Coverage Report

Created: 2025-09-15 21:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slarfb.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
static real c_b14 = 1.f;
517
static real c_b25 = -1.f;
518
519
/* > \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix. */
520
521
/*  =========== DOCUMENTATION =========== */
522
523
/* Online html documentation available at */
524
/*            http://www.netlib.org/lapack/explore-html/ */
525
526
/* > \htmlonly */
527
/* > Download SLARFB + dependencies */
528
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.
529
f"> */
530
/* > [TGZ]</a> */
531
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.
532
f"> */
533
/* > [ZIP]</a> */
534
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.
535
f"> */
536
/* > [TXT]</a> */
537
/* > \endhtmlonly */
538
539
/*  Definition: */
540
/*  =========== */
541
542
/*       SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
543
/*                          T, LDT, C, LDC, WORK, LDWORK ) */
544
545
/*       CHARACTER          DIRECT, SIDE, STOREV, TRANS */
546
/*       INTEGER            K, LDC, LDT, LDV, LDWORK, M, N */
547
/*       REAL               C( LDC, * ), T( LDT, * ), V( LDV, * ), */
548
/*      $                   WORK( LDWORK, * ) */
549
550
551
/* > \par Purpose: */
552
/*  ============= */
553
/* > */
554
/* > \verbatim */
555
/* > */
556
/* > SLARFB applies a real block reflector H or its transpose H**T to a */
557
/* > real m by n matrix C, from either the left or the right. */
558
/* > \endverbatim */
559
560
/*  Arguments: */
561
/*  ========== */
562
563
/* > \param[in] SIDE */
564
/* > \verbatim */
565
/* >          SIDE is CHARACTER*1 */
566
/* >          = 'L': apply H or H**T from the Left */
567
/* >          = 'R': apply H or H**T from the Right */
568
/* > \endverbatim */
569
/* > */
570
/* > \param[in] TRANS */
571
/* > \verbatim */
572
/* >          TRANS is CHARACTER*1 */
573
/* >          = 'N': apply H (No transpose) */
574
/* >          = 'T': apply H**T (Transpose) */
575
/* > \endverbatim */
576
/* > */
577
/* > \param[in] DIRECT */
578
/* > \verbatim */
579
/* >          DIRECT is CHARACTER*1 */
580
/* >          Indicates how H is formed from a product of elementary */
581
/* >          reflectors */
582
/* >          = 'F': H = H(1) H(2) . . . H(k) (Forward) */
583
/* >          = 'B': H = H(k) . . . H(2) H(1) (Backward) */
584
/* > \endverbatim */
585
/* > */
586
/* > \param[in] STOREV */
587
/* > \verbatim */
588
/* >          STOREV is CHARACTER*1 */
589
/* >          Indicates how the vectors which define the elementary */
590
/* >          reflectors are stored: */
591
/* >          = 'C': Columnwise */
592
/* >          = 'R': Rowwise */
593
/* > \endverbatim */
594
/* > */
595
/* > \param[in] M */
596
/* > \verbatim */
597
/* >          M is INTEGER */
598
/* >          The number of rows of the matrix C. */
599
/* > \endverbatim */
600
/* > */
601
/* > \param[in] N */
602
/* > \verbatim */
603
/* >          N is INTEGER */
604
/* >          The number of columns of the matrix C. */
605
/* > \endverbatim */
606
/* > */
607
/* > \param[in] K */
608
/* > \verbatim */
609
/* >          K is INTEGER */
610
/* >          The order of the matrix T (= the number of elementary */
611
/* >          reflectors whose product defines the block reflector). */
612
/* >          If SIDE = 'L', M >= K >= 0; */
613
/* >          if SIDE = 'R', N >= K >= 0. */
614
/* > \endverbatim */
615
/* > */
616
/* > \param[in] V */
617
/* > \verbatim */
618
/* >          V is REAL array, dimension */
619
/* >                                (LDV,K) if STOREV = 'C' */
620
/* >                                (LDV,M) if STOREV = 'R' and SIDE = 'L' */
621
/* >                                (LDV,N) if STOREV = 'R' and SIDE = 'R' */
622
/* >          The matrix V. See Further Details. */
