/root/doris/contrib/openblas/lapack-netlib/SRC/slarfb.c
Line | Count | Source |
1 | | #include <math.h> |
2 | | #include <stdlib.h> |
3 | | #include <string.h> |
4 | | #include <stdio.h> |
5 | | #include <complex.h> |
6 | | #ifdef complex |
7 | | #undef complex |
8 | | #endif |
9 | | #ifdef I |
10 | | #undef I |
11 | | #endif |
12 | | |
13 | | #if defined(_WIN64) |
14 | | typedef long long BLASLONG; |
15 | | typedef unsigned long long BLASULONG; |
16 | | #else |
17 | | typedef long BLASLONG; |
18 | | typedef unsigned long BLASULONG; |
19 | | #endif |
20 | | |
21 | | #ifdef LAPACK_ILP64 |
22 | | typedef BLASLONG blasint; |
23 | | #if defined(_WIN64) |
24 | | #define blasabs(x) llabs(x) |
25 | | #else |
26 | | #define blasabs(x) labs(x) |
27 | | #endif |
28 | | #else |
29 | | typedef int blasint; |
30 | | #define blasabs(x) abs(x) |
31 | | #endif |
32 | | |
33 | | typedef blasint integer; |
34 | | |
35 | | typedef unsigned int uinteger; |
36 | | typedef char *address; |
37 | | typedef short int shortint; |
38 | | typedef float real; |
39 | | typedef double doublereal; |
40 | | typedef struct { real r, i; } complex; |
41 | | typedef struct { doublereal r, i; } doublecomplex; |
42 | | #ifdef _MSC_VER |
43 | | static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} |
44 | | static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} |
45 | | static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} |
46 | | static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} |
47 | | #else |
48 | 0 | static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} |
49 | 0 | static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} |
50 | 0 | static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} |
51 | 0 | static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} |
52 | | #endif |
53 | | #define pCf(z) (*_pCf(z)) |
54 | | #define pCd(z) (*_pCd(z)) |
55 | | typedef blasint logical; |
56 | | |
57 | | typedef char logical1; |
58 | | typedef char integer1; |
59 | | |
60 | | #define TRUE_ (1) |
61 | | #define FALSE_ (0) |
62 | | |
63 | | /* Extern is for use with -E */ |
64 | | #ifndef Extern |
65 | | #define Extern extern |
66 | | #endif |
67 | | |
68 | | /* I/O stuff */ |
69 | | |
70 | | typedef int flag; |
71 | | typedef int ftnlen; |
72 | | typedef int ftnint; |
73 | | |
74 | | /*external read, write*/ |
75 | | typedef struct |
76 | | { flag cierr; |
77 | | ftnint ciunit; |
78 | | flag ciend; |
79 | | char *cifmt; |
80 | | ftnint cirec; |
81 | | } cilist; |
82 | | |
83 | | /*internal read, write*/ |
84 | | typedef struct |
85 | | { flag icierr; |
86 | | char *iciunit; |
87 | | flag iciend; |
88 | | char *icifmt; |
89 | | ftnint icirlen; |
90 | | ftnint icirnum; |
91 | | } icilist; |
92 | | |
93 | | /*open*/ |
94 | | typedef struct |
95 | | { flag oerr; |
96 | | ftnint ounit; |
97 | | char *ofnm; |
98 | | ftnlen ofnmlen; |
99 | | char *osta; |
100 | | char *oacc; |
101 | | char *ofm; |
102 | | ftnint orl; |
103 | | char *oblnk; |
104 | | } olist; |
105 | | |
106 | | /*close*/ |
107 | | typedef struct |
108 | | { flag cerr; |
109 | | ftnint cunit; |
110 | | char *csta; |
111 | | } cllist; |
112 | | |
113 | | /*rewind, backspace, endfile*/ |
114 | | typedef struct |
115 | | { flag aerr; |
116 | | ftnint aunit; |
117 | | } alist; |
118 | | |
119 | | /* inquire */ |
120 | | typedef struct |
121 | | { flag inerr; |
122 | | ftnint inunit; |
123 | | char *infile; |
124 | | ftnlen infilen; |
125 | | ftnint *inex; /*parameters in standard's order*/ |
126 | | ftnint *inopen; |
127 | | ftnint *innum; |
128 | | ftnint *innamed; |
129 | | char *inname; |
130 | | ftnlen innamlen; |
131 | | char *inacc; |
132 | | ftnlen inacclen; |
133 | | char *inseq; |
134 | | ftnlen inseqlen; |
135 | | char *indir; |
136 | | ftnlen indirlen; |
137 | | char *infmt; |
138 | | ftnlen infmtlen; |
139 | | char *inform; |
140 | | ftnint informlen; |
141 | | char *inunf; |
142 | | ftnlen inunflen; |
143 | | ftnint *inrecl; |
144 | | ftnint *innrec; |
145 | | char *inblank; |
146 | | ftnlen inblanklen; |
147 | | } inlist; |
148 | | |
149 | | #define VOID void |
150 | | |
151 | | union Multitype { /* for multiple entry points */ |
152 | | integer1 g; |
153 | | shortint h; |
154 | | integer i; |
155 | | /* longint j; */ |
156 | | real r; |
157 | | doublereal d; |
158 | | complex c; |
159 | | doublecomplex z; |
160 | | }; |
161 | | |
162 | | typedef union Multitype Multitype; |
163 | | |
164 | | struct Vardesc { /* for Namelist */ |
165 | | char *name; |
166 | | char *addr; |
167 | | ftnlen *dims; |
168 | | int type; |
169 | | }; |
170 | | typedef struct Vardesc Vardesc; |
171 | | |
172 | | struct Namelist { |
173 | | char *name; |
174 | | Vardesc **vars; |
175 | | int nvars; |
176 | | }; |
177 | | typedef struct Namelist Namelist; |
178 | | |
179 | | #define abs(x) ((x) >= 0 ? (x) : -(x)) |
180 | | #define dabs(x) (fabs(x)) |
181 | | #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) |
182 | | #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) |
183 | | #define dmin(a,b) (f2cmin(a,b)) |
184 | | #define dmax(a,b) (f2cmax(a,b)) |
185 | | #define bit_test(a,b) ((a) >> (b) & 1) |
186 | | #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) |
187 | | #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) |
188 | | |
189 | | #define abort_() { sig_die("Fortran abort routine called", 1); } |
190 | | #define c_abs(z) (cabsf(Cf(z))) |
191 | | #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } |
192 | | #ifdef _MSC_VER |
193 | | #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} |
194 | | #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} |
195 | | #else |
196 | | #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} |
