Coverage Report

Created: 2025-09-12 18:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/doris/contrib/openblas/lapack-netlib/SRC/slasdq.c
Line
Count
Source
1
#include <math.h>
2
#include <stdlib.h>
3
#include <string.h>
4
#include <stdio.h>
5
#include <complex.h>
6
#ifdef complex
7
#undef complex
8
#endif
9
#ifdef I
10
#undef I
11
#endif
12
13
#if defined(_WIN64)
14
typedef long long BLASLONG;
15
typedef unsigned long long BLASULONG;
16
#else
17
typedef long BLASLONG;
18
typedef unsigned long BLASULONG;
19
#endif
20
21
#ifdef LAPACK_ILP64
22
typedef BLASLONG blasint;
23
#if defined(_WIN64)
24
#define blasabs(x) llabs(x)
25
#else
26
#define blasabs(x) labs(x)
27
#endif
28
#else
29
typedef int blasint;
30
#define blasabs(x) abs(x)
31
#endif
32
33
typedef blasint integer;
34
35
typedef unsigned int uinteger;
36
typedef char *address;
37
typedef short int shortint;
38
typedef float real;
39
typedef double doublereal;
40
typedef struct { real r, i; } complex;
41
typedef struct { doublereal r, i; } doublecomplex;
42
#ifdef _MSC_VER
43
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
44
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
45
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
46
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
47
#else
48
0
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
49
0
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
50
0
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
51
0
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
52
#endif
53
#define pCf(z) (*_pCf(z))
54
#define pCd(z) (*_pCd(z))
55
typedef blasint logical;
56
57
typedef char logical1;
58
typedef char integer1;
59
60
#define TRUE_ (1)
61
#define FALSE_ (0)
62
63
/* Extern is for use with -E */
64
#ifndef Extern
65
#define Extern extern
66
#endif
67
68
/* I/O stuff */
69
70
typedef int flag;
71
typedef int ftnlen;
72
typedef int ftnint;
73
74
/*external read, write*/
75
typedef struct
76
{ flag cierr;
77
  ftnint ciunit;
78
  flag ciend;
79
  char *cifmt;
80
  ftnint cirec;
81
} cilist;
82
83
/*internal read, write*/
84
typedef struct
85
{ flag icierr;
86
  char *iciunit;
87
  flag iciend;
88
  char *icifmt;
89
  ftnint icirlen;
90
  ftnint icirnum;
91
} icilist;
92
93
/*open*/
94
typedef struct
95
{ flag oerr;
96
  ftnint ounit;
97
  char *ofnm;
98
  ftnlen ofnmlen;
99
  char *osta;
100
  char *oacc;
101
  char *ofm;
102
  ftnint orl;
103
  char *oblnk;
104
} olist;
105
106
/*close*/
107
typedef struct
108
{ flag cerr;
109
  ftnint cunit;
110
  char *csta;
111
} cllist;
112
113
/*rewind, backspace, endfile*/
114
typedef struct
115
{ flag aerr;
116
  ftnint aunit;
117
} alist;
118
119
/* inquire */
120
typedef struct
121
{ flag inerr;
122
  ftnint inunit;
123
  char *infile;
124
  ftnlen infilen;
125
  ftnint  *inex;  /*parameters in standard's order*/
126
  ftnint  *inopen;
127
  ftnint  *innum;
128
  ftnint  *innamed;
129
  char  *inname;
130
  ftnlen  innamlen;
131
  char  *inacc;
132
  ftnlen  inacclen;
133
  char  *inseq;
134
  ftnlen  inseqlen;
135
  char  *indir;
136
  ftnlen  indirlen;
137
  char  *infmt;
138
  ftnlen  infmtlen;
139
  char  *inform;
140
  ftnint  informlen;
141
  char  *inunf;
142
  ftnlen  inunflen;
143
  ftnint  *inrecl;
144
  ftnint  *innrec;
145
  char  *inblank;
146
  ftnlen  inblanklen;
147
} inlist;
148
149
#define VOID void
150
151
union Multitype { /* for multiple entry points */
152
  integer1 g;
153
  shortint h;
154
  integer i;
155
  /* longint j; */
156
  real r;
157
  doublereal d;
158
  complex c;
159
  doublecomplex z;
160
  };
161
162
typedef union Multitype Multitype;
163
164
struct Vardesc {  /* for Namelist */
165
  char *name;
166
  char *addr;
167
  ftnlen *dims;
168
  int  type;
169
  };
170
typedef struct Vardesc Vardesc;
171
172
struct Namelist {
173
  char *name;
174
  Vardesc **vars;
175
  int nvars;
176
  };
177
typedef struct Namelist Namelist;
178
179
#define abs(x) ((x) >= 0 ? (x) : -(x))
180
#define dabs(x) (fabs(x))
181
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
182
0
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
