Coverage Report

Created: 2024-11-21 12:22

/root/doris/be/src/util/memcpy_inlined.h
Line
Count
Source (jump to first uncovered line)
1
// Licensed to the Apache Software Foundation (ASF) under one
2
// or more contributor license agreements.  See the NOTICE file
3
// distributed with this work for additional information
4
// regarding copyright ownership.  The ASF licenses this file
5
// to you under the Apache License, Version 2.0 (the
6
// "License"); you may not use this file except in compliance
7
// with the License.  You may obtain a copy of the License at
8
//
9
//   http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing,
12
// software distributed under the License is distributed on an
13
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
// KIND, either express or implied.  See the License for the
15
// specific language governing permissions and limitations
16
// under the License.
17
18
#pragma once
19
20
#pragma once
21
#ifdef __AVX2__
22
#include <emmintrin.h>
23
#include <immintrin.h>
24
#endif
25
26
#include <stddef.h>
27
#include <stdint.h>
28
#include <stdio.h>
29
#include <string.h>
30
31
#include "common/compiler_util.h"
32
#include "gutil/integral_types.h"
33
#include "gutil/port.h"
34
35
namespace doris {
36
37
ALWAYS_INLINE inline void memcpy_inlined(void* __restrict _dst, const void* __restrict _src,
38
630k
                                         size_t size) {
39
630k
    auto dst = static_cast<uint8_t*>(_dst);
40
630k
    auto src = static_cast<const uint8_t*>(_src);
41
42
630k
    [[maybe_unused]] tail :
43
            /// Small sizes and tails after the loop for large sizes.
44
            /// The order of branches is important but in fact the optimal order depends on the distribution of sizes in your application.
45
            /// This order of branches is from the disassembly of glibc's code.
46
            /// We copy chunks of possibly uneven size with two overlapping movs.
47
            /// Example: to copy 5 bytes [0, 1, 2, 3, 4] we will copy tail [1, 2, 3, 4] first and then head [0, 1, 2, 3].
48
630k
            if (size <= 16) {
49
621k
        if (size >= 8) {
50
            /// Chunks of 8..16 bytes.
51
589k
            __builtin_memcpy(dst + size - 8, src + size - 8, 8);
52
589k
            __builtin_memcpy(dst, src, 8);
53
589k
        } else if (size >= 4) {
54
            /// Chunks of 4..7 bytes.
55
32.3k
            __builtin_memcpy(dst + size - 4, src + size - 4, 4);
56
32.3k
            __builtin_memcpy(dst, src, 4);
57
32.3k
        } else if (size >= 2) {
58
            /// Chunks of 2..3 bytes.
59
3
            __builtin_memcpy(dst + size - 2, src + size - 2, 2);
60
3
            __builtin_memcpy(dst, src, 2);
61
3
        } else if (size >= 1) {
62
            /// A single byte.
63
0
            *dst = *src;
64
0
        }
65
        /// No bytes remaining.
66
621k
    }
67
9.32k
    else {
68
#ifdef __AVX2__
69
        if (size <= 256) {
70
            if (size <= 32) {
71
                __builtin_memcpy(dst, src, 8);
72
                __builtin_memcpy(dst + 8, src + 8, 8);
73
                size -= 16;
74
                dst += 16;
75
                src += 16;
76
                goto tail;
77
            }
78
79
            /// Then we will copy every 16 bytes from the beginning in a loop.
80
            /// The last loop iteration will possibly overwrite some part of already copied last 32 bytes.
81
            /// This is Ok, similar to the code for small sizes above.
82
            while (size > 32) {
83
                _mm256_storeu_si256(reinterpret_cast<__m256i*>(dst),
84
                                    _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src)));
85
                dst += 32;
86
                src += 32;
87
                size -= 32;
88
            }
89
90
            _mm256_storeu_si256(
91
                    reinterpret_cast<__m256i*>(dst + size - 32),
92
                    _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + size - 32)));
93
        } else {
94
            if (size >= 512 * 1024 && size <= 2048 * 1024) {
95
                asm volatile("rep movsb"
96
                             : "=D"(dst), "=S"(src), "=c"(size)
97
                             : "0"(dst), "1"(src), "2"(size)
98
                             : "memory");
99
            } else {
100
                size_t padding = (32 - (reinterpret_cast<size_t>(dst) & 31)) & 31;
101
102
                if (padding > 0) {
103
                    __m256i head = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src));
104
                    _mm256_storeu_si256(reinterpret_cast<__m256i*>(dst), head);
105
                    dst += padding;
106
                    src += padding;
107
                    size -= padding;
108
                }
109
110
                /// Aligned unrolled copy. We will use half of available AVX registers.
111
                /// It's not possible to have both src and dst aligned.
112
                /// So, we will use aligned stores and unaligned loads.
113
                __m256i c0, c1, c2, c3, c4, c5, c6, c7;
114
115
                while (size >= 256) {
116
                    c0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src));
117
                    c1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 32));
118
                    c2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 64));
119
                    c3 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 96));
120
                    c4 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 128));
121
                    c5 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 160));
122
                    c6 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 192));
123
                    c7 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + 224));
124
                    src += 256;
125
126
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst)), c0);
127
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 32)), c1);
128
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 64)), c2);
129
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 96)), c3);
130
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 128)), c4);
131
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 160)), c5);
132
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 192)), c6);
133
                    _mm256_store_si256((reinterpret_cast<__m256i*>(dst + 224)), c7);
134
                    dst += 256;
135
136
                    size -= 256;
137
                }
138
139
                goto tail;
140
            }
141
        }
142
#else
143
9.32k
        memcpy(dst, src, size);
144
9.32k
#endif
145
9.32k
    }
146
630k
}
147
} // namespace doris