Coverage Report

Created: 2025-09-12 18:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/dgebrd.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
0
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
static integer c_n1 = -1;
517
static integer c__3 = 3;
518
static integer c__2 = 2;
519
static doublereal c_b21 = -1.;
520
static doublereal c_b22 = 1.;
521
522
/* > \brief \b DGEBRD */
523
524
/*  =========== DOCUMENTATION =========== */
525
526
/* Online html documentation available at */
527
/*            http://www.netlib.org/lapack/explore-html/ */
528
529
/* > \htmlonly */
530
/* > Download DGEBRD + dependencies */
531
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebrd.
532
f"> */
533
/* > [TGZ]</a> */
534
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebrd.
535
f"> */
536
/* > [ZIP]</a> */
537
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebrd.
538
f"> */
539
/* > [TXT]</a> */
540
/* > \endhtmlonly */
541
542
/*  Definition: */
543
/*  =========== */
544
545
/*       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, */
546
/*                          INFO ) */
547
548
/*       INTEGER            INFO, LDA, LWORK, M, N */
549
/*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ), */
550
/*      $                   TAUQ( * ), WORK( * ) */
551
552
553
/* > \par Purpose: */
554
/*  ============= */
555
/* > */
556
/* > \verbatim */
557
/* > */
558
/* > DGEBRD reduces a general real M-by-N matrix A to upper or lower */
559
/* > bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */
560
/* > */
561
/* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
562
/* > \endverbatim */
563
564
/*  Arguments: */
565
/*  ========== */
566
567
/* > \param[in] M */
568
/* > \verbatim */
569
/* >          M is INTEGER */
570
/* >          The number of rows in the matrix A.  M >= 0. */
571
/* > \endverbatim */
572
/* > */
573
/* > \param[in] N */
574
/* > \verbatim */
575
/* >          N is INTEGER */
576
/* >          The number of columns in the matrix A.  N >= 0. */
577
/* > \endverbatim */
578
/* > */
579
/* > \param[in,out] A */
580
/* > \verbatim */
581
/* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
582
/* >          On entry, the M-by-N general matrix to be reduced. */
583
/* >          On exit, */
584
/* >          if m >= n, the diagonal and the first superdiagonal are */
585
/* >            overwritten with the upper bidiagonal matrix B; the */
586
/* >            elements below the diagonal, with the array TAUQ, represent */
587
/* >            the orthogonal matrix Q as a product of elementary */
588
/* >            reflectors, and the elements above the first superdiagonal, */
589
/* >            with the array TAUP, represent the orthogonal matrix P as */
590
/* >            a product of elementary reflectors; */
591
/* >          if m < n, the diagonal and the first subdiagonal are */
592
/* >            overwritten with the lower bidiagonal matrix B; the */
593
/* >            elements below the first subdiagonal, with the array TAUQ, */
594
/* >            represent the orthogonal matrix Q as a product of */
595
/* >            elementary reflectors, and the elements above the diagonal, */
596
/* >            with the array TAUP, represent the orthogonal matrix P as */
597
/* >            a product of elementary reflectors. */
598
/* >          See Further Details. */
599
/* > \endverbatim */
600
/* > */
601
/* > \param[in] LDA */
602
/* > \verbatim */
603
/* >          LDA is INTEGER */
604
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
605
/* > \endverbatim */
606
/* > */
607
/* > \param[out] D */
608
/* > \verbatim */
609
/* >          D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
610
/* >          The diagonal elements of the bidiagonal matrix B: */
611
/* >          D(i) = A(i,i). */
612
/* > \endverbatim */
613
/* > */
614
/* > \param[out] E */
615
/* > \verbatim */
616
/* >          E is DOUBLE PRECISION array, dimension (f2cmin(M,N)-1) */
617
/* >          The off-diagonal elements of the bidiagonal matrix B: */
618
/* >          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
619
/* >          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
620
/* > \endverbatim */
621
/* > */
622
/* > \param[out] TAUQ */
623
/* > \verbatim */
624
/* >          TAUQ is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
625
/* >          The scalar factors of the elementary reflectors which */
626
/* >          represent the orthogonal matrix Q. See Further Details. */
627
/* > \endverbatim */
628
/* > */
629
/* > \param[out] TAUP */
630
/* > \verbatim */
631
/* >          TAUP is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
632
/* >          The scalar factors of the elementary reflectors which */
633
