Coverage Report

Created: 2025-09-16 21:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/driver/level3/level3.c
Line
Count
Source
1
/*********************************************************************/
2
/* Copyright 2009, 2010 The University of Texas at Austin.           */
3
/* All rights reserved.                                              */
4
/*                                                                   */
5
/* Redistribution and use in source and binary forms, with or        */
6
/* without modification, are permitted provided that the following   */
7
/* conditions are met:                                               */
8
/*                                                                   */
9
/*   1. Redistributions of source code must retain the above         */
10
/*      copyright notice, this list of conditions and the following  */
11
/*      disclaimer.                                                  */
12
/*                                                                   */
13
/*   2. Redistributions in binary form must reproduce the above      */
14
/*      copyright notice, this list of conditions and the following  */
15
/*      disclaimer in the documentation and/or other materials       */
16
/*      provided with the distribution.                              */
17
/*                                                                   */
18
/*    THIS  SOFTWARE IS PROVIDED  BY THE  UNIVERSITY OF  TEXAS AT    */
19
/*    AUSTIN  ``AS IS''  AND ANY  EXPRESS OR  IMPLIED WARRANTIES,    */
20
/*    INCLUDING, BUT  NOT LIMITED  TO, THE IMPLIED  WARRANTIES OF    */
21
/*    MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR  PURPOSE ARE    */
22
/*    DISCLAIMED.  IN  NO EVENT SHALL THE UNIVERSITY  OF TEXAS AT    */
23
/*    AUSTIN OR CONTRIBUTORS BE  LIABLE FOR ANY DIRECT, INDIRECT,    */
24
/*    INCIDENTAL,  SPECIAL, EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES    */
25
/*    (INCLUDING, BUT  NOT LIMITED TO,  PROCUREMENT OF SUBSTITUTE    */
26
/*    GOODS  OR  SERVICES; LOSS  OF  USE,  DATA,  OR PROFITS;  OR    */
27
/*    BUSINESS INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF    */
28
/*    LIABILITY, WHETHER  IN CONTRACT, STRICT  LIABILITY, OR TORT    */
29
/*    (INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT    */
30
/*    OF  THE  USE OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE    */
31
/*    POSSIBILITY OF SUCH DAMAGE.                                    */
32
/*                                                                   */
33
/* The views and conclusions contained in the software and           */
34
/* documentation are those of the authors and should not be          */
35
/* interpreted as representing official policies, either expressed   */
36
/* or implied, of The University of Texas at Austin.                 */
37
/*********************************************************************/
38
39
/* This file is a template for level 3 operation */
40
41
#ifndef BETA_OPERATION
42
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
43
#ifndef COMPLEX
44
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
45
0
  GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
46
0
      BETA[0], NULL, 0, NULL, 0, \
47
0
      (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
48
#else
49
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
50
  GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
51
      BETA[0], BETA[1], NULL, 0, NULL, 0, \
52
      (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
53
#endif
54
#else
55
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
56
  GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
57
      BETA, NULL, 0, NULL, 0, \
58
      (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
59
#endif
60
#endif
61
62
#ifndef ICOPY_OPERATION
63
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
64
    defined(RN) || defined(RT) || defined(RC) || defined(RR)
65
0
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
66
#else
67
0
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
68
#endif
69
#endif
70
71
#ifndef OCOPY_OPERATION
72
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
73
    defined(NR) || defined(TR) || defined(CR) || defined(RR)
74
0
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
75
#else
76
0
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
77
#endif
78
#endif
79
80
#ifndef KERNEL_FUNC
81
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
82
0
#define KERNEL_FUNC GEMM_KERNEL_N
83
#endif
84
#if defined(CN) || defined(CT) || defined(RN) || defined(RT)
85
#define KERNEL_FUNC GEMM_KERNEL_L
86
#endif
87
#if defined(NC) || defined(TC) || defined(NR) || defined(TR)
88
#define KERNEL_FUNC GEMM_KERNEL_R
89
#endif
90
#if defined(CC) || defined(CR) || defined(RC) || defined(RR)
91
#define KERNEL_FUNC GEMM_KERNEL_B
92
#endif
93
#endif
94
95
#ifndef KERNEL_OPERATION
96
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
97
#ifndef COMPLEX
98
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
99
0
  KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
100
#else
101
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
102
  KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
103
#endif
104
#else
105
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
106
  KERNEL_FUNC(M, N, K, ALPHA, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
107
#endif
108
#endif
109
110
#ifndef FUSED_KERNEL_OPERATION
111
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
112
    defined(NR) || defined(TR) || defined(CR) || defined(RR)
113
#ifndef COMPLEX
114
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
115
  FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
116
  (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
117
#else
118
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
119
  FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
120
  (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
121
122
#endif
123
#else
124
#ifndef COMPLEX
125
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
126
  FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
127
  (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
128
#else
129
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
130
  FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
131
  (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
132
#endif
133
#endif
134
#endif
135
136
#ifndef A
137
0
#define A args -> a
138
#endif
139
#ifndef LDA
140
0
#define LDA args -> lda
141
#endif
142
#ifndef B
143
0
#define B args -> b
144
#endif
145
#ifndef LDB
146
0
#define LDB args -> ldb
147
#endif
148
#ifndef C
149
0
#define C args -> c
150
#endif
151
#ifndef LDC
152
0
#define LDC args -> ldc
153
#endif
154
#ifndef M
155
0
#define M args -> m
156
#endif
157
#ifndef N
158
0
#define N args -> n
159
#endif
160
#ifndef K
161
0
#define K args -> k
162
#endif
163
164
#ifdef TIMING
165
#define START_RPCC()    rpcc_counter = rpcc()
166
#define STOP_RPCC(COUNTER)  COUNTER  += rpcc() - rpcc_counter
167
#else
168
#define START_RPCC()
169
#define STOP_RPCC(COUNTER)
170
#endif
171
172
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
173
0
      XFLOAT *sa, XFLOAT *sb, BLASLONG dummy){
174
0
  BLASLONG k, lda, ldb, ldc;
175
0
  FLOAT *alpha, *beta;
176
0
  IFLOAT *a, *b;