197 | | #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} |
198 | | #endif |
199 | | #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} |
200 | | #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} |
201 | | #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} |
202 | | //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} |
203 | | #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} |
204 | | #define d_abs(x) (fabs(*(x))) |
205 | | #define d_acos(x) (acos(*(x))) |
206 | | #define d_asin(x) (asin(*(x))) |
207 | | #define d_atan(x) (atan(*(x))) |
208 | | #define d_atn2(x, y) (atan2(*(x),*(y))) |
209 | | #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } |
210 | | #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } |
211 | | #define d_cos(x) (cos(*(x))) |
212 | | #define d_cosh(x) (cosh(*(x))) |
213 | | #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) |
214 | | #define d_exp(x) (exp(*(x))) |
215 | | #define d_imag(z) (cimag(Cd(z))) |
216 | | #define r_imag(z) (cimagf(Cf(z))) |
217 | | #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
218 | | #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) |
219 | | #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
220 | | #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) |
221 | | #define d_log(x) (log(*(x))) |
222 | | #define d_mod(x, y) (fmod(*(x), *(y))) |
223 | | #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) |
224 | | #define d_nint(x) u_nint(*(x)) |
225 | | #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) |
226 | | #define d_sign(a,b) u_sign(*(a),*(b)) |
227 | | #define r_sign(a,b) u_sign(*(a),*(b)) |
228 | | #define d_sin(x) (sin(*(x))) |
229 | | #define d_sinh(x) (sinh(*(x))) |
230 | | #define d_sqrt(x) (sqrt(*(x))) |
231 | | #define d_tan(x) (tan(*(x))) |
232 | | #define d_tanh(x) (tanh(*(x))) |
233 | | #define i_abs(x) abs(*(x)) |
234 | | #define i_dnnt(x) ((integer)u_nint(*(x))) |
235 | | #define i_len(s, n) (n) |
236 | | #define i_nint(x) ((integer)u_nint(*(x))) |
237 | | #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) |
238 | | #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) |
239 | | #define pow_si(B,E) spow_ui(*(B),*(E)) |
240 | | #define pow_ri(B,E) spow_ui(*(B),*(E)) |
241 | | #define pow_di(B,E) dpow_ui(*(B),*(E)) |
242 | | #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} |
243 | | #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} |
244 | | #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} |
245 | | #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } |
246 | | #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) |
247 | | #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } |
248 | | #define sig_die(s, kill) { exit(1); } |
249 | | #define s_stop(s, n) {exit(0);} |
250 | | static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; |
251 | | #define z_abs(z) (cabs(Cd(z))) |
252 | | #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} |
253 | | #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} |
254 | | #define myexit_() break; |
255 | | #define mycycle() continue; |
256 | | #define myceiling(w) {ceil(w)} |
257 | | #define myhuge(w) {HUGE_VAL} |
258 | | //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} |
259 | | #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} |
260 | | |
261 | | /* procedure parameter types for -A and -C++ */ |
262 | | |
263 | | |
264 | | #ifdef __cplusplus |
265 | | typedef logical (*L_fp)(...); |
266 | | #else |
267 | | typedef logical (*L_fp)(); |
268 | | #endif |
269 | | |
270 | 0 | static float spow_ui(float x, integer n) { |
271 | 0 | float pow=1.0; unsigned long int u; |
272 | 0 | if(n != 0) { |
273 | 0 | if(n < 0) n = -n, x = 1/x; |
274 | 0 | for(u = n; ; ) { |
275 | 0 | if(u & 01) pow *= x; |
276 | 0 | if(u >>= 1) x *= x; |
277 | 0 | else break; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | return pow; |
281 | 0 | } |
282 | 0 | static double dpow_ui(double x, integer n) { |
283 | 0 | double pow=1.0; unsigned long int u; |
284 | 0 | if(n != 0) { |
285 | 0 | if(n < 0) n = -n, x = 1/x; |
286 | 0 | for(u = n; ; ) { |
287 | 0 | if(u & 01) pow *= x; |
288 | 0 | if(u >>= 1) x *= x; |
289 | 0 | else break; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return pow; |
293 | 0 | } |
294 | | #ifdef _MSC_VER |
295 | | static _Fcomplex cpow_ui(complex x, integer n) { |
296 | | complex pow={1.0,0.0}; unsigned long int u; |
297 | | if(n != 0) { |
298 | | if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; |
299 | | for(u = n; ; ) { |
300 | | if(u & 01) pow.r *= x.r, pow.i *= x.i; |
301 | | if(u >>= 1) x.r *= x.r, x.i *= x.i; |
302 | | else break; |
303 | | } |
304 | | } |
305 | | _Fcomplex p={pow.r, pow.i}; |
306 | | return p; |
307 | | } |
308 | | #else |
309 | 0 | static _Complex float cpow_ui(_Complex float x, integer n) { |
310 | 0 | _Complex float pow=1.0; unsigned long int u; |
311 | 0 | if(n != 0) { |
312 | 0 | if(n < 0) n = -n, x = 1/x; |
313 | 0 | for(u = n; ; ) { |
314 | 0 | if(u & 01) pow *= x; |
315 | 0 | if(u >>= 1) x *= x; |
316 | 0 | else break; |
317 | 0 | } |
318 | 0 | } |
319 | 0 | return pow; |
320 | 0 | } |
321 | | #endif |
322 | | #ifdef _MSC_VER |
323 | | static _Dcomplex zpow_ui(_Dcomplex x, integer n) { |
324 | | _Dcomplex pow={1.0,0.0}; unsigned long int u; |
325 | | if(n != 0) { |
326 | | if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; |
327 | | for(u = n; ; ) { |
328 | | if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; |
329 | | if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; |
330 | | else break; |
331 | | } |
332 | | } |
333 | | _Dcomplex p = {pow._Val[0], pow._Val[1]}; |