183
#define dmin(a,b) (f2cmin(a,b))
184
#define dmax(a,b) (f2cmax(a,b))
185
#define bit_test(a,b) ((a) >> (b) & 1)
186
#define bit_clear(a,b)  ((a) & ~((uinteger)1 << (b)))
187
#define bit_set(a,b)  ((a) |  ((uinteger)1 << (b)))
188
189
#define abort_() { sig_die("Fortran abort routine called", 1); }
190
#define c_abs(z) (cabsf(Cf(z)))
191
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
192
#ifdef _MSC_VER
193
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
194
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
195
#else
196
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
197
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
198
#endif
199
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
200
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
201
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
202
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
203
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
204
#define d_abs(x) (fabs(*(x)))
205
#define d_acos(x) (acos(*(x)))
206
#define d_asin(x) (asin(*(x)))
207
#define d_atan(x) (atan(*(x)))
208
#define d_atn2(x, y) (atan2(*(x),*(y)))
209
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
210
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
211
#define d_cos(x) (cos(*(x)))
212
#define d_cosh(x) (cosh(*(x)))
213
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
214
#define d_exp(x) (exp(*(x)))
215
#define d_imag(z) (cimag(Cd(z)))
216
#define r_imag(z) (cimagf(Cf(z)))
217
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
218
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
219
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
220
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
221
#define d_log(x) (log(*(x)))
222
#define d_mod(x, y) (fmod(*(x), *(y)))
223
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
224
#define d_nint(x) u_nint(*(x))
225
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
226
#define d_sign(a,b) u_sign(*(a),*(b))
227
#define r_sign(a,b) u_sign(*(a),*(b))
228
#define d_sin(x) (sin(*(x)))
229
#define d_sinh(x) (sinh(*(x)))
230
#define d_sqrt(x) (sqrt(*(x)))
231
#define d_tan(x) (tan(*(x)))
232
#define d_tanh(x) (tanh(*(x)))
233
#define i_abs(x) abs(*(x))
234
#define i_dnnt(x) ((integer)u_nint(*(x)))
235
#define i_len(s, n) (n)
236
#define i_nint(x) ((integer)u_nint(*(x)))
237
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
238
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
239
#define pow_si(B,E) spow_ui(*(B),*(E))
240
#define pow_ri(B,E) spow_ui(*(B),*(E))
241
#define pow_di(B,E) dpow_ui(*(B),*(E))
242
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
243
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
244
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
245
#define s_cat(lpp, rpp, rnp, np, llp) {   ftnlen i, nc, ll; char *f__rp, *lp;   ll = (llp); lp = (lpp);   for(i=0; i < (int)*(np); ++i) {           nc = ll;          if((rnp)[i] < nc) nc = (rnp)[i];          ll -= nc;           f__rp = (rpp)[i];           while(--nc >= 0) *lp++ = *(f__rp)++;         }  while(--ll >= 0) *lp++ = ' '; }
246
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
247
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
248
#define sig_die(s, kill) { exit(1); }
249
#define s_stop(s, n) {exit(0);}
250
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
251
#define z_abs(z) (cabs(Cd(z)))
252
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
253
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
254
#define myexit_() break;
255
#define mycycle() continue;
256
#define myceiling(w) {ceil(w)}
257
#define myhuge(w) {HUGE_VAL}
258
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
259
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
260
261
/* procedure parameter types for -A and -C++ */
262
263
264
#ifdef __cplusplus
265
typedef logical (*L_fp)(...);
266
#else
267
typedef logical (*L_fp)();
268
#endif
269
270
0
static float spow_ui(float x, integer n) {
271
0
  float pow=1.0; unsigned long int u;
272
0
  if(n != 0) {
273
0
    if(n < 0) n = -n, x = 1/x;