623
/* > \endverbatim */
624
/* > */
625
/* > \param[in] LDV */
626
/* > \verbatim */
627
/* >          LDV is INTEGER */
628
/* >          The leading dimension of the array V. */
629
/* >          If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
630
/* >          if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
631
/* >          if STOREV = 'R', LDV >= K. */
632
/* > \endverbatim */
633
/* > */
634
/* > \param[in] T */
635
/* > \verbatim */
636
/* >          T is REAL array, dimension (LDT,K) */
637
/* >          The triangular k by k matrix T in the representation of the */
638
/* >          block reflector. */
639
/* > \endverbatim */
640
/* > */
641
/* > \param[in] LDT */
642
/* > \verbatim */
643
/* >          LDT is INTEGER */
644
/* >          The leading dimension of the array T. LDT >= K. */
645
/* > \endverbatim */
646
/* > */
647
/* > \param[in,out] C */
648
/* > \verbatim */
649
/* >          C is REAL array, dimension (LDC,N) */
650
/* >          On entry, the m by n matrix C. */
651
/* >          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */
652
/* > \endverbatim */
653
/* > */
654
/* > \param[in] LDC */
655
/* > \verbatim */
656
/* >          LDC is INTEGER */
657
/* >          The leading dimension of the array C. LDC >= f2cmax(1,M). */
658
/* > \endverbatim */
659
/* > */
660
/* > \param[out] WORK */
661
/* > \verbatim */
662
/* >          WORK is REAL array, dimension (LDWORK,K) */
663
/* > \endverbatim */
664
/* > */
665
/* > \param[in] LDWORK */
666
/* > \verbatim */
667
/* >          LDWORK is INTEGER */
668
/* >          The leading dimension of the array WORK. */
669
/* >          If SIDE = 'L', LDWORK >= f2cmax(1,N); */
670
/* >          if SIDE = 'R', LDWORK >= f2cmax(1,M). */
671
/* > \endverbatim */
672
673
/*  Authors: */
674
/*  ======== */
675
676
/* > \author Univ. of Tennessee */
677
/* > \author Univ. of California Berkeley */
678
/* > \author Univ. of Colorado Denver */
679
/* > \author NAG Ltd. */
680
681
/* > \date June 2013 */
682
683
/* > \ingroup realOTHERauxiliary */
684
685
/* > \par Further Details: */
686
/*  ===================== */
687
/* > */
688
/* > \verbatim */
689
/* > */
690
/* >  The shape of the matrix V and the storage of the vectors which define */
691
/* >  the H(i) is best illustrated by the following example with n = 5 and */
692
/* >  k = 3. The elements equal to 1 are not stored; the corresponding */
693
/* >  array elements are modified but restored on exit. The rest of the */
694
/* >  array is not used. */
695
/* > */
696
/* >  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */
697
/* > */
698
/* >               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) */
699
/* >                   ( v1  1    )                     (     1 v2 v2 v2 ) */
700
/* >                   ( v1 v2  1 )                     (        1 v3 v3 ) */
701
/* >                   ( v1 v2 v3 ) */
702
/* >                   ( v1 v2 v3 ) */
703
/* > */
704
/* >  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */
705
/* > */
706
/* >               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) */
707
/* >                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) */
708
/* >                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) */
709
/* >                   (     1 v3 ) */
710
/* >                   (        1 ) */
711
/* > \endverbatim */
712
/* > */
713
/*  ===================================================================== */
714
/* Subroutine */ void slarfb_(char *side, char *trans, char *direct, char *
715
  storev, integer *m, integer *n, integer *k, real *v, integer *ldv, 
716
  real *t, integer *ldt, real *c__, integer *ldc, real *work, integer *
717
  ldwork)
718
0
{
719
    /* System generated locals */
720
0
    integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 