/* >          represent the orthogonal matrix P. See Further Details. */
634
/* > \endverbatim */
635
/* > */
636
/* > \param[out] WORK */
637
/* > \verbatim */
638
/* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
639
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
640
/* > \endverbatim */
641
/* > */
642
/* > \param[in] LWORK */
643
/* > \verbatim */
644
/* >          LWORK is INTEGER */
645
/* >          The length of the array WORK.  LWORK >= f2cmax(1,M,N). */
646
/* >          For optimum performance LWORK >= (M+N)*NB, where NB */
647
/* >          is the optimal blocksize. */
648
/* > */
649
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
650
/* >          only calculates the optimal size of the WORK array, returns */
651
/* >          this value as the first entry of the WORK array, and no error */
652
/* >          message related to LWORK is issued by XERBLA. */
653
/* > \endverbatim */
654
/* > */
655
/* > \param[out] INFO */
656
/* > \verbatim */
657
/* >          INFO is INTEGER */
658
/* >          = 0:  successful exit */
659
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
660
/* > \endverbatim */
661
662
/*  Authors: */
663
/*  ======== */
664
665
/* > \author Univ. of Tennessee */
666
/* > \author Univ. of California Berkeley */
667
/* > \author Univ. of Colorado Denver */
668
/* > \author NAG Ltd. */
669
670
/* > \date November 2017 */
671
672
/* > \ingroup doubleGEcomputational */
673
674
/* > \par Further Details: */
675
/*  ===================== */
676
/* > */
677
/* > \verbatim */
678
/* > */
679
/* >  The matrices Q and P are represented as products of elementary */
680
/* >  reflectors: */
681
/* > */
682
/* >  If m >= n, */
683
/* > */
684
/* >     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) */
685
/* > */
686
/* >  Each H(i) and G(i) has the form: */
687
/* > */
688
/* >     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T */
689
/* > */
690
/* >  where tauq and taup are real scalars, and v and u are real vectors; */
691
/* >  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
692
/* >  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
693
/* >  tauq is stored in TAUQ(i) and taup in TAUP(i). */
694
/* > */
695
/* >  If m < n, */
696
/* > */
697
/* >     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) */
698
/* > */
699
/* >  Each H(i) and G(i) has the form: */
700
/* > */
701
/* >     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T */
702
/* > */
703
/* >  where tauq and taup are real scalars, and v and u are real vectors; */
704
/* >  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
705
/* >  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
706
/* >  tauq is stored in TAUQ(i) and taup in TAUP(i). */
707
/* > */
708
/* >  The contents of A on exit are illustrated by the following examples: */
709
/* > */
710
/* >  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
711
/* > */
712
/* >    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) */
713
/* >    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) */
714
/* >    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) */
715
/* >    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) */
716
/* >    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) */
717
/* >    (  v1  v2  v3  v4  v5 ) */
718
/* > */
719
/* >  where d and e denote diagonal and off-diagonal elements of B, vi */
720
/* >  denotes an element of the vector defining H(i), and ui an element of */
721
/* >  the vector defining G(i). */
722
/* > \endverbatim */
723
/* > */
724
/*  ===================================================================== */
725
/* Subroutine */ void dgebrd_(integer *m, integer *n, doublereal *a, integer *
726
  lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
727
  taup, doublereal *work, integer *lwork, integer *info)
728
0
{
729
    /* System generated locals */
730
0
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
731
732
    /* Local variables */
733
0
    integer i__, j;
734
0
    extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *, 
735
0
      integer *, doublereal *, doublereal *, integer *, doublereal *, 
736
0
      integer *, doublereal *, doublereal *, integer *);
737
0
    integer nbmin, iinfo, minmn;
738
0
    extern /* Subroutine */ void dgebd2_(integer *, integer *, doublereal *, 
739
0
      integer *, doublereal *, doublereal *, doublereal *, doublereal *,
740
0
       doublereal *, integer *);
741
0
    integer nb;
742
0
    extern /* Subroutine */ void dlabrd_(integer *, integer *, integer *, 
743
0
      doublereal *, integer *, doublereal *, doublereal *, doublereal *,
744
0
       doublereal *, doublereal *, integer *, doublereal *, integer *);
745
0
    integer nx, ws;
746
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
747
0