334 | | return p; |
335 | | } |
336 | | #else |
337 | 0 | static _Complex double zpow_ui(_Complex double x, integer n) { |
338 | 0 | _Complex double pow=1.0; unsigned long int u; |
339 | 0 | if(n != 0) { |
340 | 0 | if(n < 0) n = -n, x = 1/x; |
341 | 0 | for(u = n; ; ) { |
342 | 0 | if(u & 01) pow *= x; |
343 | 0 | if(u >>= 1) x *= x; |
344 | 0 | else break; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | return pow; |
348 | 0 | } |
349 | | #endif |
350 | 0 | static integer pow_ii(integer x, integer n) { |
351 | 0 | integer pow; unsigned long int u; |
352 | 0 | if (n <= 0) { |
353 | 0 | if (n == 0 || x == 1) pow = 1; |
354 | 0 | else if (x != -1) pow = x == 0 ? 1/x : 0; |
355 | 0 | else n = -n; |
356 | 0 | } |
357 | 0 | if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { |
358 | 0 | u = n; |
359 | 0 | for(pow = 1; ; ) { |
360 | 0 | if(u & 01) pow *= x; |
361 | 0 | if(u >>= 1) x *= x; |
362 | 0 | else break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | return pow; |
366 | 0 | } |
367 | | static integer dmaxloc_(double *w, integer s, integer e, integer *n) |
368 | 0 | { |
369 | 0 | double m; integer i, mi; |
370 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
371 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
372 | 0 | return mi-s+1; |
373 | 0 | } |
374 | | static integer smaxloc_(float *w, integer s, integer e, integer *n) |
375 | 0 | { |
376 | 0 | float m; integer i, mi; |
377 | 0 | for(m=w[s-1], mi=s, i=s+1; i<=e; i++) |
378 | 0 | if (w[i-1]>m) mi=i ,m=w[i-1]; |
379 | 0 | return mi-s+1; |
380 | 0 | } |
381 | 0 | static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
382 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
383 | 0 | #ifdef _MSC_VER |
384 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
385 | 0 | if (incx == 1 && incy == 1) { |
386 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
387 | 0 | zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; |
388 | 0 | zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; |
389 | 0 | } |
390 | 0 | } else { |
391 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
392 | 0 | zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; |
393 | 0 | zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | pCf(z) = zdotc; |
397 | 0 | } |
398 | 0 | #else |
399 | 0 | _Complex float zdotc = 0.0; |
400 | 0 | if (incx == 1 && incy == 1) { |
401 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
402 | 0 | zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); |
403 | 0 | } |
404 | 0 | } else { |
405 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
406 | 0 | zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); |
407 | 0 | } |
408 | 0 | } |
409 | 0 | pCf(z) = zdotc; |
410 | 0 | } |
411 | | #endif |
412 | 0 | static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
413 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
414 | 0 | #ifdef _MSC_VER |
415 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
416 | 0 | if (incx == 1 && incy == 1) { |
417 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
418 | 0 | zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; |
419 | 0 | zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; |
420 | 0 | } |
421 | 0 | } else { |
422 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
423 | 0 | zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; |
424 | 0 | zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; |
425 | 0 | } |
426 | 0 | } |
427 | 0 | pCd(z) = zdotc; |
428 | 0 | } |
429 | 0 | #else |
430 | 0 | _Complex double zdotc = 0.0; |
431 | 0 | if (incx == 1 && incy == 1) { |
432 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
433 | 0 | zdotc += conj(Cd(&x[i])) * Cd(&y[i]); |
434 | 0 | } |
435 | 0 | } else { |
436 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
437 | 0 | zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | pCd(z) = zdotc; |
441 | 0 | } |
442 | | #endif |
443 | 0 | static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { |
444 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
445 | 0 | #ifdef _MSC_VER |
446 | 0 | _Fcomplex zdotc = {0.0, 0.0}; |
447 | 0 | if (incx == 1 && incy == 1) { |
448 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
449 | 0 | zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; |
450 | 0 | zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; |
451 | 0 | } |
452 | 0 | } else { |
453 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
454 | 0 | zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; |
455 | 0 | zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pCf(z) = zdotc; |
459 | 0 | } |
460 | 0 | #else |
461 | 0 | _Complex float zdotc = 0.0; |
462 | 0 | if (incx == 1 && incy == 1) { |
463 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
464 | 0 | zdotc += Cf(&x[i]) * Cf(&y[i]); |
465 | 0 | } |
466 | 0 | } else { |
467 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
468 | 0 | zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); |
469 | 0 | } |
470 | 0 | } |
471 | 0 | pCf(z) = zdotc; |
472 | 0 | } |
473 | | #endif |
474 | 0 | static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { |
475 | 0 | integer n = *n_, incx = *incx_, incy = *incy_, i; |
476 | 0 | #ifdef _MSC_VER |
477 | 0 | _Dcomplex zdotc = {0.0, 0.0}; |
478 | 0 | if (incx == 1 && incy == 1) { |
479 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
480 | 0 | zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; |
481 | 0 | zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; |
482 | 0 | } |
483 | 0 | } else { |
484 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
485 | 0 | zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; |