274
0
    for(u = n; ; ) {
275
0
      if(u & 01) pow *= x;
276
0
      if(u >>= 1) x *= x;
277
0
      else break;
278
0
    }
279
0
  }
280
0
  return pow;
281
0
}
282
0
static double dpow_ui(double x, integer n) {
283
0
  double pow=1.0; unsigned long int u;
284
0
  if(n != 0) {
285
0
    if(n < 0) n = -n, x = 1/x;
286
0
    for(u = n; ; ) {
287
0
      if(u & 01) pow *= x;
288
0
      if(u >>= 1) x *= x;
289
0
      else break;
290
0
    }
291
0
  }
292
0
  return pow;
293
0
}
294
#ifdef _MSC_VER
295
static _Fcomplex cpow_ui(complex x, integer n) {
296
  complex pow={1.0,0.0}; unsigned long int u;
297
    if(n != 0) {
298
    if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
299
    for(u = n; ; ) {
300
      if(u & 01) pow.r *= x.r, pow.i *= x.i;
301
      if(u >>= 1) x.r *= x.r, x.i *= x.i;
302
      else break;
303
    }
304
  }
305
  _Fcomplex p={pow.r, pow.i};
306
  return p;
307
}
308
#else
309
0
static _Complex float cpow_ui(_Complex float x, integer n) {
310
0
  _Complex float pow=1.0; unsigned long int u;
311
0
  if(n != 0) {
312
0
    if(n < 0) n = -n, x = 1/x;
313
0
    for(u = n; ; ) {
314
0
      if(u & 01) pow *= x;
315
0
      if(u >>= 1) x *= x;
316
0
      else break;
317
0
    }
318
0
  }
319
0
  return pow;
320
0
}
321
#endif
322
#ifdef _MSC_VER
323
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
324
  _Dcomplex pow={1.0,0.0}; unsigned long int u;
325
  if(n != 0) {
326
    if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
327
    for(u = n; ; ) {
328
      if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
329
      if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
330
      else break;
331
    }
332
  }
333
  _Dcomplex p = {pow._Val[0], pow._Val[1]};
334
  return p;
335
}
336
#else
337
0
static _Complex double zpow_ui(_Complex double x, integer n) {
338
0
  _Complex double pow=1.0; unsigned long int u;
339
0
  if(n != 0) {
340
0
    if(n < 0) n = -n, x = 1/x;
341
0
    for(u = n; ; ) {
342
0
      if(u & 01) pow *= x;
343
0
      if(u >>= 1) x *= x;
344
0
      else break;
345
0
    }
346
0
  }
347
0
  return pow;
348
0
}
349
#endif
350
0
static integer pow_ii(integer x, integer n) {
351
0
  integer pow; unsigned long int u;
352
0
  if (n <= 0) {
353
0
    if (n == 0 || x == 1) pow = 1;
354
0
    else if (x != -1) pow = x == 0 ? 1/x : 0;
355
0
    else n = -n;
356
0
  }
357
0
  if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
358
0
    u = n;
359
0
    for(pow = 1; ; ) {
360
0
      if(u & 01) pow *= x;
361
0
      if(u >>= 1) x *= x;
362
0
      else break;
363
0
    }
364
0
  }
365
0
  return pow;
366
0
}
367
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
368
0
{
369
0
  double m; integer i, mi;
370
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
371
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
372
0
  return mi-s+1;
373
0
}
374
static integer smaxloc_(float *w, integer s, integer e, integer *n)
375
0
{
376
0
  float m; integer i, mi;
377
0
  for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
378
0
    if (w[i-1]>m) mi=i ,m=w[i-1];
379
0
  return mi-s+1;
380
0
}
381
0
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
382
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
383
0
#ifdef _MSC_VER
384
0
  _Fcomplex zdotc = {0.0, 0.0};
385
0
  if (incx == 1 && incy == 1) {
386
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
387
0
      zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
388
0
      zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
389
0
    }
390
0
  } else {
391
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
392
0
      zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
393
0
      zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
394
0
    }
395
0
  }
396
0
  pCf(z) = zdotc;
397
0
}
398
0
#else
399
0
  _Complex float zdotc = 0.0;
400
0
  if (incx == 1 && incy == 1) {
401
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
402
0
      zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
403
0
    }
404
0
  } else {
405
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
