 | | /* Computing 2nd power */ |
1180 | 0 | i__1 = *n; |
1181 | 0 | z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1); |
1182 | 0 | z__[(*n << 1) + 5] = nfail * 100.f / (real) iter; |
1183 | 0 | return; |
1184 | | |
1185 | | /* End of SLASQ2 */ |
1186 | |
|
1187 | 0 | } /* slasq2_ */ |
1188 | | |