486 | 0 | zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; |
487 | 0 | } |
488 | 0 | } |
489 | 0 | pCd(z) = zdotc; |
490 | 0 | } |
491 | 0 | #else |
492 | 0 | _Complex double zdotc = 0.0; |
493 | 0 | if (incx == 1 && incy == 1) { |
494 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
495 | 0 | zdotc += Cd(&x[i]) * Cd(&y[i]); |
496 | 0 | } |
497 | 0 | } else { |
498 | 0 | for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ |
499 | 0 | zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); |
500 | 0 | } |
501 | 0 | } |
502 | 0 | pCd(z) = zdotc; |
503 | 0 | } |
504 | | #endif |
505 | | /* -- translated by f2c (version 20000121). |
506 | | You must link the resulting object file with the libraries: |
507 | | -lf2c -lm (in that order) |
508 | | */ |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | /* Table of constant values */ |
514 | | |
515 | | static integer c__1 = 1; |
516 | | static real c_b14 = 1.f; |
517 | | static real c_b25 = -1.f; |
518 | | |
519 | | /* > \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix. */ |
520 | | |
521 | | /* =========== DOCUMENTATION =========== */ |
522 | | |
523 | | /* Online html documentation available at */ |
524 | | /* http://www.netlib.org/lapack/explore-html/ */ |
525 | | |
526 | | /* > \htmlonly */ |
527 | | /* > Download SLARFB + dependencies */ |
528 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb. |
529 | | f"> */ |
530 | | /* > [TGZ]</a> */ |
531 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb. |
532 | | f"> */ |
533 | | /* > [ZIP]</a> */ |
534 | | /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb. |
535 | | f"> */ |
536 | | /* > [TXT]</a> */ |
537 | | /* > \endhtmlonly */ |
538 | | |
539 | | /* Definition: */ |
540 | | /* =========== */ |
541 | | |
542 | | /* SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */ |
543 | | /* T, LDT, C, LDC, WORK, LDWORK ) */ |
544 | | |
545 | | /* CHARACTER DIRECT, SIDE, STOREV, TRANS */ |
546 | | /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */ |
547 | | /* REAL C( LDC, * ), T( LDT, * ), V( LDV, * ), */ |
548 | | /* $ WORK( LDWORK, * ) */ |
549 | | |
550 | | |
551 | | /* > \par Purpose: */ |
552 | | /* ============= */ |
553 | | /* > */ |
554 | | /* > \verbatim */ |
555 | | /* > */ |
556 | | /* > SLARFB applies a real block reflector H or its transpose H**T to a */ |
557 | | /* > real m by n matrix C, from either the left or the right. */ |
558 | | /* > \endverbatim */ |
559 | | |
560 | | /* Arguments: */ |
561 | | /* ========== */ |
562 | | |
563 | | /* > \param[in] SIDE */ |
564 | | /* > \verbatim */ |
565 | | /* > SIDE is CHARACTER*1 */ |
566 | | /* > = 'L': apply H or H**T from the Left */ |
567 | | /* > = 'R': apply H or H**T from the Right */ |
568 | | /* > \endverbatim */ |
569 | | /* > */ |
570 | | /* > \param[in] TRANS */ |
571 | | /* > \verbatim */ |
572 | | /* > TRANS is CHARACTER*1 */ |
573 | | /* > = 'N': apply H (No transpose) */ |
574 | | /* > = 'T': apply H**T (Transpose) */ |
575 | | /* > \endverbatim */ |
576 | | /* > */ |
577 | | /* > \param[in] DIRECT */ |
578 | | /* > \verbatim */ |
579 | | /* > DIRECT is CHARACTER*1 */ |
580 | | /* > Indicates how H is formed from a product of elementary */ |
581 | | /* > reflectors */ |
582 | | /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ |
583 | | /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ |
584 | | /* > \endverbatim */ |
585 | | /* > */ |
586 | | /* > \param[in] STOREV */ |
587 | | /* > \verbatim */ |
588 | | /* > STOREV is CHARACTER*1 */ |
589 | | /* > Indicates how the vectors which define the elementary */ |
590 | | /* > reflectors are stored: */ |
591 | | /* > = 'C': Columnwise */ |
592 | | /* > = 'R': Rowwise */ |
593 | | /* > \endverbatim */ |
594 | | /* > */ |
595 | | /* > \param[in] M */ |
596 | | /* > \verbatim */ |
597 | | /* > M is INTEGER */ |
598 | | /* > The number of rows of the matrix C. */ |
599 | | /* > \endverbatim */ |
600 | | /* > */ |
601 | | /* > \param[in] N */ |
602 | | /* > \verbatim */ |
603 | | /* > N is INTEGER */ |
604 | | /* > The number of columns of the matrix C. */ |
605 | | /* > \endverbatim */ |
606 | | /* > */ |
607 | | /* > \param[in] K */ |
608 | | /* > \verbatim */ |
609 | | /* > K is INTEGER */ |
610 | | /* > The order of the matrix T (= the number of elementary */ |
611 | | /* > reflectors whose product defines the block reflector). */ |
612 | | /* > If SIDE = 'L', M >= K >= 0; */ |
613 | | /* > if SIDE = 'R', N >= K >= 0. */ |
614 | | /* > \endverbatim */ |
615 | | /* > */ |
616 | | /* > \param[in] V */ |
617 | | /* > \verbatim */ |
618 | | /* > V is REAL array, dimension */ |
619 | | /* > (LDV,K) if STOREV = 'C' */ |
620 | | /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */ |
621 | | /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */ |
622 | | /* > The matrix V. See Further Details. */ |
623 | | /* > \endverbatim */ |
624 | | /* > */ |
625 | | /* > \param[in] LDV */ |
626 | | /* > \verbatim */ |
627 | | /* > LDV is INTEGER */ |
628 | | /* > The leading dimension of the array V. */ |
629 | | /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */ |
630 | | /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */ |
631 | | /* > if STOREV = 'R', LDV >= K. */ |
632 | | /* > \endverbatim */ |
633 | | /* > */ |
634 | | /* > \param[in] T */ |
635 | | /* > \verbatim */ |
636 | | /* > T is REAL array, dimension (LDT,K) */ |
637 | | /* > The triangular k by k matrix T in the representation of the */ |
638 | | /* > block reflector. */ |
639 | | /* > \endverbatim */ |
640 | | /* > */ |
641 | | /* > \param[in] LDT */ |
642 | | /* > \verbatim */ |
643 | | /* > LDT is INTEGER */ |
644 | | /* > The leading dimension of the array T. LDT >= K. */ |