406
0
      zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
407
0
    }
408
0
  }
409
0
  pCf(z) = zdotc;
410
0
}
411
#endif
412
0
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
413
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
414
0
#ifdef _MSC_VER
415
0
  _Dcomplex zdotc = {0.0, 0.0};
416
0
  if (incx == 1 && incy == 1) {
417
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
418
0
      zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
419
0
      zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
420
0
    }
421
0
  } else {
422
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
423
0
      zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
424
0
      zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
425
0
    }
426
0
  }
427
0
  pCd(z) = zdotc;
428
0
}
429
0
#else
430
0
  _Complex double zdotc = 0.0;
431
0
  if (incx == 1 && incy == 1) {
432
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
433
0
      zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
434
0
    }
435
0
  } else {
436
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
437
0
      zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
438
0
    }
439
0
  }
440
0
  pCd(z) = zdotc;
441
0
}
442
#endif  
443
0
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
444
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
445
0
#ifdef _MSC_VER
446
0
  _Fcomplex zdotc = {0.0, 0.0};
447
0
  if (incx == 1 && incy == 1) {
448
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
449
0
      zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
450
0
      zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
451
0
    }
452
0
  } else {
453
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
454
0
      zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
455
0
      zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
456
0
    }
457
0
  }
458
0
  pCf(z) = zdotc;
459
0
}
460
0
#else
461
0
  _Complex float zdotc = 0.0;
462
0
  if (incx == 1 && incy == 1) {
463
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
464
0
      zdotc += Cf(&x[i]) * Cf(&y[i]);
465
0
    }
466
0
  } else {
467
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
468
0
      zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
469
0
    }
470
0
  }
471
0
  pCf(z) = zdotc;
472
0
}
473
#endif
474
0
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
475
0
  integer n = *n_, incx = *incx_, incy = *incy_, i;
476
0
#ifdef _MSC_VER
477
0
  _Dcomplex zdotc = {0.0, 0.0};
478
0
  if (incx == 1 && incy == 1) {
479
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
480
0
      zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
481
0
      zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
482
0
    }
483
0
  } else {
484
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
485
0
      zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
486
0
      zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
487
0
    }
488
0
  }
489
0
  pCd(z) = zdotc;
490
0
}
491
0
#else
492
0
  _Complex double zdotc = 0.0;
493
0
  if (incx == 1 && incy == 1) {
494
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
495
0
      zdotc += Cd(&x[i]) * Cd(&y[i]);
496
0
    }
497
0
  } else {
498
0
    for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
499
0
      zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
500
0
    }
501
0
  }
502
0
  pCd(z) = zdotc;
503
0
}
504
#endif
505
/*  -- translated by f2c (version 20000121).
506
   You must link the resulting object file with the libraries:
507
  -lf2c -lm   (in that order)
508
*/
509
510
511
512
513
/* Table of constant values */
514
515
static integer c__1 = 1;
516
517
/* > \brief \b SLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by
518
 sbdsdc. */
519
520
/*  =========== DOCUMENTATION =========== */
521
522
/* Online html documentation available at */
523
/*            http://www.netlib.org/lapack/explore-html/ */
524
525
/* > \htmlonly */
526
/* > Download SLASDQ + dependencies */
527
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasdq.