177
0
  FLOAT *c;
178
0
  BLASLONG m_from, m_to, n_from, n_to;
179
180
0
  BLASLONG ls, is, js;
181
0
  BLASLONG min_l, min_i, min_j;
182
0
#if !defined(FUSED_GEMM) || defined(TIMING)
183
0
  BLASLONG jjs, min_jj;
184
0
#endif
185
186
0
  BLASLONG l1stride, gemm_p, l2size;
187
188
#if defined(XDOUBLE) && defined(QUAD_PRECISION)
189
  xidouble xalpha;
190
#endif
191
192
#ifdef TIMING
193
  unsigned long long rpcc_counter;
194
  unsigned long long innercost  = 0;
195
  unsigned long long outercost  = 0;
196
  unsigned long long kernelcost = 0;
197
  double total;
198
#endif
199
200
0
  k = K;
201
202
0
  a = (IFLOAT *)A;
203
0
  b = (IFLOAT *)B;
204
0
  c = (FLOAT *)C;
205
206
0
  lda = LDA;
207
0
  ldb = LDB;
208
0
  ldc = LDC;
209
210
0
  alpha = (FLOAT *)args -> alpha;
211
0
  beta  = (FLOAT *)args -> beta;
212
213
0
  m_from = 0;
214
0
  m_to   = M;
215
216
0
  if (range_m) {
217
0
    m_from = *(((BLASLONG *)range_m) + 0);
218
0
    m_to   = *(((BLASLONG *)range_m) + 1);
219
0
  }
220
221
0
  n_from = 0;
222
0
  n_to   = N;
223
224
0
  if (range_n) {
225
0
    n_from = *(((BLASLONG *)range_n) + 0);
226
0
    n_to   = *(((BLASLONG *)range_n) + 1);
227
0
  }
228
229
0
  if (beta) {
230
0
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
231
0
#ifndef COMPLEX
232
0
    if (beta[0] != ONE
233
#else
234
    if ((beta[0] != ONE) || (beta[1] != ZERO)
235
#endif
236
#else
237
    if (((beta[0].x[1] != 0x3fff000000000000UL) || beta[0].x[0] != 0)
238
#ifdef COMPLEX
239
  &&(((beta[1].x[0] | beta[1].x[1]) << 1) != 0)
240
#endif
241
#endif
242
0
  ) {
243
#if defined(XDOUBLE) && defined(QUAD_PRECISION)
244
    xidouble xbeta;
245
246
    qtox(&xbeta, beta);
247
#endif
248
0
    BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
249
0
  }
250
0
  }
251
252
0
  if ((k == 0) || (alpha == NULL)) return 0;
253
254
0
#if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
255
0
  if ( alpha[0] == ZERO
256
#ifdef COMPLEX
257
      && alpha[1] == ZERO
258
#endif
259
0
   ) return 0; 
260
#else
261
  if (((alpha[0].x[0] | alpha[0].x[1]
262
#ifdef COMPLEX
263
       | alpha[1].x[0] | alpha[1].x[1]
264
#endif
265
       ) << 1) == 0) return 0;
266
#endif
267
268
#if defined(XDOUBLE)  && defined(QUAD_PRECISION)
269
  qtox(&xalpha, alpha);
270
#endif
271
272
0
  l2size = GEMM_P * GEMM_Q;
273
274
#if 0
275
  fprintf(stderr, "GEMM(Single): M_from : %ld  M_to : %ld  N_from : %ld  N_to : %ld  k : %ld\n", m_from, m_to, n_from, n_to, k);
276
  fprintf(stderr, "GEMM(Single):: P = %4ld  Q = %4ld  R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
277
  //  fprintf(stderr, "GEMM: SA .. %p  SB .. %p\n", sa, sb);
278
279
  //  fprintf(stderr, "A = %p  B = %p  C = %p\n\tlda = %ld  ldb = %ld ldc = %ld\n", a, b, c, lda, ldb, ldc);
280
#endif
281
282
#ifdef TIMING
283
  innercost = 0;
284
  outercost = 0;
285
  kernelcost = 0;
286
#endif
287
288
0
  for(js = n_from; js < n_to; js += GEMM_R){
289
0
    min_j = n_to - js;
290
0
    if (min_j > GEMM_R) min_j = GEMM_R;
291
292
0
    for(ls = 0; ls < k; ls += min_l){
293
294
0
      min_l = k - ls;
295
296
0
      if (min_l >= GEMM_Q * 2) {
297
  // gemm_p = GEMM_P;
298
0
  min_l  = GEMM_Q;
299
0
      } else {
300
0
  if (min_l > GEMM_Q) {
301
0
    min_l = ((min_l / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
302
0
  }
303
0
  gemm_p = ((l2size / min_l + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
304
0
  while (gemm_p * min_l > l2size) gemm_p -= GEMM_UNROLL_M;
305
0
      }
306
307
0
      BLASLONG pad_min_l = min_l;
308
#if defined(HALF)
309
#if defined(DYNAMIC_ARCH)
310
      pad_min_l = (min_l + gotoblas->sbgemm_align_k - 1) & ~(gotoblas->sbgemm_align_k-1);