721
0
      work_offset, i__1, i__2;
722
723
    /* Local variables */
724
0
    integer i__, j;
725
0
    extern logical lsame_(char *, char *);
726
0
    extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
727
0
      integer *, real *, real *, integer *, real *, integer *, real *, 
728
0
      real *, integer *), scopy_(integer *, real *, 
729
0
      integer *, real *, integer *), strmm_(char *, char *, char *, 
730
0
      char *, integer *, integer *, real *, real *, integer *, real *, 
731
0
      integer *);
732
0
    char transt[1];
733
734
735
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
736
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
737
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
738
/*     June 2013 */
739
740
741
/*  ===================================================================== */
742
743
744
/*     Quick return if possible */
745
746
    /* Parameter adjustments */
747
0
    v_dim1 = *ldv;
748
0
    v_offset = 1 + v_dim1 * 1;
749
0
    v -= v_offset;
750
0
    t_dim1 = *ldt;
751
0
    t_offset = 1 + t_dim1 * 1;
752
0
    t -= t_offset;
753
0
    c_dim1 = *ldc;
754
0
    c_offset = 1 + c_dim1 * 1;
755
0
    c__ -= c_offset;
756
0
    work_dim1 = *ldwork;
757
0
    work_offset = 1 + work_dim1 * 1;
758
0
    work -= work_offset;
759
760
    /* Function Body */
761
0
    if (*m <= 0 || *n <= 0) {
762
0
  return;
763
0
    }
764
765
0
    if (lsame_(trans, "N")) {
766
0
  *(unsigned char *)transt = 'T';
767
0
    } else {
768
0
  *(unsigned char *)transt = 'N';
769
0
    }
770
771
0
    if (lsame_(storev, "C")) {
772
773
0
  if (lsame_(direct, "F")) {
774
775
/*           Let  V =  ( V1 )    (first K rows) */
776
/*                     ( V2 ) */
777
/*           where  V1  is unit lower triangular. */
778
779
0
      if (lsame_(side, "L")) {
780
781
/*              Form  H * C  or  H**T * C  where  C = ( C1 ) */
782
/*                                                    ( C2 ) */
783
784
/*              W := C**T * V  =  (C1**T * V1 + C2**T * V2)  (stored in WORK) */
785
786
/*              W := C1**T */
787
788
0
    i__1 = *k;
789
0
    for (j = 1; j <= i__1; ++j) {
790
0
        scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
791
0
           &c__1);
792
/* L10: */
793
0
    }
794
795
/*              W := W * V1 */
796
797
0
    strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
798
0
       &v[v_offset], ldv, &work[work_offset], ldwork);
799
0
    if (*m > *k) {
800
801
/*                 W := W + C2**T * V2 */
802
803
0
        i__1 = *m - *k;
804
0
        sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
805
0
          c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1], 
806
0
          ldv, &c_b14, &work[work_offset], ldwork);
807
0
    }
808
809
/*              W := W * T**T  or  W * T */
810
811
0
    strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
812
0
      t_offset], ldt, &work[work_offset], ldwork);
813
814
/*              C := C - V * W**T */
815
816
0
    if (*m > *k) {
817
818
/*                 C2 := C2 - V2 * W**T */
819
820
0
        i__1 = *m - *k;
821
0
        sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
822
0
          v[*k + 1 + v_dim1], ldv, &work[work_offset], 
823
0
          ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
824
0
    }
825
826
/*              W := W * V1**T */
827
828
0
    strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
829
0
      v[v_offset], ldv, &work[work_offset], ldwork);
830
831
/*              C1 := C1 - W**T */
832
833
0
    i__1 = *k;
834
0
    for (j = 1; j <= i__1; ++j) {
835
0
        i__2 = *n;
836
0
        for (i__ = 1; i__ <= i__2; ++i__) {
837
0
      c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
838
/* L20: */
839
0
        }
840
/* L30: */
841
0
    }
842
843
0