528
f"> */
529
/* > [TGZ]</a> */
530
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasdq.
531
f"> */
532
/* > [ZIP]</a> */
533
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasdq.
534
f"> */
535
/* > [TXT]</a> */
536
/* > \endhtmlonly */
537
538
/*  Definition: */
539
/*  =========== */
540
541
/*       SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, */
542
/*                          U, LDU, C, LDC, WORK, INFO ) */
543
544
/*       CHARACTER          UPLO */
545
/*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE */
546
/*       REAL               C( LDC, * ), D( * ), E( * ), U( LDU, * ), */
547
/*      $                   VT( LDVT, * ), WORK( * ) */
548
549
550
/* > \par Purpose: */
551
/*  ============= */
552
/* > */
553
/* > \verbatim */
554
/* > */
555
/* > SLASDQ computes the singular value decomposition (SVD) of a real */
556
/* > (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
557
/* > E, accumulating the transformations if desired. Letting B denote */
558
/* > the input bidiagonal matrix, the algorithm computes orthogonal */
559
/* > matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose */
560
/* > of P). The singular values S are overwritten on D. */
561
/* > */
562
/* > The input matrix U  is changed to U  * Q  if desired. */
563
/* > The input matrix VT is changed to P**T * VT if desired. */
564
/* > The input matrix C  is changed to Q**T * C  if desired. */
565
/* > */
566
/* > See "Computing  Small Singular Values of Bidiagonal Matrices With */
567
/* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
568
/* > LAPACK Working Note #3, for a detailed description of the algorithm. */
569
/* > \endverbatim */
570
571
/*  Arguments: */
572
/*  ========== */
573
574
/* > \param[in] UPLO */
575
/* > \verbatim */
576
/* >          UPLO is CHARACTER*1 */
577
/* >        On entry, UPLO specifies whether the input bidiagonal matrix */
578
/* >        is upper or lower bidiagonal, and whether it is square are */
579
/* >        not. */
580
/* >           UPLO = 'U' or 'u'   B is upper bidiagonal. */
581
/* >           UPLO = 'L' or 'l'   B is lower bidiagonal. */
582
/* > \endverbatim */
583
/* > */
584
/* > \param[in] SQRE */
585
/* > \verbatim */
586
/* >          SQRE is INTEGER */
587
/* >        = 0: then the input matrix is N-by-N. */
588
/* >        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
589
/* >             (N+1)-by-N if UPLU = 'L'. */
590
/* > */
591
/* >        The bidiagonal matrix has */
592
/* >        N = NL + NR + 1 rows and */
593
/* >        M = N + SQRE >= N columns. */
594
/* > \endverbatim */
595
/* > */
596
/* > \param[in] N */
597
/* > \verbatim */
598
/* >          N is INTEGER */
599
/* >        On entry, N specifies the number of rows and columns */
600
/* >        in the matrix. N must be at least 0. */
601
/* > \endverbatim */
602
/* > */
603
/* > \param[in] NCVT */
604
/* > \verbatim */
605
/* >          NCVT is INTEGER */
606
/* >        On entry, NCVT specifies the number of columns of */
607
/* >        the matrix VT. NCVT must be at least 0. */
608
/* > \endverbatim */
609
/* > */
610
/* > \param[in] NRU */
611
/* > \verbatim */
612
/* >          NRU is INTEGER */
613
/* >        On entry, NRU specifies the number of rows of */
614
/* >        the matrix U. NRU must be at least 0. */
615
/* > \endverbatim */
616
/* > */
617
/* > \param[in] NCC */
618
/* > \verbatim */
619
/* >          NCC is INTEGER */
620
/* >        On entry, NCC specifies the number of columns of */
621
/* >        the matrix C. NCC must be at least 0. */
622
/* > \endverbatim */
623
/* > */
624
/* > \param[in,out] D */
625
/* > \verbatim */
626
/* >          D is REAL array, dimension (N) */
627