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
748
0
      integer *, integer *, ftnlen, ftnlen);
749
0
    integer ldwrkx, ldwrky, lwkopt;
750
0
    logical lquery;
751
752
753
/*  -- LAPACK computational routine (version 3.8.0) -- */
754
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
755
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
756
/*     November 2017 */
757
758
759
/*  ===================================================================== */
760
761
762
/*     Test the input parameters */
763
764
    /* Parameter adjustments */
765
0
    a_dim1 = *lda;
766
0
    a_offset = 1 + a_dim1 * 1;
767
0
    a -= a_offset;
768
0
    --d__;
769
0
    --e;
770
0
    --tauq;
771
0
    --taup;
772
0
    --work;
773
774
    /* Function Body */
775
0
    *info = 0;
776
/* Computing MAX */
777
0
    i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
778
0
      ftnlen)6, (ftnlen)1);
779
0
    nb = f2cmax(i__1,i__2);
780
0
    lwkopt = (*m + *n) * nb;
781
0
    work[1] = (doublereal) lwkopt;
782
0
    lquery = *lwork == -1;
783
0
    if (*m < 0) {
784
0
  *info = -1;
785
0
    } else if (*n < 0) {
786
0
  *info = -2;
787
0
    } else if (*lda < f2cmax(1,*m)) {
788
0
  *info = -4;
789
0
    } else /* if(complicated condition) */ {
790
/* Computing MAX */
791
0
  i__1 = f2cmax(1,*m);
792
0
  if (*lwork < f2cmax(i__1,*n) && ! lquery) {
793
0
      *info = -10;
794
0
  }
795
0
    }
796
0
    if (*info < 0) {
797
0
  i__1 = -(*info);
798
0
  xerbla_("DGEBRD", &i__1, (ftnlen)6);
799
0
  return;
800
0
    } else if (lquery) {
801
0
  return;
802
0
    }
803
804
/*     Quick return if possible */
805
806
0
    minmn = f2cmin(*m,*n);
807
0
    if (minmn == 0) {
808
0
  work[1] = 1.;
809
0
  return;
810
0
    }
811
812
0
    ws = f2cmax(*m,*n);
813
0
    ldwrkx = *m;
814
0
    ldwrky = *n;
815
816
0
    if (nb > 1 && nb < minmn) {
817
818
/*        Set the crossover point NX. */
819
820
/* Computing MAX */
821
0
  i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
822
0
    ftnlen)6, (ftnlen)1);
823
0
  nx = f2cmax(i__1,i__2);
824
825
/*        Determine when to switch from blocked to unblocked code. */
826
827
0
  if (nx < minmn) {
828
0
      ws = (*m + *n) * nb;
829
0
      if (*lwork < ws) {
830
831
/*              Not enough work space for the optimal NB, consider using */
832
/*              a smaller block size. */
833
834
0
    nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
835
0
      ftnlen)6, (ftnlen)1);
836
0
    if (*lwork >= (*m + *n) * nbmin) {
837
0
        nb = *lwork / (*m + *n);
838
0
    } else {
839
0
        nb = 1;
840
0
        nx = minmn;
841
0
    }
842
0
      }
843
0
  }
844
0
    } else {
845
0
  nx = minmn;
846
0
    }
847
848
0
    i__1 = minmn - nx;
849
0
    i__2 = nb;
850
0
    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
851
852
/*        Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
853
/*        the matrices X and Y which are needed to update the unreduced */
854
/*        part of the matrix */
855
856
0
  i__3 = *m - i__ + 1;
857
0
  i__4 = *n - i__ + 1;
858
0
  dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
859
0
    i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx 
860
0
    * nb + 1], &ldwrky);
861
862
/*        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
863
/*        of the form  A := A - V*Y**T - X*U**T */
864
865
0
  i__3 = *m - i__ - nb + 1;
866
0
  i__4 = *n - i__ - nb + 1;
867
0
  dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ 
868
0
    + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
869
0
    ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
870
0
  i__3 = *m - i__ - nb + 1;
871
0
  i__4 = *n - i__ - nb + 1;
872
0
  dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
873
0
    work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
874
0
    c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
875
876
/*        Copy diagonal and off-diagonal elements of B back into A */
877
878
0
  if (*m >= *n) {
879
0
      i__3 = i__ + nb - 1;
880
0
      for (j = i__; j <= i__3; ++j) {
881
0
    a[j + j * a_dim1] = d__[j];
882
0
    a[j + (j + 1) * a_dim1] = e[j];
883
/* L10: */
884
0
      }
885
0
  } else {
886
0
      i__3 = i__ + nb - 1;
887
0
      for (j = i__; j <= i__3; ++j) {
888
0
    a[j + j * a_dim1] = d__[j];
889
0
    a[j + 1 + j * a_dim1] = e[j];
890
/* L20: */
891
0
      }
892
0
  }
893
/* L30: */
894
0
    }
895
896
/*     Use unblocked code to reduce the remainder of the matrix */
897
898
0
    i__2 = *m - i__ + 1;
899
0
    i__1 = *n - i__ + 1;
900
0
    dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
901
0
      tauq[i__], &taup[i__], &work[1], &iinfo);
902
0
    work[1] = (doublereal) ws;
903
0
    return;
904
905
/*     End of DGEBRD */
906
907
0
} /* dgebrd_ */
908