645 | | /* > \endverbatim */ |
646 | | /* > */ |
647 | | /* > \param[in,out] C */ |
648 | | /* > \verbatim */ |
649 | | /* > C is REAL array, dimension (LDC,N) */ |
650 | | /* > On entry, the m by n matrix C. */ |
651 | | /* > On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */ |
652 | | /* > \endverbatim */ |
653 | | /* > */ |
654 | | /* > \param[in] LDC */ |
655 | | /* > \verbatim */ |
656 | | /* > LDC is INTEGER */ |
657 | | /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */ |
658 | | /* > \endverbatim */ |
659 | | /* > */ |
660 | | /* > \param[out] WORK */ |
661 | | /* > \verbatim */ |
662 | | /* > WORK is REAL array, dimension (LDWORK,K) */ |
663 | | /* > \endverbatim */ |
664 | | /* > */ |
665 | | /* > \param[in] LDWORK */ |
666 | | /* > \verbatim */ |
667 | | /* > LDWORK is INTEGER */ |
668 | | /* > The leading dimension of the array WORK. */ |
669 | | /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */ |
670 | | /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */ |
671 | | /* > \endverbatim */ |
672 | | |
673 | | /* Authors: */ |
674 | | /* ======== */ |
675 | | |
676 | | /* > \author Univ. of Tennessee */ |
677 | | /* > \author Univ. of California Berkeley */ |
678 | | /* > \author Univ. of Colorado Denver */ |
679 | | /* > \author NAG Ltd. */ |
680 | | |
681 | | /* > \date June 2013 */ |
682 | | |
683 | | /* > \ingroup realOTHERauxiliary */ |
684 | | |
685 | | /* > \par Further Details: */ |
686 | | /* ===================== */ |
687 | | /* > */ |
688 | | /* > \verbatim */ |
689 | | /* > */ |
690 | | /* > The shape of the matrix V and the storage of the vectors which define */ |
691 | | /* > the H(i) is best illustrated by the following example with n = 5 and */ |
692 | | /* > k = 3. The elements equal to 1 are not stored; the corresponding */ |
693 | | /* > array elements are modified but restored on exit. The rest of the */ |
694 | | /* > array is not used. */ |
695 | | /* > */ |
696 | | /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ |
697 | | /* > */ |
698 | | /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ |
699 | | /* > ( v1 1 ) ( 1 v2 v2 v2 ) */ |
700 | | /* > ( v1 v2 1 ) ( 1 v3 v3 ) */ |
701 | | /* > ( v1 v2 v3 ) */ |
702 | | /* > ( v1 v2 v3 ) */ |
703 | | /* > */ |
704 | | /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ |
705 | | /* > */ |
706 | | /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ |
707 | | /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ |
708 | | /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ |
709 | | /* > ( 1 v3 ) */ |
710 | | /* > ( 1 ) */ |
711 | | /* > \endverbatim */ |
712 | | /* > */ |
713 | | /* ===================================================================== */ |
714 | | /* Subroutine */ void slarfb_(char *side, char *trans, char *direct, char * |
715 | | storev, integer *m, integer *n, integer *k, real *v, integer *ldv, |
716 | | real *t, integer *ldt, real *c__, integer *ldc, real *work, integer * |
717 | | ldwork) |
718 | 0 | { |
719 | | /* System generated locals */ |
720 | 0 | integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, |
721 | 0 | work_offset, i__1, i__2; |
722 | | |
723 | | /* Local variables */ |
724 | 0 | integer i__, j; |
725 | 0 | extern logical lsame_(char *, char *); |
726 | 0 | extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, |
727 | 0 | integer *, real *, real *, integer *, real *, integer *, real *, |
728 | 0 | real *, integer *), scopy_(integer *, real *, |
729 | 0 | integer *, real *, integer *), strmm_(char *, char *, char *, |
730 | 0 | char *, integer *, integer *, real *, real *, integer *, real *, |
731 | 0 | integer *); |
732 | 0 | char transt[1]; |
733 | | |
734 | | |
735 | | /* -- LAPACK auxiliary routine (version 3.7.0) -- */ |
736 | | /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
737 | | /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
738 | | /* June 2013 */ |
739 | | |
740 | | |
741 | | /* ===================================================================== */ |
742 | | |
743 | | |
744 | | /* Quick return if possible */ |
745 | | |
746 | | /* Parameter adjustments */ |
747 | 0 | v_dim1 = *ldv; |
748 | 0 | v_offset = 1 + v_dim1 * 1; |
749 | 0 | v -= v_offset; |
750 | 0 | t_dim1 = *ldt; |
751 | 0 | t_offset = 1 + t_dim1 * 1; |
752 | 0 | t -= t_offset; |
753 | 0 | c_dim1 = *ldc; |
754 | 0 | c_offset = 1 + c_dim1 * 1; |
755 | 0 | c__ -= c_offset; |
756 | 0 | work_dim1 = *ldwork; |
757 | 0 | work_offset = 1 + work_dim1 * 1; |
758 | 0 | work -= work_offset; |
759 | | |
760 | | /* Function Body */ |
761 | 0 | if (*m <= 0 || *n <= 0) { |
762 | 0 | return; |
763 | 0 | } |
764 | | |
765 | 0 | if (lsame_(trans, "N")) { |
766 | 0 | *(unsigned char *)transt = 'T'; |
767 | 0 | } else { |
768 | 0 | *(unsigned char *)transt = 'N'; |
769 | 0 | } |
770 | |
|
771 | 0 | if (lsame_(storev, "C")) { |
772 | |
|
773 | 0 | if (lsame_(direct, "F")) { |
774 | | |
775 | | /* Let V = ( V1 ) (first K rows) */ |
776 | | /* ( V2 ) */ |
777 | | /* where V1 is unit lower triangular. */ |
778 | |
|
779 | 0 | if (lsame_(side, "L")) { |
780 | | |
781 | | /* Form H * C or H**T * C where C = ( C1 ) */ |
782 | | /* ( C2 ) */ |
783 | | |
784 | | /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */ |
785 | | |
786 | | /* W := C1**T */ |
787 | |
|
788 | 0 | i__1 = *k; |
789 | 0 | for (j = 1; j <= i__1; ++j) { |
790 | 0 | scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], |
791 | 0 | &c__1); |
792 | | /* L10: */ |
793 | 0 | } |
794 | | |
795 | | /* W := W * V1 */ |
796 | |
|
797 | 0 | strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14, |
798 | 0 | &v[v_offset], ldv, &work[work_offset], ldwork); |
799 | 0 | if (*m > *k) { |