/* >        On entry, D contains the diagonal entries of the */
628
/* >        bidiagonal matrix whose SVD is desired. On normal exit, */
629
/* >        D contains the singular values in ascending order. */
630
/* > \endverbatim */
631
/* > */
632
/* > \param[in,out] E */
633
/* > \verbatim */
634
/* >          E is REAL array. */
635
/* >        dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
636
/* >        On entry, the entries of E contain the offdiagonal entries */
637
/* >        of the bidiagonal matrix whose SVD is desired. On normal */
638
/* >        exit, E will contain 0. If the algorithm does not converge, */
639
/* >        D and E will contain the diagonal and superdiagonal entries */
640
/* >        of a bidiagonal matrix orthogonally equivalent to the one */
641
/* >        given as input. */
642
/* > \endverbatim */
643
/* > */
644
/* > \param[in,out] VT */
645
/* > \verbatim */
646
/* >          VT is REAL array, dimension (LDVT, NCVT) */
647
/* >        On entry, contains a matrix which on exit has been */
648
/* >        premultiplied by P**T, dimension N-by-NCVT if SQRE = 0 */
649
/* >        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
650
/* > \endverbatim */
651
/* > */
652
/* > \param[in] LDVT */
653
/* > \verbatim */
654
/* >          LDVT is INTEGER */
655
/* >        On entry, LDVT specifies the leading dimension of VT as */
656
/* >        declared in the calling (sub) program. LDVT must be at */
657
/* >        least 1. If NCVT is nonzero LDVT must also be at least N. */
658
/* > \endverbatim */
659
/* > */
660
/* > \param[in,out] U */
661
/* > \verbatim */
662
/* >          U is REAL array, dimension (LDU, N) */
663
/* >        On entry, contains a  matrix which on exit has been */
664
/* >        postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
665
/* >        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
666
/* > \endverbatim */
667
/* > */
668
/* > \param[in] LDU */
669
/* > \verbatim */
670
/* >          LDU is INTEGER */
671
/* >        On entry, LDU  specifies the leading dimension of U as */
672
/* >        declared in the calling (sub) program. LDU must be at */
673
/* >        least f2cmax( 1, NRU ) . */
674
/* > \endverbatim */
675
/* > */
676
/* > \param[in,out] C */
677
/* > \verbatim */
678
/* >          C is REAL array, dimension (LDC, NCC) */
679
/* >        On entry, contains an N-by-NCC matrix which on exit */
680
/* >        has been premultiplied by Q**T  dimension N-by-NCC if SQRE = 0 */
681
/* >        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
682
/* > \endverbatim */
683
/* > */
684
/* > \param[in] LDC */
685
/* > \verbatim */
686
/* >          LDC is INTEGER */
687
/* >        On entry, LDC  specifies the leading dimension of C as */
688
/* >        declared in the calling (sub) program. LDC must be at */
689
/* >        least 1. If NCC is nonzero, LDC must also be at least N. */
690
/* > \endverbatim */
691
/* > */
692
/* > \param[out] WORK */
693
/* > \verbatim */
694
/* >          WORK is REAL array, dimension (4*N) */
695
/* >        Workspace. Only referenced if one of NCVT, NRU, or NCC is */
696
/* >        nonzero, and if N is at least 2. */
697
/* > \endverbatim */
698
/* > */
699
/* > \param[out] INFO */
700
/* > \verbatim */
701
/* >          INFO is INTEGER */
702
/* >        On exit, a value of 0 indicates a successful exit. */
703
/* >        If INFO < 0, argument number -INFO is illegal. */
704
/* >        If INFO > 0, the algorithm did not converge, and INFO */
705
/* >        specifies how many superdiagonals did not converge. */
706
/* > \endverbatim */
707
708
/*  Authors: */
709
/*  ======== */
710
711
/* > \author Univ. of Tennessee */
712
/* > \author Univ. of California Berkeley */