311
#else
312
      pad_min_l = (min_l + SBGEMM_ALIGN_K - 1) & ~(SBGEMM_ALIGN_K - 1);;
313
#endif
314
#endif
315
316
      /* First, we have to move data A to L2 cache */
317
0
      min_i = m_to - m_from;
318
0
      l1stride = 1;
319
320
0
      if (min_i >= GEMM_P * 2) {
321
0
  min_i = GEMM_P;
322
0
      } else {
323
0
  if (min_i > GEMM_P) {
324
0
    min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
325
0
  } else {
326
0
    l1stride = 0;
327
0
  }
328
0
      }
329
330
0
      START_RPCC();
331
332
0
      ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
333
334
0
      STOP_RPCC(innercost);
335
336
#if defined(FUSED_GEMM) && !defined(TIMING)
337
338
      FUSED_KERNEL_OPERATION(min_i, min_j, min_l, alpha,
339
           sa, sb, b, ldb, c, ldc, m_from, js, ls);
340
341
342
#else
343
0
      for(jjs = js; jjs < js + min_j; jjs += min_jj){
344
0
  min_jj = min_j + js - jjs;
345
#if defined(SKYLAKEX) || defined(COOPERLAKE) || defined(SAPPHIRERAPIDS)
346
  /* the current AVX512 s/d/c/z GEMM kernel requires n>=6*GEMM_UNROLL_N to achieve best performance */
347
  if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
348
#else
349
0
        if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
350
0
        else
351
/*
352
    if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
353
          else
354
*/
355
0
              if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
356
0
#endif
357
358
359
0
  START_RPCC();
360
361
0
  OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
362
0
      sb + pad_min_l * (jjs - js) * COMPSIZE * l1stride);
363
364
0
  STOP_RPCC(outercost);
365
366
0
  START_RPCC();
367
368
0
#if !defined(XDOUBLE)  || !defined(QUAD_PRECISION)
369
0
  KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
370
0
       sa, sb + pad_min_l * (jjs - js)  * COMPSIZE * l1stride, c, ldc, m_from, jjs);
371
#else
372
  KERNEL_OPERATION(min_i, min_jj, min_l, (void *)&xalpha,
373
       sa, sb + pad_min_l * (jjs - js)  * COMPSIZE * l1stride, c, ldc, m_from, jjs);
374
#endif
375
376
0
  STOP_RPCC(kernelcost);
377
0
      }
378
0
#endif
379
380
0
      for(is = m_from + min_i; is < m_to; is += min_i){
381
0
  min_i = m_to - is;
382
383
0
  if (min_i >= GEMM_P * 2) {
384
0
    min_i = GEMM_P;
385
0
  } else
386
0
    if (min_i > GEMM_P) {
387
0
      min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
388
0
    }
389
390
0
  START_RPCC();
391
392
0
  ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
393
394
0
  STOP_RPCC(innercost);
395
396
0
  START_RPCC();
397
398
0
#if !defined(XDOUBLE)  || !defined(QUAD_PRECISION)
399
0
  KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
400
#else
401
  KERNEL_OPERATION(min_i, min_j, min_l, (void *)&xalpha, sa, sb, c, ldc, is, js);
402
#endif
403
404
0
  STOP_RPCC(kernelcost);
405
406
0
      } /* end of is */
407
0
    } /* end of js */
408
0
  } /* end of ls */
409
410
411
#ifdef TIMING
412
  total = (double)outercost + (double)innercost + (double)kernelcost;
413
414
  printf( "Copy A : %5.2f Copy  B: %5.2f  Kernel : %5.2f  kernel Effi. : %5.2f Total Effi. : %5.2f\n",
415
     innercost / total * 100., outercost / total * 100.,
416
    kernelcost / total * 100.,
417
    (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / 2.,
418
    (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / 2.);
419
420
#endif
421
422
0
  return 0;
423
0
}
Unexecuted instantiation: sgemm_nn
Unexecuted instantiation: dgemm_nn
Unexecuted instantiation: sgemm_nt
Unexecuted instantiation: dgemm_nt
Unexecuted instantiation: sgemm_tn
Unexecuted instantiation: dgemm_tn
Unexecuted instantiation: sgemm_tt
Unexecuted instantiation: dgemm_tt