      } else if (lsame_(side, "R")) {
844
845
/*              Form  C * H  or  C * H**T  where  C = ( C1  C2 ) */
846
847
/*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK) */
848
849
/*              W := C1 */
850
851
0
    i__1 = *k;
852
0
    for (j = 1; j <= i__1; ++j) {
853
0
        scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * 
854
0
          work_dim1 + 1], &c__1);
855
/* L40: */
856
0
    }
857
858
/*              W := W * V1 */
859
860
0
    strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
861
0
       &v[v_offset], ldv, &work[work_offset], ldwork);
862
0
    if (*n > *k) {
863
864
/*                 W := W + C2 * V2 */
865
866
0
        i__1 = *n - *k;
867
0
        sgemm_("No transpose", "No transpose", m, k, &i__1, &
868
0
          c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 
869
0
          1 + v_dim1], ldv, &c_b14, &work[work_offset], 
870
0
          ldwork);
871
0
    }
872
873
/*              W := W * T  or  W * T**T */
874
875
0
    strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
876
0
      t_offset], ldt, &work[work_offset], ldwork);
877
878
/*              C := C - W * V**T */
879
880
0
    if (*n > *k) {
881
882
/*                 C2 := C2 - W * V2**T */
883
884
0
        i__1 = *n - *k;
885
0
        sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
886
0
          work[work_offset], ldwork, &v[*k + 1 + v_dim1], 
887
0
          ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc);
888
0
    }
889
890
/*              W := W * V1**T */
891
892
0
    strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
893
0
      v[v_offset], ldv, &work[work_offset], ldwork);
894
895
/*              C1 := C1 - W */
896
897
0
    i__1 = *k;
898
0
    for (j = 1; j <= i__1; ++j) {
899
0
        i__2 = *m;
900
0
        for (i__ = 1; i__ <= i__2; ++i__) {
901
0
      c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
902
/* L50: */
903
0
        }
904
/* L60: */
905
0
    }
906
0
      }
907
908
0
  } else {
909
910
/*           Let  V =  ( V1 ) */
911
/*                     ( V2 )    (last K rows) */
912
/*           where  V2  is unit upper triangular. */
913
914
0
      if (lsame_(side, "L")) {
915
916
/*              Form  H * C  or  H**T * C  where  C = ( C1 ) */
917
/*                                                    ( C2 ) */
918
919
/*              W := C**T * V  =  (C1**T * V1 + C2**T * V2)  (stored in WORK) */
920
921
/*              W := C2**T */
922
923
0
    i__1 = *k;
924
0
    for (j = 1; j <= i__1; ++j) {
925
0
        scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * 
926
0
          work_dim1 + 1], &c__1);
927
/* L70: */
928
0
    }
929
930
/*              W := W * V2 */
931
932
0
    strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
933
0
       &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], 
934
0
      ldwork);
935
0
    if (*m > *k) {
936
937
/*                 W := W + C1**T * V1 */
938
939
0
        i__1 = *m - *k;
940
0
        sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
941
0
          c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
942
0
          work[work_offset], ldwork);
943
0
    }
944
945
/*              W := W * T**T  or  W * T */
946
947
0
    strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
948
0
      t_offset], ldt, &work[work_offset], ldwork);
949
950
/*              C := C - V * W**T */
951
952
0
    if (*m > *k) {
953
954
/*                 C1 := C1 - V1 * W**T */
955
956
0
        i__1 = *m - *k;
957
0
        sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
958
0
          v[v_offset], ldv, &work[work_offset], ldwork, &
959
0
          c_b14, &c__[c_offset], ldc)
960
0
          ;
961
0
    }
962
963
/*              W := W * V2**T */
964
965
0
    strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
966
0