713
/* > \author Univ. of Colorado Denver */
714
/* > \author NAG Ltd. */
715
716
/* > \date June 2016 */
717
718
/* > \ingroup OTHERauxiliary */
719
720
/* > \par Contributors: */
721
/*  ================== */
722
/* > */
723
/* >     Ming Gu and Huan Ren, Computer Science Division, University of */
724
/* >     California at Berkeley, USA */
725
/* > */
726
/*  ===================================================================== */
727
/* Subroutine */ void slasdq_(char *uplo, integer *sqre, integer *n, integer *
728
  ncvt, integer *nru, integer *ncc, real *d__, real *e, real *vt, 
729
  integer *ldvt, real *u, integer *ldu, real *c__, integer *ldc, real *
730
  work, integer *info)
731
0
{
732
    /* System generated locals */
733
0
    integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
734
0
      i__2;
735
736
    /* Local variables */
737
0
    integer isub;
738
0
    real smin;
739
0
    integer sqre1, i__, j;
740
0
    real r__;
741
0
    extern logical lsame_(char *, char *);
742
0
    extern /* Subroutine */ void slasr_(char *, char *, char *, integer *, 
743
0
      integer *, real *, real *, real *, integer *);
744
0
    integer iuplo;
745
0
    extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
746
0
      integer *);
747
0
    real cs, sn;
748
0
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
749
0
    extern void slartg_(
750
0
      real *, real *, real *, real *, real *);
751
0
    logical rotate;
752
0
    extern /* Subroutine */ void sbdsqr_(char *, integer *, integer *, integer 
753
0
      *, integer *, real *, real *, real *, integer *, real *, integer *
754
0
      , real *, integer *, real *, integer *);
755
0
    integer np1;
756
757
758
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
759
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
760
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
761
/*     June 2016 */
762
763
764
/*  ===================================================================== */
765
766
767
/*     Test the input parameters. */
768
769
    /* Parameter adjustments */
770
0
    --d__;
771
0
    --e;
772
0
    vt_dim1 = *ldvt;
773
0
    vt_offset = 1 + vt_dim1 * 1;
774
0
    vt -= vt_offset;
775
0
    u_dim1 = *ldu;
776
0
    u_offset = 1 + u_dim1 * 1;
777
0
    u -= u_offset;
778
0
    c_dim1 = *ldc;
779
0
    c_offset = 1 + c_dim1 * 1;
780
0
    c__ -= c_offset;
781
0
    --work;
782
783
    /* Function Body */
784
0
    *info = 0;
785
0
    iuplo = 0;
786
0
    if (lsame_(uplo, "U")) {
787
0
  iuplo = 1;
788
0
    }
789
0
    if (lsame_(uplo, "L")) {
790
0
  iuplo = 2;
791
0
    }
792
0
    if (iuplo == 0) {
793
0
  *info = -1;
794
0
    } else if (*sqre < 0 || *sqre > 1) {
795
0
  *info = -2;
796
0
    } else if (*n < 0) {
797
0
  *info = -3;
798
0
    } else if (*ncvt < 0) {
799
0
  *info = -4;
800
0
    } else if (*nru < 0) {
801
0
  *info = -5;
802
0
    } else if (*ncc < 0) {
803
0
  *info = -6;
804
0
    } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
805
0
  *info = -10;
806
0
    } else if (*ldu < f2cmax(1,*nru)) {
807
0
  *info = -12;
808
0
    } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
809
0
  *info = -14;
810
0
    }
811
0
    if (*info != 0) {
812
0
  i__1 = -(*info);
813
0
  xerbla_("SLASDQ", &i__1, (ftnlen)6);
814
0
  return;
815
0
    }
816
0
    if (*n == 0) {
817
0
  return;
818
0
    }
819
820
/*     ROTATE is true if any singular vectors desired, false otherwise */
821
822
0
    rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
823
0
    np1 = *n + 1;
824
0
    sqre1 = *sqre;
825
826
/*     If matrix non-square upper bidiagonal, rotate to be lower */
827
/*     bidiagonal.  The rotations are on the right. */
828
829
0
    if (iuplo == 1 && sqre1 == 1) {
830