800 | | |
801 | | /* W := W + C2**T * V2 */ |
802 | |
|
803 | 0 | i__1 = *m - *k; |
804 | 0 | sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, & |
805 | 0 | c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1], |
806 | 0 | ldv, &c_b14, &work[work_offset], ldwork); |
807 | 0 | } |
808 | | |
809 | | /* W := W * T**T or W * T */ |
810 | |
|
811 | 0 | strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[ |
812 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
813 | | |
814 | | /* C := C - V * W**T */ |
815 | |
|
816 | 0 | if (*m > *k) { |
817 | | |
818 | | /* C2 := C2 - V2 * W**T */ |
819 | |
|
820 | 0 | i__1 = *m - *k; |
821 | 0 | sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, & |
822 | 0 | v[*k + 1 + v_dim1], ldv, &work[work_offset], |
823 | 0 | ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc); |
824 | 0 | } |
825 | | |
826 | | /* W := W * V1**T */ |
827 | |
|
828 | 0 | strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, & |
829 | 0 | v[v_offset], ldv, &work[work_offset], ldwork); |
830 | | |
831 | | /* C1 := C1 - W**T */ |
832 | |
|
833 | 0 | i__1 = *k; |
834 | 0 | for (j = 1; j <= i__1; ++j) { |
835 | 0 | i__2 = *n; |
836 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
837 | 0 | c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1]; |
838 | | /* L20: */ |
839 | 0 | } |
840 | | /* L30: */ |
841 | 0 | } |
842 | |
|
843 | 0 | } else if (lsame_(side, "R")) { |
844 | | |
845 | | /* Form C * H or C * H**T where C = ( C1 C2 ) */ |
846 | | |
847 | | /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ |
848 | | |
849 | | /* W := C1 */ |
850 | |
|
851 | 0 | i__1 = *k; |
852 | 0 | for (j = 1; j <= i__1; ++j) { |
853 | 0 | scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * |
854 | 0 | work_dim1 + 1], &c__1); |
855 | | /* L40: */ |
856 | 0 | } |
857 | | |
858 | | /* W := W * V1 */ |
859 | |
|
860 | 0 | strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14, |
861 | 0 | &v[v_offset], ldv, &work[work_offset], ldwork); |
862 | 0 | if (*n > *k) { |
863 | | |
864 | | /* W := W + C2 * V2 */ |
865 | |
|
866 | 0 | i__1 = *n - *k; |
867 | 0 | sgemm_("No transpose", "No transpose", m, k, &i__1, & |
868 | 0 | c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + |
869 | 0 | 1 + v_dim1], ldv, &c_b14, &work[work_offset], |
870 | 0 | ldwork); |
871 | 0 | } |
872 | | |
873 | | /* W := W * T or W * T**T */ |
874 | |
|
875 | 0 | strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[ |
876 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
877 | | |
878 | | /* C := C - W * V**T */ |
879 | |
|
880 | 0 | if (*n > *k) { |
881 | | |
882 | | /* C2 := C2 - W * V2**T */ |
883 | |
|
884 | 0 | i__1 = *n - *k; |
885 | 0 | sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, & |
886 | 0 | work[work_offset], ldwork, &v[*k + 1 + v_dim1], |
887 | 0 | ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc); |
888 | 0 | } |
889 | | |
890 | | /* W := W * V1**T */ |
891 | |
|
892 | 0 | strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, & |
893 | 0 | v[v_offset], ldv, &work[work_offset], ldwork); |
894 | | |
895 | | /* C1 := C1 - W */ |
896 | |
|
897 | 0 | i__1 = *k; |
898 | 0 | for (j = 1; j <= i__1; ++j) { |
899 | 0 | i__2 = *m; |
900 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
901 | 0 | c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1]; |
902 | | /* L50: */ |
903 | 0 | } |
904 | | /* L60: */ |
905 | 0 | } |
906 | 0 | } |
907 | |
|
908 | 0 | } else { |
909 | | |
910 | | /* Let V = ( V1 ) */ |
911 | | /* ( V2 ) (last K rows) */ |
912 | | /* where V2 is unit upper triangular. */ |
913 | |
|
914 | 0 | if (lsame_(side, "L")) { |
915 | | |
916 | | /* Form H * C or H**T * C where C = ( C1 ) */ |
917 | | /* ( C2 ) */ |
918 | | |
919 | | /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */ |
920 | | |
921 | | /* W := C2**T */ |
922 | |
|
923 | 0 | i__1 = *k; |
924 | 0 | for (j = 1; j <= i__1; ++j) { |
925 | 0 | scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * |
926 | 0 | work_dim1 + 1], &c__1); |
927 | | /* L70: */ |
928 | 0 | } |
929 | | |
930 | | /* W := W * V2 */ |
931 | |
|
932 | 0 | strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14, |
933 | 0 | &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], |
934 | 0 | ldwork); |
935 | 0 | if (*m > *k) { |
936 | | |
937 | | /* W := W + C1**T * V1 */ |
938 | |
|
939 | 0 | i__1 = *m - *k; |
940 | 0 | sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, & |
941 | 0 | c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & |
942 | 0 | work[work_offset], ldwork); |
943 | 0 | } |
944 | | |
945 | | /* W := W * T**T or W * T */ |
946 | |
|
947 | 0 | strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[ |
948 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
949 | | |
950 | | /* C := C - V * W**T */ |
951 | |
|
952 | 0 | if (*m > *k) { |
953 | | |
954 | | /* C1 := C1 - V1 * W**T */ |
955 | |
|
956 | 0 | i__1 = *m - *k; |
957 | 0 | sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, & |
958 | 0 | v[v_offset], ldv, &work[work_offset], ldwork, & |
959 | 0 | c_b14, &c__[c_offset], ldc) |
960 | 0 | ; |
961 | 0 | } |
962 | | |
963 | | /* W := W * V2**T */ |
964 | |
|
965 | 0 | strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, & |
966 | 0 | v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], |
967 | 0 | ldwork); |
968 | | |
969 | | /* C2 := C2 - W**T */ |
970 | |
|
971 | 0 | i__1 = *k; |
972 | 0 | for (j = 1; j <= i__1; ++j) { |
973 | 0 | i__2 = *n; |
974 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
975 | 0 | c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * |
976 | 0 | work_dim1]; |
977 | | /* L80: */ |
978 | 0 | } |
979 | | /* L90: */ |