      v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], 
967
0
      ldwork);
968
969
/*              C2 := C2 - W**T */
970
971
0
    i__1 = *k;
972
0
    for (j = 1; j <= i__1; ++j) {
973
0
        i__2 = *n;
974
0
        for (i__ = 1; i__ <= i__2; ++i__) {
975
0
      c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * 
976
0
        work_dim1];
977
/* L80: */
978
0
        }
979
/* L90: */
980
0
    }
981
982
0
      } else if (lsame_(side, "R")) {
983
984
/*              Form  C * H  or  C * H'  where  C = ( C1  C2 ) */
985
986
/*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK) */
987
988
/*              W := C2 */
989
990
0
    i__1 = *k;
991
0
    for (j = 1; j <= i__1; ++j) {
992
0
        scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
993
0
          j * work_dim1 + 1], &c__1);
994
/* L100: */
995
0
    }
996
997
/*              W := W * V2 */
998
999
0
    strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
1000
0
       &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], 
1001
0
      ldwork);
1002
0
    if (*n > *k) {
1003
1004
/*                 W := W + C1 * V1 */
1005
1006
0
        i__1 = *n - *k;
1007
0
        sgemm_("No transpose", "No transpose", m, k, &i__1, &
1008
0
          c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, &
1009
0
          c_b14, &work[work_offset], ldwork);
1010
0
    }
1011
1012
/*              W := W * T  or  W * T**T */
1013
1014
0
    strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
1015
0
      t_offset], ldt, &work[work_offset], ldwork);
1016
1017
/*              C := C - W * V**T */
1018
1019
0
    if (*n > *k) {
1020
1021
/*                 C1 := C1 - W * V1**T */
1022
1023
0
        i__1 = *n - *k;
1024
0
        sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
1025
0
          work[work_offset], ldwork, &v[v_offset], ldv, &
1026
0
          c_b14, &c__[c_offset], ldc)
1027
0
          ;
1028
0
    }
1029
1030
/*              W := W * V2**T */
1031
1032
0
    strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
1033
0
      v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], 
1034
0
      ldwork);
1035
1036
/*              C2 := C2 - W */
1037
1038
0
    i__1 = *k;
1039
0
    for (j = 1; j <= i__1; ++j) {
1040
0
        i__2 = *m;
1041
0
        for (i__ = 1; i__ <= i__2; ++i__) {
1042
0
      c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * 
1043
0
        work_dim1];
1044
/* L110: */
1045
0
        }
1046
/* L120: */
1047
0
    }
1048
0
      }
1049
0
  }
1050
1051
0
    } else if (lsame_(storev, "R")) {
1052
1053
0
  if (lsame_(direct, "F")) {
1054
1055
/*           Let  V =  ( V1  V2 )    (V1: first K columns) */
1056
/*           where  V1  is unit upper triangular. */
1057
1058
0
      if (lsame_(side, "L")) {
1059
1060
/*              Form  H * C  or  H**T * C  where  C = ( C1 ) */
1061
/*                                                    ( C2 ) */
1062
1063
/*              W := C**T * V**T  =  (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
1064
1065
/*              W := C1**T */
1066
1067
0
    i__1 = *k;
1068
0
    for (j = 1; j <= i__1; ++j) {
1069
0
        scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
1070
0
           &c__1);
1071
/* L130: */
1072
0
    }
1073
1074
/*              W := W * V1**T */
1075
1076
0
    strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
1077
0
      v[v_offset], ldv, &work[work_offset], ldwork);
1078
0
    if (*m > *k) {
1079
1080
/*                 W := W + C2**T * V2**T */
1081
1082
0
        i__1 = *m - *k;
1083
0
        sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
1084
0
          c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 + 
1085
0
          1], ldv, &c_b14, &work[work_offset], ldwork);
1086
0
    }
1087
1088
/*              W := W * T**T  or  W * T */
1089
1090
0
    strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
1091
0
      t_offset], ldt, &work[work_offset], ldwork);
1092
1093
/*              C := C - V**T * W**T */
1094
1095
0
    if (*m > *k) {
1096
1097
/*                 C2 := C2 - V2**T * W**T */
1098
1099
0
        i__1 = *m - *k;
1100
0
        sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[(
1101
0
          *k + 1) * v_dim1 + 1], ldv, &work[work_offset], 
1102
0
          ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
1103
0
    }
1104
1105
/*              W := W * V1 */
1106
1107
0
    strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
1108
0
       &v[v_offset], ldv, &work[work_offset], ldwork);
1109
1110
/*              C1 := C1 - W**T */
1111
1112
0
    i__1 = *k;
1113
0
    for (j = 1; j <= i__1; ++j) {
1114
0
        i__2 = *n;
1115
0
        for (i__ = 1; i__ <= i__2; ++i__) {
1116
0
      c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
1117
/* L140: */
1118
0
        }
1119
/* L150: */
1120
0
    }
1121
1122
0
      } else if (lsame_(side, "R")) {
1123
1124
/*              Form  C * H  or  C * H**T  where  C = ( C1  C2 ) */
1125
1126
/*              W := C * V**T  =  (C1*V1**T + C2*V2**T)  (stored in WORK) */
1127
1128
/*              W := C1 */
1129
1130
0
    i__1 = *k;
1131
0
    for (j = 1; j <= i__1; ++j) {
1132
0
        scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * 
1133
0
          work_dim1 + 1], &c__1);
1134
/* L160: */
1135
0
    }
1136
1137
/*              W := W * V1**T */
1138
1139
0
    strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
1140
0
      v[v_offset], ldv, &work[work_offset], ldwork);
1141
0
    if (*n > *k) {
1142
1143
/*                 W := W + C2 * V2**T */
1144
1145
0
        i__1 = *n - *k;
1146
0
        sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
1147
0
          c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) * 
1148
0
          v_dim1 + 1], ldv, &c_b14, &work[work_offset], 
1149
0
          ldwork);
1150
0
    }
1151
1152
/*              W := W * T  or  W * T**T */
1153
1154
0
    strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
1155
0
      t_offset], ldt, &work[work_offset], ldwork);
1156
1157
/*              C := C - W * V */
1158
1159
0
    if (*n > *k) {
1160
1161
/*                 C2 := C2 - W * V2 */
1162
1163
0
        i__1 = *n - *k;
1164
0
        sgemm_("No transpose", "No transpose", m, &i__1, k, &
1165
0
          c_b25, &work[work_offset], ldwork, &v[(*k + 1) * 
1166
0
          v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1 
1167
0
          + 1], ldc);
1168
0
    }
1169
1170
/*              W := W * V1 */
1171
1172
0
    strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
1173
0
       &v[v_offset], ldv, &work[work_offset], ldwork);
1174
1175
/*              C1 := C1 - W */
1176
1177
0
    i__1 = *k;
1178
0
    for (j = 1; j <= i__1; ++j) {
1179
0
        i__2 = *m;
1180
0
        for (i__ = 1; i__ <= i__2; ++i__) {
1181
0
      c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
1182
/* L170: */
1183
0
        }
1184
/* L180: */
1185
0
    }
1186
1187
0
      }
1188
1189
0
  } else {
1190
1191
/*           Let  V =  ( V1  V2 )    (V2: last K columns) */
1192
/*           where  V2  is unit lower triangular. */
1193
1194
0
      if (lsame_(side, "L")) {
1195
1196
/*              Form  H * C  or  H**T * C  where  C = ( C1 ) */
1197
/*                                                    ( C2 ) */
1198
1199
/*              W := C**T * V**T  =  (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
1200
1201
/*              W := C2**T */
1202
1203
0
    i__1 = *k;
1204
0
    for (j = 1; j <= i__1; ++j) {
1205
0
        scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * 
1206
0
          work_dim1 + 1], &c__1);
1207
/* L190: */
1208
0
    }
1209
1210
/*              W := W * V2**T */