0
  i__1 = *n - 1;
831
0
  for (i__ = 1; i__ <= i__1; ++i__) {
832
0
      slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
833
0
      d__[i__] = r__;
834
0
      e[i__] = sn * d__[i__ + 1];
835
0
      d__[i__ + 1] = cs * d__[i__ + 1];
836
0
      if (rotate) {
837
0
    work[i__] = cs;
838
0
    work[*n + i__] = sn;
839
0
      }
840
/* L10: */
841
0
  }
842
0
  slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
843
0
  d__[*n] = r__;
844
0
  e[*n] = 0.f;
845
0
  if (rotate) {
846
0
      work[*n] = cs;
847
0
      work[*n + *n] = sn;
848
0
  }
849
0
  iuplo = 2;
850
0
  sqre1 = 0;
851
852
/*        Update singular vectors if desired. */
853
854
0
  if (*ncvt > 0) {
855
0
      slasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
856
0
        vt_offset], ldvt);
857
0
  }
858
0
    }
859
860
/*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
861
/*     by applying Givens rotations on the left. */
862
863
0
    if (iuplo == 2) {
864
0
  i__1 = *n - 1;
865
0
  for (i__ = 1; i__ <= i__1; ++i__) {
866
0
      slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
867
0
      d__[i__] = r__;
868
0
      e[i__] = sn * d__[i__ + 1];
869
0
      d__[i__ + 1] = cs * d__[i__ + 1];
870
0
      if (rotate) {
871
0
    work[i__] = cs;
872
0
    work[*n + i__] = sn;
873
0
      }
874
/* L20: */
875
0
  }
876
877
/*        If matrix (N+1)-by-N lower bidiagonal, one additional */
878
/*        rotation is needed. */
879
880
0
  if (sqre1 == 1) {
881
0
      slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
882
0
      d__[*n] = r__;
883
0
      if (rotate) {
884
0
    work[*n] = cs;
885
0
    work[*n + *n] = sn;
886
0
      }
887
0
  }
888
889
/*        Update singular vectors if desired. */
890
891
0
  if (*nru > 0) {
892
0
      if (sqre1 == 0) {
893
0
    slasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
894
0
      u_offset], ldu);
895
0
      } else {
896
0
    slasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
897
0
      u_offset], ldu);
898
0
      }
899
0
  }
900
0
  if (*ncc > 0) {
901
0
      if (sqre1 == 0) {
902
0
    slasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
903
0
      c_offset], ldc);
904
0
      } else {
905
0
    slasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
906
0
      c_offset], ldc);
907
0
      }
908
0
  }
909
0
    }
910
911
/*     Call SBDSQR to compute the SVD of the reduced real */
912
/*     N-by-N upper bidiagonal matrix. */
913
914
0
    sbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
915
0
      u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
916
917
/*     Sort the singular values into ascending order (insertion sort on */
918
/*     singular values, but only one transposition per singular vector) */
919
920
0
    i__1 = *n;
921
0
    for (i__ = 1; i__ <= i__1; ++i__) {
922
923
/*        Scan for smallest D(I). */
924
925
0
  isub = i__;
926
0
  smin = d__[i__];
927
0
  i__2 = *n;
928
0
  for (j = i__ + 1; j <= i__2; ++j) {
929
0
      if (d__[j] < smin) {
930
0
    isub = j;
931
0
    smin = d__[j];
932
0
      }
933
/* L30: */
934
0
  }
935
0
  if (isub != i__) {
936
937
/*           Swap singular values and vectors. */
938
939
0
      d__[isub] = d__[i__];
940
0
      d__[i__] = smin;
941
0
      if (*ncvt > 0) {
942
0
    sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], 
943
0
      ldvt);
944
0
      }
945
0
      if (*nru > 0) {
946
0
    sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
947
0
      , &c__1);
948
0
      }
949
0
      if (*ncc > 0) {
950
0
    sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
951
0
      ;
952
0
      }
953
0
  }
954
/* L40: */
955
0
    }
956
957
0
    return;
958
959
/*     End of SLASDQ */
960
961
0
} /* slasdq_ */
962