980 | 0 | } |
981 | |
|
982 | 0 | } else if (lsame_(side, "R")) { |
983 | | |
984 | | /* Form C * H or C * H' where C = ( C1 C2 ) */ |
985 | | |
986 | | /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ |
987 | | |
988 | | /* W := C2 */ |
989 | |
|
990 | 0 | i__1 = *k; |
991 | 0 | for (j = 1; j <= i__1; ++j) { |
992 | 0 | scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ |
993 | 0 | j * work_dim1 + 1], &c__1); |
994 | | /* L100: */ |
995 | 0 | } |
996 | | |
997 | | /* W := W * V2 */ |
998 | |
|
999 | 0 | strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14, |
1000 | 0 | &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], |
1001 | 0 | ldwork); |
1002 | 0 | if (*n > *k) { |
1003 | | |
1004 | | /* W := W + C1 * V1 */ |
1005 | |
|
1006 | 0 | i__1 = *n - *k; |
1007 | 0 | sgemm_("No transpose", "No transpose", m, k, &i__1, & |
1008 | 0 | c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, & |
1009 | 0 | c_b14, &work[work_offset], ldwork); |
1010 | 0 | } |
1011 | | |
1012 | | /* W := W * T or W * T**T */ |
1013 | |
|
1014 | 0 | strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[ |
1015 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
1016 | | |
1017 | | /* C := C - W * V**T */ |
1018 | |
|
1019 | 0 | if (*n > *k) { |
1020 | | |
1021 | | /* C1 := C1 - W * V1**T */ |
1022 | |
|
1023 | 0 | i__1 = *n - *k; |
1024 | 0 | sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, & |
1025 | 0 | work[work_offset], ldwork, &v[v_offset], ldv, & |
1026 | 0 | c_b14, &c__[c_offset], ldc) |
1027 | 0 | ; |
1028 | 0 | } |
1029 | | |
1030 | | /* W := W * V2**T */ |
1031 | |
|
1032 | 0 | strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, & |
1033 | 0 | v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], |
1034 | 0 | ldwork); |
1035 | | |
1036 | | /* C2 := C2 - W */ |
1037 | |
|
1038 | 0 | i__1 = *k; |
1039 | 0 | for (j = 1; j <= i__1; ++j) { |
1040 | 0 | i__2 = *m; |
1041 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
1042 | 0 | c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * |
1043 | 0 | work_dim1]; |
1044 | | /* L110: */ |
1045 | 0 | } |
1046 | | /* L120: */ |
1047 | 0 | } |
1048 | 0 | } |
1049 | 0 | } |
1050 | |
|
1051 | 0 | } else if (lsame_(storev, "R")) { |
1052 | |
|
1053 | 0 | if (lsame_(direct, "F")) { |
1054 | | |
1055 | | /* Let V = ( V1 V2 ) (V1: first K columns) */ |
1056 | | /* where V1 is unit upper triangular. */ |
1057 | |
|
1058 | 0 | if (lsame_(side, "L")) { |
1059 | | |
1060 | | /* Form H * C or H**T * C where C = ( C1 ) */ |
1061 | | /* ( C2 ) */ |
1062 | | |
1063 | | /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */ |
1064 | | |
1065 | | /* W := C1**T */ |
1066 | |
|
1067 | 0 | i__1 = *k; |
1068 | 0 | for (j = 1; j <= i__1; ++j) { |
1069 | 0 | scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], |
1070 | 0 | &c__1); |
1071 | | /* L130: */ |
1072 | 0 | } |
1073 | | |
1074 | | /* W := W * V1**T */ |
1075 | |
|
1076 | 0 | strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, & |
1077 | 0 | v[v_offset], ldv, &work[work_offset], ldwork); |
1078 | 0 | if (*m > *k) { |
1079 | | |
1080 | | /* W := W + C2**T * V2**T */ |
1081 | |
|
1082 | 0 | i__1 = *m - *k; |
1083 | 0 | sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, & |
1084 | 0 | c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 + |
1085 | 0 | 1], ldv, &c_b14, &work[work_offset], ldwork); |
1086 | 0 | } |
1087 | | |
1088 | | /* W := W * T**T or W * T */ |
1089 | |
|
1090 | 0 | strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[ |
1091 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
1092 | | |
1093 | | /* C := C - V**T * W**T */ |
1094 | |
|
1095 | 0 | if (*m > *k) { |
1096 | | |
1097 | | /* C2 := C2 - V2**T * W**T */ |
1098 | |
|
1099 | 0 | i__1 = *m - *k; |
1100 | 0 | sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[( |
1101 | 0 | *k + 1) * v_dim1 + 1], ldv, &work[work_offset], |
1102 | 0 | ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc); |
1103 | 0 | } |
1104 | | |
1105 | | /* W := W * V1 */ |
1106 | |
|
1107 | 0 | strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14, |
1108 | 0 | &v[v_offset], ldv, &work[work_offset], ldwork); |
1109 | | |
1110 | | /* C1 := C1 - W**T */ |
1111 | |
|
1112 | 0 | i__1 = *k; |
1113 | 0 | for (j = 1; j <= i__1; ++j) { |
1114 | 0 | i__2 = *n; |
1115 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
1116 | 0 | c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1]; |
1117 | | /* L140: */ |
1118 | 0 | } |
1119 | | /* L150: */ |
1120 | 0 | } |
1121 | |
|
1122 | 0 | } else if (lsame_(side, "R")) { |
1123 | | |
1124 | | /* Form C * H or C * H**T where C = ( C1 C2 ) */ |
1125 | | |
1126 | | /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */ |
1127 | | |
1128 | | /* W := C1 */ |
1129 | |
|
1130 | 0 | i__1 = *k; |
1131 | 0 | for (j = 1; j <= i__1; ++j) { |
1132 | 0 | scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * |
1133 | 0 | work_dim1 + 1], &c__1); |
1134 | | /* L160: */ |
1135 | 0 | } |
1136 | | |
1137 | | /* W := W * V1**T */ |
1138 | |
|
1139 | 0 | strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, & |
1140 | 0 | v[v_offset], ldv, &work[work_offset], ldwork); |
1141 | 0 | if (*n > *k) { |
1142 | | |
1143 | | /* W := W + C2 * V2**T */ |
1144 | |
|
1145 | 0 | i__1 = *n - *k; |
1146 | 0 | sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, & |
1147 | 0 | c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) * |
1148 | 0 | v_dim1 + 1], ldv, &c_b14, &work[work_offset], |
1149 | 0 | ldwork); |
1150 | 0 | } |
1151 | | |
1152 | | /* W := W * T or W * T**T */ |
1153 | |
|
1154 | 0 | strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[ |