1211
1212
0
    strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
1213
0
      v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
1214
0
      , ldwork);
1215
0
    if (*m > *k) {
1216
1217
/*                 W := W + C1**T * V1**T */
1218
1219
0
        i__1 = *m - *k;
1220
0
        sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
1221
0
          c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
1222
0
          work[work_offset], ldwork);
1223
0
    }
1224
1225
/*              W := W * T**T  or  W * T */
1226
1227
0
    strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
1228
0
      t_offset], ldt, &work[work_offset], ldwork);
1229
1230
/*              C := C - V**T * W**T */
1231
1232
0
    if (*m > *k) {
1233
1234
/*                 C1 := C1 - V1**T * W**T */
1235
1236
0
        i__1 = *m - *k;
1237
0
        sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[
1238
0
          v_offset], ldv, &work[work_offset], ldwork, &
1239
0
          c_b14, &c__[c_offset], ldc);
1240
0
    }
1241
1242
/*              W := W * V2 */
1243
1244
0
    strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
1245
0
       &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
1246
0
      work_offset], ldwork);
1247
1248
/*              C2 := C2 - W**T */
1249
1250
0
    i__1 = *k;
1251
0
    for (j = 1; j <= i__1; ++j) {
1252
0
        i__2 = *n;
1253
0
        for (i__ = 1; i__ <= i__2; ++i__) {
1254
0
      c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j * 
1255
0
        work_dim1];
1256
/* L200: */
1257
0
        }
1258
/* L210: */
1259
0
    }
1260
1261
0
      } else if (lsame_(side, "R")) {
1262
1263
/*              Form  C * H  or  C * H**T  where  C = ( C1  C2 ) */
1264
1265
/*              W := C * V**T  =  (C1*V1**T + C2*V2**T)  (stored in WORK) */
1266
1267
/*              W := C2 */
1268
1269
0
    i__1 = *k;
1270
0
    for (j = 1; j <= i__1; ++j) {
1271
0
        scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
1272
0
          j * work_dim1 + 1], &c__1);
1273
/* L220: */
1274
0
    }
1275
1276
/*              W := W * V2**T */
1277
1278
0
    strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
1279
0
      v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
1280
0
      , ldwork);
1281
0
    if (*n > *k) {
1282
1283
/*                 W := W + C1 * V1**T */
1284
1285
0
        i__1 = *n - *k;
1286
0
        sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
1287
0
          c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
1288
0
          work[work_offset], ldwork);
1289
0
    }
1290
1291
/*              W := W * T  or  W * T**T */
1292
1293
0
    strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
1294
0
      t_offset], ldt, &work[work_offset], ldwork);
1295
1296
/*              C := C - W * V */
1297
1298
0
    if (*n > *k) {
1299
1300
/*                 C1 := C1 - W * V1 */
1301
1302
0
        i__1 = *n - *k;
1303
0
        sgemm_("No transpose", "No transpose", m, &i__1, k, &
1304
0
          c_b25, &work[work_offset], ldwork, &v[v_offset], 
1305
0
          ldv, &c_b14, &c__[c_offset], ldc);
1306
0
    }
1307
1308
/*              W := W * V2 */
1309
1310
0
    strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
1311
0
       &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
1312
0
      work_offset], ldwork);
1313
1314
/*              C1 := C1 - W */
1315
1316
0
    i__1 = *k;
1317
0
    for (j = 1; j <= i__1; ++j) {
1318
0
        i__2 = *m;
1319
0
        for (i__ = 1; i__ <= i__2; ++i__) {
1320
0
      c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j * 
1321
0
        work_dim1];
1322
/* L230: */
1323
0
        }
1324
/* L240: */
1325
0
    }
1326
1327
0
      }
1328
1329
0
  }
1330
0
    }
1331
1332
0
    return;
1333
1334
/*     End of SLARFB */
1335
1336
0
} /* slarfb_ */
1337