1155 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
1156 | | |
1157 | | /* C := C - W * V */ |
1158 | |
|
1159 | 0 | if (*n > *k) { |
1160 | | |
1161 | | /* C2 := C2 - W * V2 */ |
1162 | |
|
1163 | 0 | i__1 = *n - *k; |
1164 | 0 | sgemm_("No transpose", "No transpose", m, &i__1, k, & |
1165 | 0 | c_b25, &work[work_offset], ldwork, &v[(*k + 1) * |
1166 | 0 | v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1 |
1167 | 0 | + 1], ldc); |
1168 | 0 | } |
1169 | | |
1170 | | /* W := W * V1 */ |
1171 | |
|
1172 | 0 | strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14, |
1173 | 0 | &v[v_offset], ldv, &work[work_offset], ldwork); |
1174 | | |
1175 | | /* C1 := C1 - W */ |
1176 | |
|
1177 | 0 | i__1 = *k; |
1178 | 0 | for (j = 1; j <= i__1; ++j) { |
1179 | 0 | i__2 = *m; |
1180 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
1181 | 0 | c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1]; |
1182 | | /* L170: */ |
1183 | 0 | } |
1184 | | /* L180: */ |
1185 | 0 | } |
1186 | |
|
1187 | 0 | } |
1188 | |
|
1189 | 0 | } else { |
1190 | | |
1191 | | /* Let V = ( V1 V2 ) (V2: last K columns) */ |
1192 | | /* where V2 is unit lower triangular. */ |
1193 | |
|
1194 | 0 | if (lsame_(side, "L")) { |
1195 | | |
1196 | | /* Form H * C or H**T * C where C = ( C1 ) */ |
1197 | | /* ( C2 ) */ |
1198 | | |
1199 | | /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */ |
1200 | | |
1201 | | /* W := C2**T */ |
1202 | |
|
1203 | 0 | i__1 = *k; |
1204 | 0 | for (j = 1; j <= i__1; ++j) { |
1205 | 0 | scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * |
1206 | 0 | work_dim1 + 1], &c__1); |
1207 | | /* L190: */ |
1208 | 0 | } |
1209 | | |
1210 | | /* W := W * V2**T */ |
1211 | |
|
1212 | 0 | strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, & |
1213 | 0 | v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset] |
1214 | 0 | , ldwork); |
1215 | 0 | if (*m > *k) { |
1216 | | |
1217 | | /* W := W + C1**T * V1**T */ |
1218 | |
|
1219 | 0 | i__1 = *m - *k; |
1220 | 0 | sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, & |
1221 | 0 | c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & |
1222 | 0 | work[work_offset], ldwork); |
1223 | 0 | } |
1224 | | |
1225 | | /* W := W * T**T or W * T */ |
1226 | |
|
1227 | 0 | strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[ |
1228 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
1229 | | |
1230 | | /* C := C - V**T * W**T */ |
1231 | |
|
1232 | 0 | if (*m > *k) { |
1233 | | |
1234 | | /* C1 := C1 - V1**T * W**T */ |
1235 | |
|
1236 | 0 | i__1 = *m - *k; |
1237 | 0 | sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[ |
1238 | 0 | v_offset], ldv, &work[work_offset], ldwork, & |
1239 | 0 | c_b14, &c__[c_offset], ldc); |
1240 | 0 | } |
1241 | | |
1242 | | /* W := W * V2 */ |
1243 | |
|
1244 | 0 | strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14, |
1245 | 0 | &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ |
1246 | 0 | work_offset], ldwork); |
1247 | | |
1248 | | /* C2 := C2 - W**T */ |
1249 | |
|
1250 | 0 | i__1 = *k; |
1251 | 0 | for (j = 1; j <= i__1; ++j) { |
1252 | 0 | i__2 = *n; |
1253 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
1254 | 0 | c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * |
1255 | 0 | work_dim1]; |
1256 | | /* L200: */ |
1257 | 0 | } |
1258 | | /* L210: */ |
1259 | 0 | } |
1260 | |
|
1261 | 0 | } else if (lsame_(side, "R")) { |
1262 | | |
1263 | | /* Form C * H or C * H**T where C = ( C1 C2 ) */ |
1264 | | |
1265 | | /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */ |
1266 | | |
1267 | | /* W := C2 */ |
1268 | |
|
1269 | 0 | i__1 = *k; |
1270 | 0 | for (j = 1; j <= i__1; ++j) { |
1271 | 0 | scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ |
1272 | 0 | j * work_dim1 + 1], &c__1); |
1273 | | /* L220: */ |
1274 | 0 | } |
1275 | | |
1276 | | /* W := W * V2**T */ |
1277 | |
|
1278 | 0 | strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, & |
1279 | 0 | v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset] |
1280 | 0 | , ldwork); |
1281 | 0 | if (*n > *k) { |
1282 | | |
1283 | | /* W := W + C1 * V1**T */ |
1284 | |
|
1285 | 0 | i__1 = *n - *k; |
1286 | 0 | sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, & |
1287 | 0 | c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, & |
1288 | 0 | work[work_offset], ldwork); |
1289 | 0 | } |
1290 | | |
1291 | | /* W := W * T or W * T**T */ |
1292 | |
|
1293 | 0 | strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[ |
1294 | 0 | t_offset], ldt, &work[work_offset], ldwork); |
1295 | | |
1296 | | /* C := C - W * V */ |
1297 | |
|
1298 | 0 | if (*n > *k) { |
1299 | | |
1300 | | /* C1 := C1 - W * V1 */ |
1301 | |
|
1302 | 0 | i__1 = *n - *k; |
1303 | 0 | sgemm_("No transpose", "No transpose", m, &i__1, k, & |
1304 | 0 | c_b25, &work[work_offset], ldwork, &v[v_offset], |
1305 | 0 | ldv, &c_b14, &c__[c_offset], ldc); |
1306 | 0 | } |
1307 | | |
1308 | | /* W := W * V2 */ |
1309 | |
|
1310 | 0 | strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14, |
1311 | 0 | &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ |
1312 | 0 | work_offset], ldwork); |
1313 | | |
1314 | | /* C1 := C1 - W */ |
1315 | |
|
1316 | 0 | i__1 = *k; |
1317 | 0 | for (j = 1; j <= i__1; ++j) { |
1318 | 0 | i__2 = *m; |
1319 | 0 | for (i__ = 1; i__ <= i__2; ++i__) { |
1320 | 0 | c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * |
1321 | 0 | work_dim1]; |
1322 | | /* L230: */ |
1323 | 0 | } |
1324 | | /* L240: */ |
1325 | 0 | } |
1326 | |
|
1327 | 0 | } |
1328 | |
|
1329 | 0 | } |
1330 | 0 | } |
1331 | |
|
1332 | 0 | return; |
1333 | | |
1334 | | /* End of SLARFB */ |
1335 | |
|
1336 | 0 | } /* slarfb_ */ |
1337 | | |